#define _GNU_SOURCE #include #include #include #include #include #include #include #include #include "darkmagic.h" #include "helpers.h" #include "params.h" #include "nfqws.h" #ifdef __CYGWIN__ #include #include #endif uint32_t net32_add(uint32_t netorder_value, uint32_t cpuorder_increment) { return htonl(ntohl(netorder_value)+cpuorder_increment); } uint32_t net16_add(uint16_t netorder_value, uint16_t cpuorder_increment) { return htons(ntohs(netorder_value)+cpuorder_increment); } uint8_t *tcp_find_option(struct tcphdr *tcp, uint8_t kind) { uint8_t *t = (uint8_t*)(tcp+1); uint8_t *end = (uint8_t*)tcp + (tcp->th_off<<2); while(t=end || t[1]<2 || (t+t[1])>end) return NULL; if (*t==kind) return t; t+=t[1]; break; } } return NULL; } uint32_t *tcp_find_timestamps(struct tcphdr *tcp) { uint8_t *t = tcp_find_option(tcp,8); return (t && t[1]==10) ? (uint32_t*)(t+2) : NULL; } uint8_t tcp_find_scale_factor(const struct tcphdr *tcp) { uint8_t *scale = tcp_find_option((struct tcphdr*)tcp,3); // tcp option 3 - scale factor if (scale && scale[1]==3) return scale[2]; return SCALE_NONE; } bool tcp_has_fastopen(const struct tcphdr *tcp) { uint8_t *opt; // new style RFC7413 opt = tcp_find_option((struct tcphdr*)tcp, 34); if (opt) return true; // old style RFC6994 opt = tcp_find_option((struct tcphdr*)tcp, 254); return opt && opt[1]>=4 && opt[2]==0xF9 && opt[3]==0x89; } // n prefix (nsport, nwsize) means network byte order static void fill_tcphdr( struct tcphdr *tcp, uint32_t fooling, uint8_t tcp_flags, uint32_t nseq, uint32_t nack_seq, uint16_t nsport, uint16_t ndport, uint16_t nwsize, uint8_t scale_factor, uint32_t *timestamps, uint32_t badseq_increment, uint32_t badseq_ack_increment, uint16_t data_len) { char *tcpopt = (char*)(tcp+1); uint8_t t=0; memset(tcp,0,sizeof(*tcp)); tcp->th_sport = nsport; tcp->th_dport = ndport; if (fooling & FOOL_BADSEQ) { tcp->th_seq = net32_add(nseq,badseq_increment); tcp->th_ack = net32_add(nack_seq,badseq_ack_increment); } else { tcp->th_seq = nseq; tcp->th_ack = nack_seq; } tcp->th_off = 5; if ((fooling & FOOL_DATANOACK) && !(tcp_flags & (TH_SYN|TH_RST)) && data_len) tcp_flags &= ~TH_ACK; *((uint8_t*)tcp+13)= tcp_flags; tcp->th_win = nwsize; if (fooling & FOOL_MD5SIG) { tcpopt[0] = 19; // kind tcpopt[1] = 18; // len *(uint32_t*)(tcpopt+2)=random(); *(uint32_t*)(tcpopt+6)=random(); *(uint32_t*)(tcpopt+10)=random(); *(uint32_t*)(tcpopt+14)=random(); t=18; } if (timestamps || (fooling & FOOL_TS)) { tcpopt[t] = 8; // kind tcpopt[t+1] = 10; // len // forge only TSecr if orig timestamp is present *(uint32_t*)(tcpopt+t+2) = timestamps ? timestamps[0] : 0xFFFFFFFF; *(uint32_t*)(tcpopt+t+6) = (timestamps && !(fooling & FOOL_TS)) ? timestamps[1] : 0xFFFFFFFF; t+=10; } if (scale_factor!=SCALE_NONE) { tcpopt[t++]=3; tcpopt[t++]=3; tcpopt[t++]=scale_factor; } while (t&3) tcpopt[t++]=1; // noop tcp->th_off += t>>2; tcp->th_sum = 0; } static uint16_t tcpopt_len(uint32_t fooling, const uint32_t *timestamps, uint8_t scale_factor) { uint16_t t=0; if (fooling & FOOL_MD5SIG) t=18; if ((fooling & FOOL_TS) || timestamps) t+=10; if (scale_factor!=SCALE_NONE) t+=3; return (t+3)&~3; } // n prefix (nsport, nwsize) means network byte order static void fill_udphdr(struct udphdr *udp, uint16_t nsport, uint16_t ndport, uint16_t len_payload) { udp->uh_sport = nsport; udp->uh_dport = ndport; udp->uh_ulen = htons(len_payload+sizeof(struct udphdr)); udp->uh_sum = 0; } static void fill_iphdr(struct ip *ip, const struct in_addr *src, const struct in_addr *dst, uint16_t pktlen, uint8_t proto, uint8_t ttl) { ip->ip_off = 0; ip->ip_v = 4; ip->ip_hl = 5; ip->ip_len = htons(pktlen); ip->ip_id = 0; ip->ip_ttl = ttl; ip->ip_p = proto; ip->ip_src = *src; ip->ip_dst = *dst; } static void fill_ip6hdr(struct ip6_hdr *ip6, const struct in6_addr *src, const struct in6_addr *dst, uint16_t payloadlen, uint8_t proto, uint8_t ttl) { ip6->ip6_ctlun.ip6_un1.ip6_un1_flow = htonl(0x60000000); ip6->ip6_ctlun.ip6_un1.ip6_un1_plen = htons(payloadlen); ip6->ip6_ctlun.ip6_un1.ip6_un1_nxt = proto; ip6->ip6_ctlun.ip6_un1.ip6_un1_hlim = ttl; ip6->ip6_src = *src; ip6->ip6_dst = *dst; } bool prepare_tcp_segment4( const struct sockaddr_in *src, const struct sockaddr_in *dst, uint8_t tcp_flags, uint32_t nseq, uint32_t nack_seq, uint16_t nwsize, uint8_t scale_factor, uint32_t *timestamps, uint8_t ttl, uint32_t fooling, uint32_t badseq_increment, uint32_t badseq_ack_increment, const void *data, uint16_t len, uint8_t *buf, size_t *buflen) { uint16_t tcpoptlen = tcpopt_len(fooling,timestamps,scale_factor); uint16_t ip_payload_len = sizeof(struct tcphdr) + tcpoptlen + len; uint16_t pktlen = sizeof(struct ip) + ip_payload_len; if (pktlen>*buflen) return false; struct ip *ip = (struct ip*)buf; struct tcphdr *tcp = (struct tcphdr*)(ip+1); uint8_t *payload = (uint8_t*)(tcp+1)+tcpoptlen; fill_iphdr(ip, &src->sin_addr, &dst->sin_addr, pktlen, IPPROTO_TCP, ttl); fill_tcphdr(tcp,fooling,tcp_flags,nseq,nack_seq,src->sin_port,dst->sin_port,nwsize,scale_factor,timestamps,badseq_increment,badseq_ack_increment,len); memcpy(payload,data,len); tcp4_fix_checksum(tcp,ip_payload_len,&ip->ip_src,&ip->ip_dst); if (fooling & FOOL_BADSUM) tcp->th_sum^=htons(0xBEAF); *buflen = pktlen; return true; } bool prepare_tcp_segment6( const struct sockaddr_in6 *src, const struct sockaddr_in6 *dst, uint8_t tcp_flags, uint32_t nseq, uint32_t nack_seq, uint16_t nwsize, uint8_t scale_factor, uint32_t *timestamps, uint8_t ttl, uint32_t fooling, uint32_t badseq_increment, uint32_t badseq_ack_increment, const void *data, uint16_t len, uint8_t *buf, size_t *buflen) { uint16_t tcpoptlen = tcpopt_len(fooling,timestamps,scale_factor); uint16_t transport_payload_len = sizeof(struct tcphdr) + tcpoptlen + len; uint16_t ip_payload_len = transport_payload_len + 8*!!