mirror of
https://github.com/lcn2/calc.git
synced 2025-08-19 01:13:27 +03:00
Compare commits
12 Commits
Author | SHA1 | Date | |
---|---|---|---|
|
aeb9a9d473 | ||
|
66883b390d | ||
|
ea533659ce | ||
|
9e81971f25 | ||
|
cbbd866535 | ||
|
bf23f82c29 | ||
|
ec5c584785 | ||
|
6bbb8c0e42 | ||
|
438554b0ed | ||
|
61ba4bc5c8 | ||
|
0145883396 | ||
|
f91bfaab70 |
15
CHANGES
15
CHANGES
@@ -1,4 +1,16 @@
|
||||
The following are the changes from calc version 2.12.6.0 to date:
|
||||
The following are the changes from calc version 2.12.6.1 to date:
|
||||
|
||||
Improved gen_v1(h,n) in lucas.cal to use an even faster search method.
|
||||
|
||||
Improved are checking in lucas.cal. In particular both h and n must be
|
||||
integers >= 1. In the case of both rodseth_xhn(x, h, n) and gen_v1(h, n)
|
||||
h must be odd.
|
||||
|
||||
Fixed an C code indenting issue that was reported by Thomas Walter
|
||||
<th dot walter42 at gmx dot de> in zfunc.c.
|
||||
|
||||
|
||||
The following are the changes from calc version 2.12.6.0 to 2.12.6.0:
|
||||
|
||||
Added the makefile variable ${COMMON_ADD} that will add flags
|
||||
to all compile and link commands. The ${COMMON_ADD} flags are
|
||||
@@ -68,7 +80,6 @@ The following are the changes from calc version 2.12.6.0 to date:
|
||||
|
||||
Fixed a number of typos in the CHANGES file.
|
||||
|
||||
|
||||
The following are the changes from calc version 2.12.5.4 to 2.12.5.6:
|
||||
|
||||
Recompile to match current RHEL7.2 libc and friends.
|
||||
|
@@ -990,7 +990,7 @@ EXT=
|
||||
|
||||
# The default calc versions
|
||||
#
|
||||
VERSION= 2.12.6.0
|
||||
VERSION= 2.12.6.3
|
||||
|
||||
# Names of shared libraries with versions
|
||||
#
|
||||
|
216
cal/lucas.cal
216
cal/lucas.cal
@@ -243,8 +243,8 @@ pprod256 = 0; /* product of "primes up to 256" / "primes up to 46" */
|
||||
* do make this so.
|
||||
*
|
||||
* input:
|
||||
* h the h as in h*2^n-1
|
||||
* n the n as in h*2^n-1
|
||||
* h h as in h*2^n-1 (must be >= 1)
|
||||
* n n as in h*2^n-1 (must be >= 1)
|
||||
*
|
||||
* returns:
|
||||
* 1 => h*2^n-1 is prime
|
||||
@@ -267,13 +267,17 @@ lucas(h, n)
|
||||
* check arg types
|
||||
*/
|
||||
if (!isint(h)) {
|
||||
ldebug("lucas", "h is non-int");
|
||||
quit "FATAL: bad args: h must be an integer";
|
||||
}
|
||||
if (h < 1) {
|
||||
quit "FATAL: bad args: h must be an integer >= 1";
|
||||
}
|
||||
if (!isint(n)) {
|
||||
ldebug("lucas", "n is non-int");
|
||||
quit "FATAL: bad args: n must be an integer";
|
||||
}
|
||||
if (n < 1) {
|
||||
quit "FATAL: bad args: n must be an integer >= 1";
|
||||
}
|
||||
|
||||
/*
|
||||
* reduce h if even
|
||||
@@ -484,9 +488,9 @@ lucas(h, n)
|
||||
* See the function gen_v1() for details on the value of v(1).
