Added notes to help/unexpected about: display() will limit the number of digits printed after decimal point %d will format after the decimal point for non-integer numeric values %x will format as fractions for non-integer numeric values fprintf(fd, "%d\n", huge_value) may need fflush(fd) to finish Fixed Makefile dependencies for the args.h rule. Fixed Makefile cases where echo with -n is used. On some systems, /bin/sh does not use -n, so we must call /bin/echo -n instead via the ${ECHON} Makefile variable. Add missing standard tools to sub-Makefiles to make them easier to invoke directly. Sort lists of standard tool Makefile variables and remove duplicates. Declare the SHELL at the top of Makefiles. Fixed the depend rule in the custom Makefile. Improved the messages produced by the depend in the Makefiles. Changed the UNUSED define in have_unused.h to be a macro with a parameter. Changed all use of UNUSED in *.c to be UNUSED(x). Removed need for HAVE_UNUSED in building the have_unused.h file. CCBAN is given to ${CC} in order to control if banned.h is in effect. The banned.h attempts to ban the use of certain dangerous functions that, if improperly used, could compromise the computational integrity if calculations. In the case of calc, we are motivated in part by the desire for calc to correctly calculate: even during extremely long calculations. If UNBAN is NOT defined, then calling certain functions will result in a call to a non-existent function (link error). While we do NOT encourage defining UNBAN, there may be a system / compiler environment where re-defining a function may lead to a fatal compiler complication. If that happens, consider compiling as: make clobber all chk CCBAN=-DUNBAN as see if this is a work-a-round. If YOU discover a need for the -DUNBAN work-a-round, PLEASE tell us! Please send us a bug report. See the file: BUGS or the URL: http://www.isthe.com/chongo/tech/comp/calc/calc-bugrept.html for how to send us such a bug report. Added the building of have_ban_pragma.h, which will determine if "#pragma GCC poison func_name" is supported. If it is not, or of HAVE_PRAGMA_GCC_POSION=-DHAVE_NO_PRAGMA_GCC_POSION, then banned.h will have no effect. Fixed building of the have_getpgid.h file. Fixed building of the have_getprid.h file. Fixed building of the have_getsid.h file. Fixed building of the have_gettime.h file. Fixed building of the have_strdup.h file. Fixed building of the have_ustat.h file. Fixed building of the have_rusage.h file. Added HAVE_NO_STRLCPY to control if we want to test if the system has a strlcpy() function. This in turn produces the have_strlcpy.h file wherein the symbol HAVE_STRLCPY will be defined, or not depending if the system comes with a strlcpy() function. If the system does not have a strlcpy() function, we compile our own strlcpy() function. See strl.c for details. Added HAVE_NO_STRLCAT to control if we want to test if the system has a strlcat() function. This in turn produces the have_strlcat.h file wherein the symbol HAVE_STRLCAT will be defined, or not depending if the system comes with a strlcat() function. If the system does not have a strlcat() function, we compile our own strlcat() function. See strl.c for details. Fixed places were <string.h>, using #ifdef HAVE_STRING_H for legacy systems that do not have that include file. Added ${H} Makefile symbol to control the announcement of forming and having formed hsrc related files. By default H=@ (announce hsrc file formation) vs. H=@: to silence hsrc related file formation. Explicitly turn off quiet mode (set Makefile variable ${Q} to be empty) when building rpms. Improved and fixed the hsrc build process. Forming rpms is performed in verbose mode to assist debugging to the rpm build process. Compile custom code, if needed, after main code is compiled.
What is calc?