((fooling & (FOOL_HOPBYHOP|FOOL_HOPBYHOP2))==FOOL_HOPBYHOP) + 16*!!(fooling & FOOL_HOPBYHOP2) + 8*!!(fooling & FOOL_DESTOPT) + 8*!!(fooling & FOOL_IPFRAG1); uint16_t pktlen = sizeof(struct ip6_hdr) + ip_payload_len; if (pktlen>*buflen) return false; struct ip6_hdr *ip6 = (struct ip6_hdr*)buf; struct tcphdr *tcp = (struct tcphdr*)(ip6+1); uint8_t proto = IPPROTO_TCP, *nexttype = NULL; if (fooling & (FOOL_HOPBYHOP|FOOL_HOPBYHOP2)) { struct ip6_hbh *hbh = (struct ip6_hbh*)tcp; tcp = (struct tcphdr*)((uint8_t*)tcp+8); memset(hbh,0,8); // extra HOPBYHOP header. standard violation if (fooling & FOOL_HOPBYHOP2) { hbh = (struct ip6_hbh*)tcp; tcp = (struct tcphdr*)((uint8_t*)tcp+8); memset(hbh,0,8); } hbh->ip6h_nxt = IPPROTO_TCP; nexttype = &hbh->ip6h_nxt; proto = IPPROTO_HOPOPTS; } if (fooling & FOOL_DESTOPT) { struct ip6_dest *dest = (struct ip6_dest*)tcp; tcp = (struct tcphdr*)((uint8_t*)tcp+8); memset(dest,0,8); dest->ip6d_nxt = IPPROTO_TCP; if (nexttype) *nexttype = IPPROTO_DSTOPTS; else proto = IPPROTO_DSTOPTS; nexttype = &dest->ip6d_nxt; } if (fooling & FOOL_IPFRAG1) { struct ip6_frag *frag = (struct ip6_frag*)tcp; tcp = (struct tcphdr*)((uint8_t*)tcp+sizeof(struct ip6_frag)); frag->ip6f_nxt = IPPROTO_TCP; frag->ip6f_ident = htonl(1+random()%0xFFFFFFFF); frag->ip6f_reserved = 0; frag->ip6f_offlg = 0; if (nexttype) *nexttype = IPPROTO_FRAGMENT; else proto = IPPROTO_FRAGMENT; } uint8_t *payload = (uint8_t*)(tcp+1)+tcpoptlen; fill_ip6hdr(ip6, &src->sin6_addr, &dst->sin6_addr, ip_payload_len, proto, ttl); fill_tcphdr(tcp,fooling,tcp_flags,nseq,nack_seq,src->sin6_port,dst->sin6_port,nwsize,scale_factor,timestamps,badseq_increment,badseq_ack_increment,len); memcpy(payload,data,len); tcp6_fix_checksum(tcp,transport_payload_len,&ip6->ip6_src,&ip6->ip6_dst); if (fooling & FOOL_BADSUM) tcp->th_sum^=htons(0xBEAF); *buflen = pktlen; return true; } bool prepare_tcp_segment( const struct sockaddr *src, const struct sockaddr *dst, uint8_t tcp_flags, uint32_t nseq, uint32_t nack_seq, uint16_t nwsize, uint8_t scale_factor, uint32_t *timestamps, uint8_t ttl, uint32_t fooling, uint32_t badseq_increment, uint32_t badseq_ack_increment, const void *data, uint16_t len, uint8_t *buf, size_t *buflen) { return (src->sa_family==AF_INET && dst->sa_family==AF_INET) ? prepare_tcp_segment4((struct sockaddr_in *)src,(struct sockaddr_in *)dst,tcp_flags,nseq,nack_seq,nwsize,scale_factor,timestamps,ttl,fooling,badseq_increment,badseq_ack_increment,data,len,buf,buflen) : (src->sa_family==AF_INET6 && dst->sa_family==AF_INET6) ? prepare_tcp_segment6((struct sockaddr_in6 *)src,(struct sockaddr_in6 *)dst,tcp_flags,nseq,nack_seq,nwsize,scale_factor,timestamps,ttl,fooling,badseq_increment,badseq_ack_increment,data,len,buf,buflen) : false; } // padlen<0 means payload shrinking bool prepare_udp_segment4( const struct sockaddr_in *src, const struct sockaddr_in *dst, uint8_t ttl, uint32_t fooling, const uint8_t *padding, size_t padding_size, int padlen, const void *data, uint16_t len, uint8_t *buf, size_t *buflen) { if ((len+padlen)<=0) padlen=-(int)len+1; // do not allow payload to be less that 1 byte if ((len+padlen)>0xFFFF) padlen=0xFFFF-len; // do not allow payload size to exceed u16 range if (padlen<0) { len+=padlen; padlen=0; } uint16_t datalen = (uint16_t)(len + padlen); uint16_t ip_payload_len = sizeof(struct udphdr) + datalen; uint16_t pktlen = sizeof(struct ip) + ip_payload_len; if (pktlen>*buflen) return false; struct ip *ip = (struct ip*)buf; struct udphdr *udp = (struct udphdr*)(ip+1); uint8_t *payload = (uint8_t*)(udp+1); fill_iphdr(ip, &src->sin_addr, &dst->sin_addr, pktlen, IPPROTO_UDP, ttl); fill_udphdr(udp, src->sin_port, dst->sin_port, datalen); memcpy(payload,data,len); if (padding) fill_pattern(payload+len,padlen,padding,padding_size); else memset(payload+len,0,padlen); udp4_fix_checksum(udp,ip_payload_len,&ip->ip_src,&ip->ip_dst); if (fooling & FOOL_BADSUM) udp->uh_sum^=htons(0xBEAF); *buflen = pktlen; return true; } bool prepare_udp_segment6( const struct sockaddr_in6 *src, const struct sockaddr_in6 *dst, uint8_t ttl, uint32_t fooling, const uint8_t *padding, size_t padding_size, int padlen, const void *data, uint16_t len, uint8_t *buf, size_t *buflen) { if ((len+padlen)<=0) padlen=-(int)len+1; // do not allow payload to be less that 1 byte if ((len+padlen)>0xFFFF) padlen=0xFFFF-len; // do not allow payload size to exceed u16 range if (padlen<0) { len+=padlen; padlen=0; } uint16_t datalen = (uint16_t)(len + padlen); uint16_t transport_payload_len = sizeof(struct udphdr) + datalen; uint16_t ip_payload_len = transport_payload_len + 8*!!((fooling & (FOOL_HOPBYHOP|FOOL_HOPBYHOP2))==FOOL_HOPBYHOP) + 16*!!(fooling & FOOL_HOPBYHOP2) + 8*!!(fooling & FOOL_DESTOPT) + 8*!!