|
||||
*
|
||||
* input:
|
||||
* h - h as in h*2^n-1
|
||||
* n - n as in h*2^n-1
|
||||
* v1 - gen_v1(h,n) (see function below)
|
||||
* h - h as in h*2^n-1 (must be >= 1)
|
||||
* n - n as in h*2^n-1 (must be >= 1)
|
||||
* v1 - gen_v1(h,n) (must be >= 3) (see function below)
|
||||
*
|
||||
* returns:
|
||||
* u(2) - initial value for Lucas test on h*2^n-1
|
||||
@@ -499,6 +503,8 @@ gen_u2(h, n, v1)
|
||||
local r; /* low value: v(n) */
|
||||
local s; /* high value: v(n+1) */
|
||||
local hbits; /* highest bit set in h */
|
||||
local oldh; /* pre-reduced h */
|
||||
local oldn; /* pre-reduced n */
|
||||
local i;
|
||||
|
||||
/*
|
||||
@@ -507,24 +513,45 @@ gen_u2(h, n, v1)
|
||||
if (!isint(h)) {
|
||||
quit "bad args: h must be an integer";
|
||||
}
|
||||
if (h < 0) {
|
||||
quit "bad args: h must be an integer >= 1";
|
||||
}
|
||||
if (!isint(n)) {
|
||||
quit "bad args: n must be an integer";
|
||||
}
|
||||
if (n < 1) {
|
||||
quit "bad args: n must be an integer >= 1";
|
||||
}
|
||||
if (!isint(v1)) {
|
||||
quit "bad args: v1 must be an integer";
|
||||
}
|
||||
if (v1 <= 0) {
|
||||
quit "bogus arg: v1 is <= 0";
|
||||
if (v1 < 3) {
|
||||
quit "bogus arg: v1 must be an integer >= 3";
|
||||
}
|
||||
|
||||
/*
|
||||
* reduce h if even
|
||||
*
|
||||
* we will force h to be odd by moving powers of two over to 2^n
|
||||
*/
|
||||
oldh = h;
|
||||
oldn = n;
|
||||
shiftdown = fcnt(h,2); /* h % 2^shiftdown == 0, max shiftdown */
|
||||
if (shiftdown > 0) {
|
||||
h >>= shiftdown;
|
||||
n += shiftdown;
|
||||
}
|
||||
|
||||
/*
|
||||
* enforce the h > 0 and n >= 2 rules
|
||||
*/
|
||||
if (h <= 0 || n < 1) {
|
||||
print " ERROR: h=":oldh, "n=":oldn, "reduced h=":h, "n=":n;
|
||||
quit "reduced args violate the rule: 0 < h < 2^n";
|
||||
}
|
||||
hbits = highbit(h);
|
||||
if (hbits >= n) {
|
||||
print " ERROR: h=":oldh, "n=":oldn, "reduced h=":h, "n=":n;
|
||||
quit "reduced args violate the rule: 0 < h < 2^n";
|
||||
}
|
||||
|
||||
@@ -599,8 +626,8 @@ gen_u2(h, n, v1)
|
||||
* See the function gen_u2() for details.
|
||||
*
|
||||
* input:
|
||||
* h - h as in h*2^n-1
|
||||
* n - n as in h*2^n-1
|
||||
* h - h as in h*2^n-1 (must be >= 1)
|
||||
* n - n as in h*2^n-1 (must be >= 1)
|
||||
* v1 - gen_v1(h,n) (see function below)
|
||||
*
|
||||
* returns:
|
||||
@@ -638,9 +665,9 @@ gen_u0(h, n, v1)
|
||||
* x > 2
|
||||
*
|
||||
* input:
|
||||
* x - potential v(1) value
|
||||
* h - h as in h*2^n-1
|
||||
* n - n as in h*2^n-1
|
||||
* x potential v(1) value
|
||||
* h h as in h*2^n-1 (h must be odd >= 1)
|
||||
* n n as in h*2^n-1 (must be >= 1)
|
||||
*
|
||||
* returns:
|
||||
* 1 if v(1) == x for h*2^n-1
|
||||
@@ -657,9 +684,18 @@ rodseth_xhn(x, h, n)
|
||||
if (!isint(h)) {
|
||||
quit "bad args: h must be an integer";
|
||||
}
|
||||
if (iseven(h)) {
|
||||
quit "bad args: h must be an odd integer";
|
||||
}
|
||||
if (h < 1) {
|
||||
quit "bad args: h must be an integer >= 1";
|
||||
}
|
||||
if (!isint(n)) {
|
||||
quit "bad args: n must be an integer";
|
||||
}
|
||||
if (n < 1) {
|
||||
quit "bad args: n must be an integer >= 1";
|
||||
}
|
||||
if (!isint(x)) {
|
||||
quit "bad args: x must be an integer";
|
||||
}
|
||||
@@ -703,9 +739,9 @@ rodseth_xhn(x, h, n)
|
||||
* We can show that X > 2. See the comments in the rodseth_xhn(x,h,n) above.