Calc is an interactive calculator which provides for easy large numeric calculations, but which also can be easily programmed for difficult or long calculations. It can accept a command line argument, in which case it executes that single command and exits. Otherwise, it enters interactive mode. In this mode, it accepts commands one at a time, processes them, and displays the answers. In the simplest case, commands are simply expressions which are evaluated. For example, the following line can be input:
3 * (4 + 1)
and the calculator will print:
15
Calc has the usual collection of arithmetic operators +, -, /, * as well as ^ (exponentiation), % (modulus) and // (integer divide). For example:
3 * 19^43 - 1
will produce:
29075426613099201338473141505176993450849249622191102976
Notice that calc values can be very large. For example:
2^23209-1
will print:
402874115778988778181873329071 ... many digits ... 3779264511
The special '.' symbol (called dot), represents the result of the last command expression, if any. This is of great use when a series of partial results are calculated, or when the output mode is changed and the last result needs to be redisplayed. For example, the above result can be modified by typing:
. % (2^127-1)
and the calculator will print:
47385033654019111249345128555354223304
For more complex calculations, variables can be used to save the intermediate results. For example, the result of adding 7 to the previous result can be saved by typing:
curds = 15
whey = 7 + 2*curds
Functions can be used in expressions. There are a great number of pre-defined functions. For example, the following will calculate the factorial of the value of 'whey':
fact(whey)
and the calculator prints:
13763753091226345046315979581580902400000000
The calculator also knows about complex numbers, so that typing:
(2+3i) * (4-3i)
cos(.)
will print:
17+6i
-55.50474777265624667147+193.9265235748927986537i
The calculator can calculate transcendental functions, and accept and display numbers in real or exponential format. For example, typing:
config("display", 70),
epsilon(1e-70),
sin(1)
prints:
0.8414709848078965066525023216302989996225630607983710656727517099919104
Calc can output values in terms of fractions, octal or hexadecimal. For example:
config("mode", "fraction"),
(17/19)^23
print
base(16),
(19/17)^29
print
log(79.3i)
will print:
19967568900859523802559065713/257829627945307727248226067259
0x9201e65bdbb801eaf403f657efcf863/0x5cd2e2a01291ffd73bee6aa7dcf7d1
0x17b5164ac24ee836bf/0xc7b7a8e3ef5fcf752+0x883eaf5adadd26be3/0xc7b7a8e3ef5fcf752i
All numbers are represented as fractions with arbitrarily large numerators and denominators which are always reduced to lowest terms. Real or exponential format numbers can be input and are converted to the equivalent fraction. Hex, binary, or octal numbers can be input by using numbers with leading '0x', '0b' or '0' characters. Complex numbers can be input using a trailing 'i', as in '2+3i'. Strings and characters are input by using single or double quotes.
Commands are statements in a C-like language, where each input line is treated as the body of a procedure. Thus the command line can contain variable declarations, expressions, labels, conditional tests, and loops. Assignments to any variable name will automatically define that name as a global variable. The other important thing to know is that all non-assignment expressions which are evaluated are automatically printed. Thus, you can evaluate an expression's value by simply typing it in.
Many useful built-in mathematical functions are available. Use the:
help builtin
command to list them.
You can also define your own functions by using the 'define' keyword, followed by a function declaration very similar to C.
define f2(n)
{
local ans;
ans = 1;
while (n > 1)
ans *= (n -= 2);
return ans;
}
Thus the input:
f2(79)
will produce:
1009847364737869270905302433221592504062302663202724609375
Functions which only need to return a simple expression can be defined using an equals sign, as in the example:
define sc(a,b) = a^3 + b^3
Thus the input:
sc(31, 61)
will produce:
256772
Variables in functions can be defined as either 'global', 'local', or 'static'. Global variables are common to all functions and the command line, whereas local variables are unique to each function level, and are destroyed when the function returns. Static variables are scoped within single input files, or within functions, and are never destroyed. Variables are not typed at definition time, but dynamically change as they are used.
For more information about the calc language and features, try:
help overview
Calc has a help command that will produce information about every builtin function, command as well as a number of other aspects of calc usage. Try the command:
help help
for and overview of the help system. The command:
help builtin
provides information on built-in mathematical functions, whereas:
help asinh
will provides information a specific function. The following help files:
help command
help define
help operator
help statement
help variable
provide a good overview of the calc language. If you are familiar with C, you should also try:
help unexpected
It contains information about differences between C and calc that may surprise C programmers.