(fooling & FOOL_IPFRAG1); uint16_t pktlen = sizeof(struct ip6_hdr) + ip_payload_len; if (pktlen>*buflen) return false; struct ip6_hdr *ip6 = (struct ip6_hdr*)buf; struct udphdr *udp = (struct udphdr*)(ip6+1); uint8_t proto = IPPROTO_UDP, *nexttype = NULL; if (fooling & (FOOL_HOPBYHOP|FOOL_HOPBYHOP2)) { struct ip6_hbh *hbh = (struct ip6_hbh*)udp; udp = (struct udphdr*)((uint8_t*)udp+8); memset(hbh,0,8); // extra HOPBYHOP header. standard violation if (fooling & FOOL_HOPBYHOP2) { hbh = (struct ip6_hbh*)udp; udp = (struct udphdr*)((uint8_t*)udp+8); memset(hbh,0,8); } hbh->ip6h_nxt = IPPROTO_UDP; nexttype = &hbh->ip6h_nxt; proto = IPPROTO_HOPOPTS; } if (fooling & FOOL_DESTOPT) { struct ip6_dest *dest = (struct ip6_dest*)udp; udp = (struct udphdr*)((uint8_t*)udp+8); memset(dest,0,8); dest->ip6d_nxt = IPPROTO_UDP; if (nexttype) *nexttype = IPPROTO_DSTOPTS; else proto = IPPROTO_DSTOPTS; nexttype = &dest->ip6d_nxt; } if (fooling & FOOL_IPFRAG1) { struct ip6_frag *frag = (struct ip6_frag*)udp; udp = (struct udphdr*)((uint8_t*)udp+sizeof(struct ip6_frag)); frag->ip6f_nxt = IPPROTO_UDP; frag->ip6f_ident = htonl(1+random()%0xFFFFFFFF); frag->ip6f_reserved = 0; frag->ip6f_offlg = 0; if (nexttype) *nexttype = IPPROTO_FRAGMENT; else proto = IPPROTO_FRAGMENT; } uint8_t *payload = (uint8_t*)(udp+1); fill_ip6hdr(ip6, &src->sin6_addr, &dst->sin6_addr, ip_payload_len, proto, ttl); fill_udphdr(udp, src->sin6_port, dst->sin6_port, datalen); memcpy(payload,data,len); if (padding) fill_pattern(payload+len,padlen,padding,padding_size); else memset(payload+len,0,padlen); udp6_fix_checksum(udp,transport_payload_len,&ip6->ip6_src,&ip6->ip6_dst); if (fooling & FOOL_BADSUM) udp->uh_sum^=htons(0xBEAF); *buflen = pktlen; return true; } bool prepare_udp_segment( const struct sockaddr *src, const struct sockaddr *dst, uint8_t ttl, uint32_t fooling, const uint8_t *padding, size_t padding_size, int padlen, const void *data, uint16_t len, uint8_t *buf, size_t *buflen) { return (src->sa_family==AF_INET && dst->sa_family==AF_INET) ? prepare_udp_segment4((struct sockaddr_in *)src,(struct sockaddr_in *)dst,ttl,fooling,padding,padding_size,padlen,data,len,buf,buflen) : (src->sa_family==AF_INET6 && dst->sa_family==AF_INET6) ? prepare_udp_segment6((struct sockaddr_in6 *)src,(struct sockaddr_in6 *)dst,ttl,fooling,padding,padding_size,padlen,data,len,buf,buflen) : false; } bool ip6_insert_simple_hdr(uint8_t type, uint8_t *data_pkt, size_t len_pkt, uint8_t *buf, size_t *buflen) { if ((len_pkt+8)<=*buflen && len_pkt>=sizeof(struct ip6_hdr)) { struct ip6_hdr *ip6 = (struct ip6_hdr *)buf; struct ip6_ext *hdr = (struct ip6_ext*)(ip6+1); *ip6 = *(struct ip6_hdr*)data_pkt; memset(hdr,0,8); memcpy((uint8_t*)hdr+8, data_pkt+sizeof(struct ip6_hdr), len_pkt-sizeof(struct ip6_hdr)); hdr->ip6e_nxt = ip6->ip6_ctlun.ip6_un1.ip6_un1_nxt; ip6->ip6_ctlun.ip6_un1.ip6_un1_nxt = type; ip6->ip6_ctlun.ip6_un1.ip6_un1_plen = net16_add(ip6->ip6_ctlun.ip6_un1.ip6_un1_plen, 8); *buflen = len_pkt + 8; return true; } return false; } // split ipv4 packet into 2 fragments at data payload position frag_pos bool ip_frag4( const uint8_t *pkt, size_t pkt_size, size_t frag_pos, uint32_t ident, uint8_t *pkt1, size_t *pkt1_size, uint8_t *pkt2, size_t *pkt2_size) { uint16_t hdrlen, payload_len; // frag_pos must be 8-byte aligned if (frag_pos & 7 || pkt_size < sizeof(struct ip)) return false; payload_len = htons(((struct ip *)pkt)->ip_len); hdrlen = ((struct ip *)pkt)->ip_hl<<2; if (payload_len>pkt_size || hdrlen>pkt_size || hdrlen>payload_len) return false; payload_len -= hdrlen; if (frag_pos>=payload_len || *pkt1_size<(hdrlen+frag_pos) || *pkt2_size<(hdrlen+payload_len-frag_pos)) return false; memcpy(pkt1, pkt, hdrlen+frag_pos); ((struct ip*)pkt1)->ip_off = htons(IP_MF); ((struct ip*)pkt1)->ip_len = htons(hdrlen+frag_pos); if (ident!=(uint32_t)-1) ((struct ip*)pkt1)->ip_id = (uint16_t)ident; *pkt1_size=hdrlen+frag_pos; ip4_fix_checksum((struct ip *)pkt1); memcpy(pkt2, pkt, hdrlen); memcpy(pkt2+hdrlen, pkt+hdrlen+frag_pos, payload_len-frag_pos); ((struct ip*)pkt2)->ip_off = htons((uint16_t)frag_pos>>3 & IP_OFFMASK); ((struct ip*)pkt2)->ip_len = htons(hdrlen+payload_len-frag_pos); if (ident!=(uint32_t)-1) ((struct ip*)pkt2)->ip_id = (uint16_t)ident; *pkt2_size=hdrlen+payload_len-frag_pos; ip4_fix_checksum((struct ip *)pkt2); return true; } bool ip_frag6( const uint8_t *pkt, size_t pkt_size, size_t frag_pos, uint32_t ident, uint8_t *pkt1, size_t *pkt1_size, uint8_t *pkt2, size_t *pkt2_size) { size_t payload_len, unfragmentable; uint8_t *last_header_type; uint8_t proto; struct ip6_frag *frag; const uint8_t *payload; if (frag_pos & 7 || pkt_size < sizeof(struct ip6_hdr)) return false; payload_len = sizeof(struct ip6_hdr) + htons(((struct ip6_hdr*)pkt)->ip6_ctlun.ip6_un1.ip6_un1_plen); if (pkt_size < payload_len) return false; payload = pkt; proto_skip_ipv6((uint8_t**)&payload, &payload_len, &proto, &last_header_type); unfragmentable = payload - pkt; //printf("pkt_size=%zu FRAG_POS=%zu payload_len=%zu unfragmentable=%zu dh=%zu\n",pkt_size,frag_pos,payload_len,unfragmentable,last_header_type - pkt); if (frag_pos>=payload_len || *pkt1_size<(unfragmentable + sizeof(struct ip6_frag) + frag_pos) || *pkt2_size<(unfragmentable + sizeof(struct ip6_frag) + payload_len - frag_pos)) { return false; } memcpy(pkt1, pkt, unfragmentable); ((struct ip6_hdr*)pkt1)->ip6_ctlun.ip6_un1.ip6_un1_plen = htons(unfragmentable - sizeof(struct ip6_hdr) + sizeof(struct ip6_frag) + frag_pos); pkt1[last_header_type - pkt] = IPPROTO_FRAGMENT; frag = (struct ip6_frag*)(pkt1 + unfragmentable); frag->ip6f_nxt = proto; frag->ip6f_reserved = 0; frag->ip6f_offlg = IP6F_MORE_FRAG; frag->ip6f_ident = ident; memcpy(frag+1, pkt + unfragmentable, frag_pos); *pkt1_size = unfragmentable + sizeof(struct ip6_frag) + frag_pos; memcpy(pkt2, pkt, sizeof(struct ip6_hdr)); ((struct ip6_hdr*)pkt2)->ip6_ctlun.ip6_un1.ip6_un1_plen = htons(unfragmentable - sizeof(struct ip6_hdr) + sizeof(struct ip6_frag) + payload_len - frag_pos); pkt2[last_header_type - pkt] = IPPROTO_FRAGMENT; frag = (struct ip6_frag*)(pkt2 + unfragmentable); frag->ip6f_nxt = proto; frag->ip6f_reserved = 0; frag->ip6f_offlg = htons(frag_pos); frag->ip6f_ident = ident; memcpy(frag+1, pkt + unfragmentable + frag_pos, payload_len - frag_pos); *pkt2_size = unfragmentable + sizeof(struct ip6_frag) + payload_len - frag_pos; return true; } bool ip_frag( const uint8_t *pkt, size_t pkt_size, size_t frag_pos, uint32_t ident, uint8_t *pkt1, size_t *pkt1_size, uint8_t *pkt2, size_t *pkt2_size) { if (proto_check_ipv4(pkt,pkt_size)) return ip_frag4(pkt,pkt_size,frag_pos,ident,pkt1,pkt1_size,pkt2,pkt2_size); else if (proto_check_ipv6(pkt,pkt_size)) return ip_frag6(pkt,pkt_size,frag_pos,ident,pkt1,pkt1_size,pkt2,pkt2_size); else return false; } void rewrite_ttl(struct ip *ip, struct ip6_hdr *ip6, uint8_t ttl) { if (ip) ip->ip_ttl = ttl; if (ip6) ip6->ip6_ctlun.ip6_un1.ip6_un1_hlim = ttl; } void extract_ports(const struct tcphdr *tcphdr, const struct udphdr *udphdr, uint8_t *proto, uint16_t *sport, uint16_t *dport) { if (sport) *sport = htons(tcphdr ? tcphdr->th_sport : udphdr ? udphdr->uh_sport : 0); if (dport) *dport = htons(tcphdr ? tcphdr->th_dport : udphdr ? udphdr->uh_dport : 0); if (proto) *proto = tcphdr ? IPPROTO_TCP : udphdr ? IPPROTO_UDP : -1; } void extract_endpoints(const struct ip *ip,const struct ip6_hdr *ip6hdr,const struct tcphdr *tcphdr,const struct udphdr *udphdr, struct sockaddr_storage *src, struct sockaddr_storage *dst) { if (ip) { struct sockaddr_in *si; if (dst) { si = (struct sockaddr_in*)dst; si->sin_family = AF_INET; si->sin_port = tcphdr ? tcphdr->th_dport : udphdr ? udphdr->uh_dport : 0; si->sin_addr = ip->ip_dst; } if (src) { si = (struct sockaddr_in*)src; si->sin_family = AF_INET; si->sin_port = tcphdr ? tcphdr->th_sport : udphdr ? udphdr->uh_sport : 0; si->sin_addr = ip->ip_src; } } else if (ip6hdr) { struct sockaddr_in6 *si; if (dst) { si = (struct sockaddr_in6*)dst; si->sin6_family = AF_INET6; si->sin6_port = tcphdr ? tcphdr->th_dport : udphdr ? udphdr->uh_dport : 0; si->sin6_addr = ip6hdr->ip6_dst; si->sin6_flowinfo = 0; si->sin6_scope_id = 0; } if (src) { si = (struct sockaddr_in6*)src; si->sin6_family = AF_INET6; si->sin6_port = tcphdr ? tcphdr->th_sport : udphdr ? udphdr->uh_sport : 0; si->sin6_addr = ip6hdr->ip6_src; si->sin6_flowinfo = 0; si->sin6_scope_id = 0; } } } const char *proto_name(uint8_t proto) { switch(proto) { case IPPROTO_TCP: return "tcp"; case IPPROTO_UDP: return "udp"; case IPPROTO_ICMP: return "icmp"; case IPPROTO_ICMPV6: return "icmp6"; case IPPROTO_IGMP: return "igmp"; case IPPROTO_ESP: return "esp"; case IPPROTO_AH: return "ah"; case IPPROTO_IPV6: return "6in4"; case IPPROTO_IPIP: return "4in4"; #ifdef IPPROTO_GRE case IPPROTO_GRE: return "gre"; #endif #ifdef IPPROTO_SCTP case IPPROTO_SCTP: return "sctp"; #endif default: return NULL; } } static void str_proto_name(char *s, size_t s_len, uint8_t proto) { const char *name = proto_name(proto); if (name) snprintf(s,s_len,"%s",name); else snprintf(s,s_len,"%u",proto); } uint16_t family_from_proto(uint8_t l3proto) { switch(l3proto) { case IPPROTO_IP: return AF_INET; case IPPROTO_IPV6: return AF_INET6; default: return -1; } } static void str_srcdst_ip(char *s, size_t s_len, const void *saddr,const void *daddr) { char s_ip[16],d_ip[16]; *s_ip=*d_ip=0; inet_ntop(AF_INET, saddr, s_ip, sizeof(s_ip)); inet_ntop(AF_INET, daddr, d_ip, sizeof(d_ip)); snprintf(s,s_len,"%s => %s",s_ip,d_ip); } static void str_ip(char *s, size_t s_len, const struct ip *ip) { char ss[35],s_proto[16]; str_srcdst_ip(ss,sizeof(ss),&ip->ip_src,&ip->ip_dst); str_proto_name(s_proto,sizeof(s_proto),ip->ip_p); snprintf(s,s_len,"%s proto=%s ttl=%u",ss,s_proto,ip->ip_ttl); } void print_ip(const struct ip *ip) { char s[66]; str_ip(s,sizeof(s),ip); printf("%s",s); } static void str_srcdst_ip6(char *s, size_t s_len, const void *saddr,const void *daddr) { char s_ip[40],d_ip[40]; *s_ip=*d_ip=0; inet_ntop(AF_INET6, saddr, s_ip, sizeof(s_ip)); inet_ntop(AF_INET6, daddr, d_ip, sizeof(d_ip)); snprintf(s,s_len,"%s => %s",s_ip,d_ip); } static void str_ip6hdr(char *s, size_t s_len, const struct ip6_hdr *ip6hdr, uint8_t proto) { char ss[83],s_proto[16]; str_srcdst_ip6(ss,sizeof(ss),&ip6hdr->ip6_src,&ip6hdr->ip6_dst); str_proto_name(s_proto,sizeof(s_proto),proto); snprintf(s,s_len,"%s proto=%s ttl=%u",ss,s_proto,ip6hdr->ip6_hlim); } void print_ip6hdr(const struct ip6_hdr *ip6hdr, uint8_t proto) { char s[128]; str_ip6hdr(s,sizeof(s),ip6hdr,proto); printf("%s",s); } static void str_tcphdr(char *s, size_t s_len, const struct tcphdr *tcphdr) { char flags[7],*f=flags; if (tcphdr->th_flags & TH_SYN) *f++='S'; if (tcphdr->th_flags & TH_ACK) *f++='A'; if (tcphdr->th_flags & TH_RST) *f++='R'; if (tcphdr->th_flags & TH_FIN) *f++='F'; if (tcphdr->th_flags & TH_PUSH) *f++='P'; if (tcphdr->th_flags & TH_URG) *f++='U'; *f=0; snprintf(s,s_len,"sport=%u dport=%u flags=%s seq=%u ack_seq=%u",htons(tcphdr->th_sport),htons(tcphdr->th_dport),flags,htonl(tcphdr->th_seq),htonl(tcphdr->th_ack)); } void print_tcphdr(const struct tcphdr *tcphdr) { char s[80]; str_tcphdr(s,sizeof(s),tcphdr); printf("%s",s); } static void str_udphdr(char *s, size_t s_len, const struct udphdr *udphdr) { snprintf(s,s_len,"sport=%u dport=%u",htons(udphdr->uh_sport),htons(udphdr->uh_dport)); } void print_udphdr(const struct udphdr *udphdr) { char s[30]; str_udphdr(s,sizeof(s),udphdr); printf("%s",s); } bool proto_check_ipv4(const uint8_t *data, size_t len) { return len >= 20 && (data[0] & 0xF0) == 0x40 && len >= ((data[0] & 0x0F) << 2); } // move to transport protocol void proto_skip_ipv4(uint8_t **data, size_t *len) { size_t l; l = (**data & 0x0F) << 2; *data += l; *len -= l; } bool proto_check_tcp(const uint8_t *data, size_t len) { return len >= 20 && len >= ((data[12] & 0xF0) >> 2); } void proto_skip_tcp(uint8_t **data, size_t *len) { size_t l; l = ((*data)[12] & 0xF0) >> 2; *data += l; *len -= l; } bool proto_check_udp(const uint8_t *data, size_t len) { return len >= 8 && len>=(data[4]<<8 | data[5]); } void proto_skip_udp(uint8_t **data, size_t *len) { *data += 8; *len -= 8; } bool proto_check_ipv6(const uint8_t *data, size_t len) { return len >= 40 && (data[0] & 0xF0) == 0x60 && (len - 40) >= htons(*(uint16_t*)(data + 4)); // payload length } // move to transport protocol // proto_type = 0 => error void proto_skip_ipv6(uint8_t **data, size_t *len, uint8_t *proto_type, uint8_t **last_header_type) { size_t hdrlen; uint8_t HeaderType; if (proto_type) *proto_type = 0; // put error in advance HeaderType = (*data)[6]; // NextHeader field if (last_header_type) *last_header_type = (*data)+6; *data += 40; *len -= 40; // skip ipv6 base header while (*len > 0) // need at least one byte for NextHeader field { switch (HeaderType) { case 0: // Hop-by-Hop Options case 43: // routing case 51: // authentication case 60: // Destination Options case 135: // mobility case 139: // Host Identity Protocol Version v2 case 140: // Shim6 if (*len < 2) return; // error hdrlen = 8 + ((*data)[1] << 3); break; case 44: // fragment. length fixed to 8, hdrlen field defined as reserved hdrlen = 8; break; case 59: // no next header return; // error default: // we found some meaningful payload. it can be tcp, udp, icmp or some another exotic shit if (proto_type) *proto_type = HeaderType; return; } if (*len < hdrlen) return; // error HeaderType = **data; if (last_header_type) *last_header_type = *data; // advance to the next header location *len -= hdrlen; *data += hdrlen; } // we have garbage } void proto_dissect_l3l4( uint8_t *data, size_t len, struct ip **ip, struct ip6_hdr **ip6, uint8_t *proto, struct tcphdr **tcp, struct udphdr **udp, size_t *transport_len, uint8_t **data_payload, size_t *len_payload) { *ip = NULL; *ip6 = NULL; *proto = 0; *tcp = NULL; *transport_len = 0; *udp = NULL; *data_payload = NULL; *len_payload = 0; if (proto_check_ipv4(data, len)) { *ip = (struct ip *) data; *proto = (*ip)->ip_p; proto_skip_ipv4(&data, &len); } else if (proto_check_ipv6(data, len)) { *ip6 = (struct ip6_hdr *) data; proto_skip_ipv6(&data, &len, proto, NULL); } else { return; } if (*proto==IPPROTO_TCP && proto_check_tcp(data, len)) { *tcp = (struct tcphdr *) data; *transport_len = len; proto_skip_tcp(&data, &len); *data_payload = data; *len_payload = len; } else if (*proto==IPPROTO_UDP && proto_check_udp(data, len)) { *udp = (struct udphdr *) data; *transport_len = len; proto_skip_udp(&data, &len); *data_payload = data; *len_payload = len; } } bool tcp_synack_segment(const struct tcphdr *tcphdr) { /* check for set bits in TCP hdr */ return ((tcphdr->th_flags & (TH_URG|TH_ACK|TH_PUSH|TH_RST|TH_SYN|TH_FIN)) == (TH_ACK|TH_SYN)); } bool tcp_syn_segment(const struct tcphdr *tcphdr) { /* check for set bits in TCP hdr */ return ((tcphdr->th_flags & (TH_URG|TH_ACK|TH_PUSH|TH_RST|TH_SYN|TH_FIN)) == TH_SYN); } bool tcp_ack_segment(const struct tcphdr *tcphdr) { /* check for set bits in TCP hdr */ return ((tcphdr->th_flags & (TH_URG|TH_ACK|TH_PUSH|TH_RST|TH_SYN|TH_FIN)) == TH_ACK); } void tcp_rewrite_wscale(struct tcphdr *tcp, uint8_t scale_factor) { uint8_t *scale,scale_factor_old; if (scale_factor!=SCALE_NONE) { scale = tcp_find_option(tcp,3); // tcp option 3 - scale factor if (scale && scale[1]==3) // length should be 3 { scale_factor_old=scale[2]; // do not allow increasing scale factor if (scale_factor>=scale_factor_old) DLOG("Scale factor %u unchanged\n", scale_factor_old) else { scale[2]=scale_factor; DLOG("Scale factor change %u => %u\n", scale_factor_old, scale_factor) } } } } // scale_factor=SCALE_NONE - do not change void tcp_rewrite_winsize(struct tcphdr *tcp, uint16_t winsize, uint8_t scale_factor) { uint16_t winsize_old; winsize_old = htons(tcp->th_win); // << scale_factor; tcp->th_win = htons(winsize); DLOG("Window size change %u => %u\n", winsize_old, winsize) tcp_rewrite_wscale(tcp, scale_factor); } #ifdef __CYGWIN__ static HANDLE w_filter = NULL; static OVERLAPPED ovl = { .hEvent = NULL }; static const struct str_list_head *wlan_filter_ssid = NULL, *nlm_filter_net = NULL; static DWORD logical_net_filter_tick=0; uint32_t w_win32_error=0; INetworkListManager* pNetworkListManager=NULL; static void guid2str(const GUID *guid, char *str) { snprintf(str,37, "%08X-%04X-%04X-%02X%02X-%02X%02X%02X%02X%02X%02X", guid->Data1, guid->Data2, guid->Data3, guid->Data4[0], guid->Data4[1], guid->Data4[2], guid->Data4[3], guid->Data4[4], guid->Data4[5], guid->Data4[6], guid->Data4[7]); } static bool str2guid(const char* str, GUID *guid) { unsigned int u[11],k; if (36 != strlen(str) || 11 != sscanf(str, "%08X-%04X-%04X-%02X%02X-%02X%02X%02X%02X%02X%02X", u+0, u+1, u+2, u+3, u+4, u+5, u+6, u+7, u+8, u+9, u+10)) return false; guid->Data1 = u[0]; if ((u[1] & 0xFFFF0000) || (u[2] & 0xFFFF0000)) return false; guid->Data2 = (USHORT)u[1]; guid->Data3 = (USHORT)u[2]; for (k = 0; k < 8; k++) { if (u[k+3] & 0xFFFFFF00) return false; guid->Data4[k] = (UCHAR)u[k+3]; } return true; } static const char *sNetworkCards="SOFTWARE\\Microsoft\\Windows NT\\CurrentVersion\\NetworkCards"; // get adapter name from guid string static bool AdapterID2Name(const GUID *guid,char *name,DWORD name_len) { char sguid[39],sidx[32],val[256]; HKEY hkNetworkCards,hkCard; DWORD dwIndex,dwLen; bool bRet = false; WCHAR namew[128]; DWORD namew_len; if (name_len<2) return false; if ((w_win32_error = RegOpenKeyExA(HKEY_LOCAL_MACHINE,sNetworkCards,0,KEY_ENUMERATE_SUB_KEYS,&hkNetworkCards)) == ERROR_SUCCESS) { guid2str(guid, sguid+1); sguid[0]='{'; sguid[37]='}'; sguid[38]='\0'; for (dwIndex=0;;dwIndex++) { dwLen=sizeof(sidx)-1; w_win32_error = RegEnumKeyExA(hkNetworkCards,dwIndex,sidx,&dwLen,NULL,NULL,NULL,NULL); if (w_win32_error == ERROR_SUCCESS) { sidx[dwLen]='\0'; if ((w_win32_error = RegOpenKeyExA(hkNetworkCards,sidx,0,KEY_QUERY_VALUE,&hkCard)) == ERROR_SUCCESS) { dwLen=sizeof(val)-1; if ((w_win32_error = RegQueryValueExA(hkCard,"ServiceName",NULL,NULL,val,&dwLen)) == ERROR_SUCCESS) { val[dwLen]='\0'; if (!strcmp(val,sguid)) { namew_len = sizeof(namew)-sizeof(WCHAR); if ((w_win32_error = RegQueryValueExW(hkCard,L"Description",NULL,NULL,(LPBYTE)namew,&namew_len)) == ERROR_SUCCESS) { namew[namew_len/sizeof(WCHAR)]=L'\0'; if (WideCharToMultiByte(CP_UTF8, 0, namew, -1, name, name_len, NULL, NULL)) bRet = true; } } } RegCloseKey(hkCard); } if (bRet) break; } else break; } RegCloseKey(hkNetworkCards); } return bRet; } bool win_dark_init(const struct str_list_head *ssid_filter, const struct str_list_head *nlm_filter) { win_dark_deinit(); if (LIST_EMPTY(ssid_filter)) ssid_filter=NULL; if (LIST_EMPTY(nlm_filter)) nlm_filter=NULL; if (nlm_filter) { if (SUCCEEDED(w_win32_error = CoInitialize(NULL))) { if (FAILED(w_win32_error = CoCreateInstance(&CLSID_NetworkListManager, NULL, CLSCTX_ALL, &IID_INetworkListManager, (LPVOID*)&pNetworkListManager))) { CoUninitialize(); return false; } } else return false; } nlm_filter_net = nlm_filter; wlan_filter_ssid = ssid_filter; return true; } bool win_dark_deinit(void) { if (pNetworkListManager) { pNetworkListManager->lpVtbl->Release(pNetworkListManager); pNetworkListManager = NULL; } if (nlm_filter_net) CoUninitialize(); wlan_filter_ssid = nlm_filter_net = NULL; } bool nlm_list(bool bAll) { bool bRet = true; if (SUCCEEDED(w_win32_error = CoInitialize(NULL))) { INetworkListManager* pNetworkListManager; if (SUCCEEDED(w_win32_error = CoCreateInstance(&CLSID_NetworkListManager, NULL, CLSCTX_ALL, &IID_INetworkListManager, (LPVOID*)&pNetworkListManager))) { IEnumNetworks* pEnumNetworks; if (SUCCEEDED(w_win32_error = pNetworkListManager->lpVtbl->GetNetworks(pNetworkListManager, NLM_ENUM_NETWORK_ALL, &pEnumNetworks))) { INetwork *pNet; INetworkConnection *pConn; IEnumNetworkConnections *pEnumConnections; VARIANT_BOOL bIsConnected, bIsConnectedInet; NLM_NETWORK_CATEGORY category; GUID idNet, idAdapter; BSTR bstrName; char Name[128],Name2[128]; int connected; for (connected = 1; connected >= !bAll; connected--) { for (;;) { if (FAILED(w_win32_error = pEnumNetworks->lpVtbl->Next(pEnumNetworks, 1, &pNet, NULL))) { bRet = false; break; } if (w_win32_error != S_OK) break; if (SUCCEEDED(w_win32_error = pNet->lpVtbl->get_IsConnected(pNet, &bIsConnected)) && SUCCEEDED(w_win32_error = pNet->lpVtbl->get_IsConnectedToInternet(pNet, &bIsConnectedInet)) && SUCCEEDED(w_win32_error = pNet->lpVtbl->GetNetworkId(pNet, &idNet)) && SUCCEEDED(w_win32_error = pNet->lpVtbl->GetCategory(pNet, &category)) && SUCCEEDED(w_win32_error = pNet->lpVtbl->GetName(pNet, &bstrName))) { if (!!bIsConnected == connected) { if (WideCharToMultiByte(CP_UTF8, 0, bstrName, -1, Name, sizeof(Name), NULL, NULL)) { printf("Name : %s", Name); if (bIsConnected) printf(" (connected)"); if (bIsConnectedInet) printf(" (inet)"); printf(" (%s)\n", category==NLM_NETWORK_CATEGORY_PUBLIC ? "public" : category==NLM_NETWORK_CATEGORY_PRIVATE ? "private" : category==NLM_NETWORK_CATEGORY_DOMAIN_AUTHENTICATED ? "domain" : "unknown"); guid2str(&idNet, Name); printf("NetID : %s\n", Name); if (connected && SUCCEEDED(w_win32_error = pNet->lpVtbl->GetNetworkConnections(pNet, &pEnumConnections))) { while ((w_win32_error = pEnumConnections->lpVtbl->Next(pEnumConnections, 1, &pConn, NULL))==S_OK) { if (SUCCEEDED(w_win32_error = pConn->lpVtbl->GetAdapterId(pConn,&idAdapter))) { guid2str(&idAdapter, Name); if (AdapterID2Name(&idAdapter,Name2,sizeof(Name2))) printf("Adapter : %s (%s)\n", Name2, Name); else printf("Adapter : %s\n", Name); } pConn->lpVtbl->Release(pConn); } pEnumConnections->lpVtbl->Release(pEnumConnections); } printf("\n"); } else { w_win32_error = HRESULT_FROM_WIN32(GetLastError()); bRet = false; } } SysFreeString(bstrName); } else bRet = false; pNet->lpVtbl->Release(pNet); if (!bRet) break; } if (!bRet) break; pEnumNetworks->lpVtbl->Reset(pEnumNetworks); } pEnumNetworks->lpVtbl->Release(pEnumNetworks); } else bRet = false; pNetworkListManager->lpVtbl->Release(pNetworkListManager); } else bRet = false; } else bRet = false; CoUninitialize(); return bRet; } static bool nlm_filter_match(const struct str_list_head *nlm_list) { // no filter given. always matches. if (!nlm_list || LIST_EMPTY(nlm_list)) { w_win32_error = 0; return true; } bool bRet = true, bMatch = false; IEnumNetworks* pEnum; if (SUCCEEDED(w_win32_error = pNetworkListManager->lpVtbl->GetNetworks(pNetworkListManager, NLM_ENUM_NETWORK_CONNECTED, &pEnum))) { INetwork* pNet; GUID idNet,g; BSTR bstrName; char Name[128]; struct str_list *nlm; for (;;) { if (FAILED(w_win32_error = pEnum->lpVtbl->Next(pEnum, 1, &pNet, NULL))) { bRet = false; break; } if (w_win32_error != S_OK) break; if (SUCCEEDED(w_win32_error = pNet->lpVtbl->GetNetworkId(pNet, &idNet)) && SUCCEEDED(w_win32_error = pNet->lpVtbl->GetName(pNet, &bstrName))) { if (WideCharToMultiByte(CP_UTF8, 0, bstrName, -1, Name, sizeof(Name), NULL, NULL)) { LIST_FOREACH(nlm, nlm_list, next) { bMatch = !strcmp(Name,nlm->str) || str2guid(nlm->str,&g) && !memcmp(&idNet,&g,sizeof(GUID)); if (bMatch) break; } } else { w_win32_error = HRESULT_FROM_WIN32(GetLastError()); bRet = false; } SysFreeString(bstrName); } else bRet = false; pNet->lpVtbl->Release(pNet); if (!bRet || bMatch) break; } pEnum->lpVtbl->Release(pEnum); } else bRet = false; return bRet && bMatch; } static bool wlan_filter_match(const struct str_list_head *ssid_list) { DWORD dwCurVersion; HANDLE hClient = NULL; PWLAN_INTERFACE_INFO_LIST pIfList = NULL; PWLAN_INTERFACE_INFO pIfInfo; PWLAN_CONNECTION_ATTRIBUTES pConnectInfo; DWORD connectInfoSize, k; bool bRes; struct str_list *ssid; size_t len; // no filter given. always matches. if (!ssid_list || LIST_EMPTY(ssid_list)) { w_win32_error = 0; return true; } w_win32_error = WlanOpenHandle(2, NULL, &dwCurVersion, &hClient); if (w_win32_error != ERROR_SUCCESS) goto fail; w_win32_error = WlanEnumInterfaces(hClient, NULL, &pIfList); if (w_win32_error != ERROR_SUCCESS) goto fail; for (k = 0; k < pIfList->dwNumberOfItems; k++) { pIfInfo = pIfList->InterfaceInfo + k; if (pIfInfo->isState == wlan_interface_state_connected) { w_win32_error = WlanQueryInterface(hClient, &pIfInfo->InterfaceGuid, wlan_intf_opcode_current_connection, NULL, &connectInfoSize, (PVOID *)&pConnectInfo, NULL); if (w_win32_error != ERROR_SUCCESS) goto fail; // printf("%s\n", pConnectInfo->wlanAssociationAttributes.dot11Ssid.ucSSID); LIST_FOREACH(ssid, ssid_list, next) { len = strlen(ssid->str); if (len==pConnectInfo->wlanAssociationAttributes.dot11Ssid.uSSIDLength && !memcmp(ssid->str,pConnectInfo->wlanAssociationAttributes.dot11Ssid.ucSSID,len)) { WlanFreeMemory(pConnectInfo); goto found; } } WlanFreeMemory(pConnectInfo); } } w_win32_error = 0; fail: bRes = false; ex: if (pIfList) WlanFreeMemory(pIfList); if (hClient) WlanCloseHandle(hClient, 0); return bRes; found: w_win32_error = 0; bRes = true; goto ex; } bool logical_net_filter_match(void) { return wlan_filter_match(wlan_filter_ssid) && nlm_filter_match(nlm_filter_net); } static bool logical_net_filter_match_rate_limited(void) { DWORD dwTick = GetTickCount() / 1000; if (logical_net_filter_tick == dwTick) return true; logical_net_filter_tick = dwTick; return logical_net_filter_match(); } static HANDLE windivert_init_filter(const char *filter, UINT64 flags) { LPSTR errormessage = NULL; DWORD errorcode = 0; HANDLE h, hMutex; const char *mutex_name = "Global\\winws_windivert_mutex"; // windivert driver start in windivert.dll has race conditions hMutex = CreateMutexA(NULL,TRUE,mutex_name); if (hMutex && GetLastError()==ERROR_ALREADY_EXISTS) WaitForSingleObject(hMutex,INFINITE); h = WinDivertOpen(filter, WINDIVERT_LAYER_NETWORK, 0, flags); w_win32_error = GetLastError(); if (hMutex) { ReleaseMutex(hMutex); CloseHandle(hMutex); SetLastError(w_win32_error); } if (h != INVALID_HANDLE_VALUE) return h; FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, NULL, w_win32_error, MAKELANGID(LANG_ENGLISH, SUBLANG_DEFAULT), (LPSTR)&errormessage, 0, NULL); fprintf(stderr, "windivert: error opening filter: %s", errormessage); LocalFree(errormessage); if (w_win32_error == ERROR_INVALID_IMAGE_HASH) fprintf(stderr,"windivert: try to disable secure boot and install OS patches\n"); return NULL; } void rawsend_cleanup(void) { if (w_filter) { CancelIoEx(w_filter,&ovl); WinDivertClose(w_filter); w_filter=NULL; } if (ovl.hEvent) { CloseHandle(ovl.hEvent); ovl.hEvent=NULL; } } bool windivert_init(const char *filter) { rawsend_cleanup(); w_filter = windivert_init_filter(filter, 0); if (w_filter) { ovl.hEvent = CreateEventW(NULL,FALSE,FALSE,NULL); if (!ovl.hEvent) { w_win32_error = GetLastError(); rawsend_cleanup(); return false; } return true; } return false; } static bool windivert_recv_filter(HANDLE hFilter, uint8_t *packet, size_t *len, WINDIVERT_ADDRESS *wa) { UINT recv_len; DWORD err; DWORD rd; char c; if (bQuit) { errno=EINTR; return false; } if (!logical_net_filter_match_rate_limited()) { errno=ENODEV; return false; } usleep(0); if (WinDivertRecvEx(hFilter, packet, *len, &recv_len, 