|
||||
*
|
||||
* Some values of X satisfy more often than others. For example a large sample
|
||||
* of odd h, h multiple of 3 and large n (some around 1e4, some near 1e6, others
|
||||
* near 3e7) where the sample size was 66 973 365, here is the count of the
|
||||
* smallest value of X that satisfies conditions in Ref4, condition 1:
|
||||
* of h*2^n-1, h odd multiple of 3, and large n (some around 1e4, some near 1e6,
|
||||
* others near 3e7) where the sample size was 66 973 365, here is the count of
|
||||
* the smallest value of X that satisfies conditions in Ref4, condition 1:
|
||||
*
|
||||
* count X
|
||||
* ----------
|
||||
@@ -763,45 +799,90 @@ rodseth_xhn(x, h, n)
|
||||
* 1 161
|
||||
* 1 155
|
||||
*
|
||||
* It is important that we select the smallest possible v(1). While testing
|
||||
* various values of X for V(1) is fast, using larger than necessary values
|
||||
* of V(1) of can slow down calculating V(h).
|
||||
*
|
||||
* The above distribution was found to hold fairly well over many values of
|
||||
* odd h that are a multiple of 3 and for many values of n where h < 2^n.
|
||||
* odd h that are also a multiple of 3 and for many values of n where h < 2^n.
|
||||
* For example for in a sample size of 1000000 numbers of the form h*2^n-1
|
||||
* where h is an odd multiple of 3, 12996351 <= h <= 13002351,
|
||||
* 4331116 <= n <= 4332116, these are the smallest v(1) values that were found:
|
||||
*
|
||||
* smallest percentage
|
||||
* v(1) used
|
||||
* -------------------
|
||||
* 3 40.0000%
|
||||
* 5 25.6833%
|
||||
* 9 11.6924%
|
||||
* 11 10.4528%
|
||||
* 15 4.8048%
|
||||
* 17 2.3458%
|
||||
* 21 1.6568%
|
||||
* 29 1.2814%
|
||||
* 27 0.6906%
|
||||
* 35 0.4529%
|
||||
* 39 0.3140%
|
||||
* 41 0.1737%
|
||||
* 31 0.1413%
|
||||
* 45 0.1173%
|
||||
* 51 0.0526%
|
||||
* 55 0.0350%
|
||||
* 49 0.0332%
|
||||
* 59 0.0218%
|
||||
* 69 0.0099%
|
||||
* 65 0.0085%
|
||||
* 71 0.0073%
|
||||
* 57 0.0062%
|
||||
* 85 0.0048%
|
||||
* 81 0.0044%
|
||||
* 95 0.0028%
|
||||
* 99 0.0017%
|
||||
* 77 0.0009%
|
||||
* 53 0.0008%
|
||||
* 67 0.0004%
|
||||
* 105 0.0004%
|
||||
* 111 0.0004%
|
||||
* 125 0.0004%
|
||||
* 87 0.0003%
|
||||
* 101 0.0002%
|
||||
* 83 0.0001%
|
||||
* 109 0.0001%
|
||||
* 121 0.0001%
|
||||
* 129 0.0001%
|
||||
*
|
||||
* When h * 2^n-1 is prime and h is an odd multiple of 3, a smallest v(1) that
|
||||
* is even is extremely rate. Of the list of 127287 known primes of the form
|
||||
* h*2^n-1 when h was a multiple of 3, none has an smallest v(1) that was even.
|
||||
*
|
||||
* About 1 out of 1000000 cases when h is a multiple of 3 use v(1) > 127 as the
|
||||
* smallest value of v(1).
|
||||
*
|
||||
* Given this information, when odd h is a multiple of 3 we try, in order,
|
||||
* these values of X:
|
||||
* these sorted values of X:
|
||||
*
|
||||
* 3, 5, 9, 11, 15, 17, 21, 29, 20, 27, 35, 36, 39, 41, 45, 32, 51, 44,
|
||||
* 56, 49, 59, 57, 65, 55, 69, 71, 77, 81, 66, 95, 80, 67, 84, 99, 72,
|
||||
* 74, 87, 90, 104, 101, 105, 109, 116, 111, 92
|
||||
* 3, 5, 9, 11, 15, 17, 21, 27, 29, 31, 35, 39, 41, 45, 49, 51, 53, 55, 57, 59,
|
||||
* 65, 67, 69, 71, 77, 81, 83, 85, 87, 95, 99, 101, 105, 109, 111, 121, 125
|
||||
*
|
||||
* And stop on the first value of X where:
|
||||
*
|
||||
* jacobi(X-2, h*2^n-1) == 1
|
||||
* jacobi(X+2, h*2^n-1) == -1
|
||||
*
|
||||
* If no value in that list works, we start simple search starting with X = 120
|
||||
* and incrementing by 1 until a value of X is found.
|
||||
* If no value in that list works, we start simple search starting with X = 129
|
||||
* and incrementing by 2 until a value of X is found.
|
||||
*
|
||||
* The x_tbl[] matrix contains those common values of X to try in order.
|
||||
* If all x_tbl_len fail to satisfy Ref4 condition 1, then we begin a
|
||||
* linear search at next_x until we find a proper X value.
|
||||
*
|
||||
* IMPORTANT NOTE: Using this table will not find the smallest possible v(1)
|
||||
* for a given h and n. This is not a problem because using
|
||||
* a larger value of v(1) does not impact the primality test.
|
||||
* Furthermore after lucas(h, n) generates a few u(n) terms,
|
||||
* the values will wrap (due to computing mod h*2^n-1).
|
||||
* Finally on average, about 1/4 of the values of X work as
|
||||
* v(1) for a given n when h is a multiple of 3. Skipping
|
||||
* rarely used v(1) will not doom gen_v1() to a long search.
|
||||
*/
|
||||
x_tbl_len = 45;
|
||||
x_tbl_len = 38;
|
||||
mat x_tbl[x_tbl_len];
|
||||
x_tbl = {
|
||||
3, 5, 9, 11, 15, 17, 21, 29, 20, 27, 35, 36, 39, 41, 45, 32, 51, 44,
|
||||
56, 49, 59, 57, 65, 55, 69, 71, 77, 81, 66, 95, 80, 67, 84, 99, 72,
|
||||
74, 87, 90, 104, 101, 105, 109, 116, 111, 92
|
||||
3, 5, 9, 11, 15, 17, 21, 27, 29, 31, 35, 39, 41, 45, 49, 51, 53, 55, 57, 59,
|
||||
65, 67, 69, 71, 77, 81, 83, 85, 87, 95, 99, 101, 105, 109, 111, 121, 125
|
||||
};
|
||||
next_x = 120;
|
||||
next_x = 129;
|
||||
|
||||
/*
|
||||
* gen_v1 - compute the v(1) for a given h*2^n-1 if we can
|
||||
@@ -956,11 +1037,12 @@ next_x = 120;
|
||||
***
|
||||
*
|
||||
* input:
|
||||
* h h as in h*2^n-1
|
||||
* n n as in h*2^n-1
|
||||
* h h as in h*2^n-1 (h must be odd >= 1)
|
||||
* n n as in h*2^n-1 (must be >= 1)
|
||||
*
|
||||
* output:
|
||||
* returns v(1), or -1 is there is no quick way
|
||||
* returns v(1), or
|
||||
* -1 when h*2^n-1 is a multiple of 3
|
||||
*/
|
||||
define
|
||||
gen_v1(h, n)
|
||||
@@ -974,9 +1056,26 @@ gen_v1(h, n)
|
||||
if (!isint(h)) {
|
||||
quit "bad args: h must be an integer";
|
||||
}
|
||||
if (iseven(h)) {
|
||||
quit "bad args: h must be an odd integer";
|
||||
}
|
||||
if (h < 1) {
|
||||
quit "bad args: h must be an integer >= 1";
|
||||
}
|
||||
if (!isint(n)) {
|
||||
quit "bad args: n must be an integer";
|
||||
}
|
||||
if (n < 1) {
|
||||
quit "bad args: n must be an integer >= 1";
|
||||
}
|
||||
|
||||
/*
|
||||
* pretest: Verify that h*2^n-1 is not a multiple of 3
|
||||
*/
|
||||
if (((h % 3 == 1) && (n % 2 == 0)) || ((h % 3 == 2) && (n % 2 == 1))) {
|
||||
/* no need to test h*2^n-1, it is not prime */
|
||||
return -1;
|
||||
}
|
||||
|
||||
/*
|
||||
* check for Case 1: (h mod 3 != 0)
|
||||
@@ -995,6 +1094,11 @@ gen_v1(h, n)
|
||||
*
|
||||
* jacobi(X-2, h*2^n-1) == 1 part 1
|
||||
* jacobi(X+2, h*2^n-1) == -1 part 2
|
||||
*
|
||||
* NOTE: If we wanted to be super optimial, we would cache
|
||||
* jacobi(X+2, h*2^n-1) that that when we increment X
|
||||
* to the next odd value, the now jacobi(X-2, h*2^n-1)
|
||||
* does not need to be re-evaluted.
|
||||
*/
|
||||
for (i=0; i < x_tbl_len; ++i) {
|
||||
|
||||
@@ -1015,17 +1119,13 @@ gen_v1(h, n)
|
||||
}
|
||||
|
||||
/*
|
||||
* We are in that rare case (about 1 in 2 300 000) where none of the
|
||||
* We are in that rare case (about 1 in 835 000) where none of the
|
||||
* common X values satisfy Ref4 condition 1. We start a linear search
|
||||
* at next_x from here on.
|
||||
*
|
||||
* However, we also need to keep in mind that when x+2 >= 257, we
|
||||
* need to verify that gcd(x-2, h*2^n-1) == 1 and
|
||||
* and to verify that gcd(x+2, h*2^n-1) == 1.
|
||||
* of odd vules at next_x from here on.
|
||||
*/
|
||||
x = next_x;
|
||||
while (rodseth_xhn(x, h, n) != 1) {
|
||||
++x;
|
||||
x += 2;
|
||||
}
|
||||
/* finally found a v(1) value */
|
||||
ldebug("gen_v1", "h= " + str(h) + " n= " + str(n) +
|
||||
@@ -1457,8 +1557,8 @@ legacy_d_qval[7] = 19; legacy_v1_qval[7] = 74; /* a=38 b=1 r=2 */
|
||||
***
|
||||
*
|
||||
* input:
|
||||
* h h as in h*2^n-1
|
||||
* n n as in h*2^n-1
|
||||
* h h as in h*2^n-1 (must be >= 1)
|
||||
* n n as in h*2^n-1 (must be >= 1)
|
||||
*
|
||||
* output:
|
||||
* returns v(1), or -1 is there is no quick way
|
||||
@@ -1470,6 +1570,22 @@ legacy_gen_v1(h, n)
|
||||
local val_mod; /* h*2^n-1 mod 'D' */
|
||||
local i;
|
||||
|
||||
/*
|
||||
* check arg types
|
||||
*/
|
||||
if (!isint(h)) {
|
||||
quit "bad args: h must be an integer";
|
||||
}
|
||||
if (h < 1) {
|
||||
quit "bad args: h must be an integer >= 1";
|
||||
}
|
||||
if (!isint(n)) {
|
||||
quit "bad args: n must be an integer";
|
||||
}
|
||||
if (n < 1) {
|
||||
quit "bad args: n must be an integer >= 1";
|
||||
}
|
||||
|
||||
/*
|
||||
* check for case 1
|
||||
*/
|
||||
|
@@ -348,7 +348,7 @@ EXT=
|
||||
|
||||
# The default calc versions
|
||||
#
|
||||
VERSION= 2.12.6.0
|
||||
VERSION= 2.12.6.3
|
||||
|
||||
# Names of shared libraries with versions
|
||||
#
|
||||
|
@@ -348,7 +348,7 @@ EXT=
|
||||
|
||||
# The default calc versions
|
||||
#
|
||||
VERSION= 2.12.6.0
|
||||
VERSION= 2.12.6.3
|
||||
|
||||
# Names of shared libraries with versions
|
||||
#
|
||||
|
@@ -45,7 +45,7 @@ static char *program;
|
||||
#define MAJOR_VER 2 /* major library version */
|
||||
#define MINOR_VER 12 /* minor library version */
|
||||
#define MAJOR_PATCH 6 /* major software level under library version */
|
||||
#define MINOR_PATCH 0 /* minor software level or 0 if not patched */
|
||||
#define MINOR_PATCH 3 /* minor software level or 0 if not patched */
|
||||
|
||||
|
||||
/*
|
||||
|
175
zfunc.c
175
zfunc.c
@@ -1029,93 +1029,98 @@ zgcd(ZVALUE z1, ZVALUE z2, ZVALUE *res)
|
||||
needw = FALSE;
|
||||
}
|
||||
g = *a0 * w;
|
||||
if (h < BASEB) g &= (1 << h) - 1;
|
||||
else g &= BASE1;
|
||||
if (h < BASEB) {
|
||||
g &= (1 << h) - 1;
|
||||
} else {
|
||||
g &= BASE1;
|
||||
}
|
||||
} else {
|
||||
g = 1;
|
||||
}
|
||||
else g = 1;
|
||||
} else
|
||||
} else {
|
||||
g = (HALF) *a0 * w;
|
||||
a = a0;
|
||||
b = b0;
|
||||
i = n;
|
||||
if (g > 1) { /* a - g * b case */
|
||||
f = 0;
|
||||
while (i--) {
|
||||
f = (FULL) *a - g * *b++ - f;
|
||||
*a++ = (HALF) f;
|
||||
f >>= BASEB;
|
||||
f = -f & BASE1;
|
||||
}
|
||||
if (f) {
|
||||
i = m - n;
|
||||
while (i-- && f) {
|
||||
f = *a - f;
|
||||
*a++ = (HALF) f;
|
||||
f >>= BASEB;
|
||||
f = -f & BASE1;
|
||||
}
|
||||
}
|
||||
while (m && !*a0) { /* Removing trailing zeros */
|
||||
m--;
|
||||
a0++;
|
||||
}
|
||||
if (f) { /* a - g * b < 0 */
|
||||
while (m > 1 && a0[m-1] == BASE1) m--;
|
||||
*a0 = - *a0;
|
||||
a = a0;
|
||||
i = m;
|
||||
while (--i) {
|
||||
a++;
|
||||
*a = ~*a;
|
||||
}
|
||||
}
|
||||
} else { /* abs(a - b) case */
|
||||
while (i && *a++ == *b++) i--;
|
||||
q = n - i;
|
||||
if (m == n) { /* a and b same length */
|
||||
if (i) { /* a not equal to b */
|
||||
while (m && a0[m-1] == b0[m-1]) m--;
|
||||
if (a0[m-1] < b0[m-1]) {
|
||||
/* Swapping since a < b */
|
||||
a = a0;
|
||||
a0 = b0;
|
||||
b0 = a;
|
||||
k = j;
|
||||
}
|
||||
a = a0 + q;
|
||||
b = b0 + q;
|
||||
i = m - q;
|
||||
f = 0;
|
||||
while (i--) {
|
||||
f = (FULL) *a - *b++ - f;
|
||||
*a++ = (HALF) f;
|
||||
f >>= BASEB;
|
||||
f = -f & BASE1;
|
||||
}
|
||||
}
|
||||
} else { /* a has more digits than b */
|
||||
a = a0 + q;
|
||||
b = b0 + q;
|
||||
i = n - q;
|
||||
f = 0;
|
||||
while (i--) {
|
||||
f = (FULL) *a - *b++ - f;
|
||||
*a++ = (HALF) f;
|
||||
f >>= BASEB;
|
||||
f = -f & BASE1;
|
||||
}
|
||||
if (f) { while (!*a) *a++ = BASE1;
|
||||
(*a)--;
|
||||
}
|
||||
}
|
||||
a0 += q;
|
||||
m -= q;
|
||||
while (m && !*a0) { /* Removing trailing zeros */
|
||||
m--;
|
||||
a0++;
|
||||
}
|
||||
}
|
||||
while (m && !a0[m-1]) m--; /* Removing leading zeros */
|
||||
}
|
||||
a = a0;
|
||||
b = b0;
|
||||
i = n;
|
||||
if (g > 1) { /* a - g * b case */
|
||||
f = 0;
|
||||
while (i--) {
|
||||
f = (FULL) *a - g * *b++ - f;
|
||||
*a++ = (HALF) f;
|
||||
f >>= BASEB;
|
||||
f = -f & BASE1;
|
||||
}
|
||||
if (f) {
|
||||
i = m - n;
|
||||
while (i-- && f) {
|
||||
f = *a - f;
|
||||
*a++ = (HALF) f;
|
||||
f >>= BASEB;
|
||||
f = -f & BASE1;
|
||||
}
|
||||
}
|
||||
while (m && !*a0) { /* Removing trailing zeros */
|
||||
m--;
|
||||
a0++;
|
||||
}
|
||||
if (f) { /* a - g * b < 0 */
|
||||
while (m > 1 && a0[m-1] == BASE1) m--;
|
||||
*a0 = - *a0;
|
||||
a = a0;
|
||||
i = m;
|
||||
while (--i) {
|
||||
a++;
|
||||
*a = ~*a;
|
||||
}
|
||||
}
|
||||
} else { /* abs(a - b) case */
|
||||
while (i && *a++ == *b++) i--;
|
||||
q = n - i;
|
||||
if (m == n) { /* a and b same length */
|
||||
if (i) { /* a not equal to b */
|
||||
while (m && a0[m-1] == b0[m-1]) m--;
|
||||
if (a0[m-1] < b0[m-1]) {
|
||||
/* Swapping since a < b */
|
||||
a = a0;
|
||||
a0 = b0;
|
||||
b0 = a;
|
||||
k = j;
|
||||
}
|
||||
a = a0 + q;
|
||||
b = b0 + q;
|
||||
i = m - q;
|
||||
f = 0;
|
||||
while (i--) {
|
||||
f = (FULL) *a - *b++ - f;
|
||||
*a++ = (HALF) f;
|
||||
f >>= BASEB;
|
||||
f = -f & BASE1;
|
||||
}
|
||||
}
|
||||
} else { /* a has more digits than b */
|
||||
a = a0 + q;
|
||||
b = b0 + q;
|
||||
i = n - q;
|
||||
f = 0;
|
||||
while (i--) {
|
||||
f = (FULL) *a - *b++ - f;
|
||||
*a++ = (HALF) f;
|
||||
f >>= BASEB;
|
||||
f = -f & BASE1;
|
||||
}
|
||||
if (f) { while (!*a) *a++ = BASE1;
|
||||
(*a)--;
|
||||
}
|
||||
}
|
||||
a0 += q;
|
||||
m -= q;
|
||||
while (m && !*a0) { /* Removing trailing zeros */
|
||||
m--;
|
||||
a0++;
|
||||
}
|
||||
}
|
||||
while (m && !a0[m-1]) m--; /* Removing leading zeros */
|
||||
}
|
||||
if (m == 1) { /* a has one digit */
|
||||
v = *a0;
|
||||
|
Reference in New Issue
Block a user