0, wa, NULL, &ovl)) { *len = recv_len; return true; } for(;;) { w_win32_error = GetLastError(); switch(w_win32_error) { case ERROR_IO_PENDING: // make signals working while (WaitForSingleObject(ovl.hEvent,50)==WAIT_TIMEOUT) { if (bQuit) { errno=EINTR; return false; } if (!logical_net_filter_match_rate_limited()) { errno=ENODEV; return false; } usleep(0); } if (!GetOverlappedResult(hFilter,&ovl,&rd,TRUE)) continue; *len = rd; return true; case ERROR_INSUFFICIENT_BUFFER: errno = ENOBUFS; break; case ERROR_NO_DATA: errno = ESHUTDOWN; break; default: errno = EIO; } break; } return false; } bool windivert_recv(uint8_t *packet, size_t *len, WINDIVERT_ADDRESS *wa) { return windivert_recv_filter(w_filter,packet,len,wa); } static bool windivert_send_filter(HANDLE hFilter, const uint8_t *packet, size_t len, const WINDIVERT_ADDRESS *wa) { bool b = WinDivertSend(hFilter,packet,(UINT)len,NULL,wa); w_win32_error = GetLastError(); return b; } bool windivert_send(const uint8_t *packet, size_t len, const WINDIVERT_ADDRESS *wa) { return windivert_send_filter(w_filter,packet,len,wa); } bool rawsend(const struct sockaddr* dst,uint32_t fwmark,const char *ifout,const void *data,size_t len) { WINDIVERT_ADDRESS wa; memset(&wa,0,sizeof(wa)); // pseudo interface id IfIdx.SubIfIdx if (sscanf(ifout,"%u.%u",&wa.Network.IfIdx,&wa.Network.SubIfIdx)!=2) { errno = EINVAL; return false; } wa.Outbound=1; wa.IPChecksum=1; wa.TCPChecksum=1; wa.UDPChecksum=1; wa.IPv6 = (dst->sa_family==AF_INET6); return windivert_send(data,len,&wa); } #else // *nix static int rawsend_sock4=-1, rawsend_sock6=-1; static bool b_bind_fix4=false, b_bind_fix6=false; static void rawsend_clean_sock(int *sock) { if (sock && *sock!=-1) { close(*sock); *sock=-1; } } void rawsend_cleanup(void) { rawsend_clean_sock(&rawsend_sock4); rawsend_clean_sock(&rawsend_sock6); } static int *rawsend_family_sock(sa_family_t family) { switch(family) { case AF_INET: return &rawsend_sock4; case AF_INET6: return &rawsend_sock6; default: return NULL; } } #ifdef BSD int socket_divert(sa_family_t family) { int fd; #ifdef __FreeBSD__ // freebsd14+ way // don't want to use ifdefs with os version to make binaries compatible with all versions fd = socket(PF_DIVERT, SOCK_RAW, 0); if (fd==-1 && (errno==EPROTONOSUPPORT || errno==EAFNOSUPPORT || errno==EPFNOSUPPORT)) #endif // freebsd13- or openbsd way fd = socket(family, SOCK_RAW, IPPROTO_DIVERT); return fd; } static int rawsend_socket_divert(sa_family_t family) { // HACK HACK HACK HACK HACK HACK HACK HACK // FreeBSD doesnt allow IP_HDRINCL for IPV6 // OpenBSD doesnt allow rawsending tcp frames // we either have to go to the link layer (its hard, possible problems arise, compat testing, ...) or use some HACKING // from my point of view disabling direct ability to send ip frames is not security. its SHIT int fd = socket_divert(family); if (fd!=-1 && !set_socket_buffers(fd,4096,RAW_SNDBUF)) { close(fd); return -1; } return fd; } static int rawsend_sendto_divert(sa_family_t family, int sock, const void *buf, size_t len) { struct sockaddr_storage sa; socklen_t slen; #ifdef __FreeBSD__ // since FreeBSD 14 it requires hardcoded ipv4 values, although can also send ipv6 frames family = AF_INET; slen = sizeof(struct sockaddr_in); #else // OpenBSD requires correct family and size switch(family) { case AF_INET: slen = sizeof(struct sockaddr_in); break; case AF_INET6: slen = sizeof(struct sockaddr_in6); break; default: return -1; } #endif memset(&sa,0,slen); sa.ss_family = family; return sendto(sock, buf, len, 0, (struct sockaddr*)&sa, slen); } #endif static int rawsend_socket_raw(int domain, int proto) { int fd = socket(domain, SOCK_RAW, proto); if (fd!=-1) { #ifdef __linux__ int s=RAW_SNDBUF/2; int r=2048; #else int s=RAW_SNDBUF; int r=4096; #endif if (!set_socket_buffers(fd,r,s)) { close(fd); return -1; } } return fd; } static bool set_socket_fwmark(int sock, uint32_t fwmark) { #ifdef BSD #ifdef SO_USER_COOKIE if (setsockopt(sock, SOL_SOCKET, SO_USER_COOKIE, &fwmark, sizeof(fwmark)) == -1) { perror("rawsend: setsockopt(SO_USER_COOKIE)"); return false; } #endif #elif defined(__linux__) if (setsockopt(sock, SOL_SOCKET, SO_MARK, &fwmark, sizeof(fwmark)) == -1) { perror("rawsend: setsockopt(SO_MARK)"); return false; } #endif return true; } static int rawsend_socket(sa_family_t family) { int *sock = rawsend_family_sock(family); if (!sock) return -1; if (*sock==-1) { int yes=1,pri=6; //printf("rawsend_socket: family %d",family); #ifdef __FreeBSD__ // IPPROTO_RAW with ipv6 in FreeBSD always returns EACCES on sendto. // must use IPPROTO_TCP for ipv6. IPPROTO_RAW works for ipv4 // divert sockets are always v4 but accept both v4 and v6 *sock = (family==AF_INET) ? rawsend_socket_raw(family, IPPROTO_TCP) : rawsend_socket_divert(AF_INET); #elif defined(__OpenBSD__) || defined (__APPLE__) // OpenBSD does not allow sending TCP frames through raw sockets // I dont know about macos. They have dropped ipfw in recent versions and their PF does not support divert-packet *sock = rawsend_socket_divert(family); #else *sock = rawsend_socket_raw(family, IPPROTO_RAW); #endif if (*sock==-1) { perror("rawsend: socket()"); return -1; } #ifdef BSD #if !(defined(__OpenBSD__) || defined (__APPLE__)) // HDRINCL not supported for ipv6 in any BSD if (family==AF_INET && setsockopt(*sock,IPPROTO_IP,IP_HDRINCL,&yes,sizeof(yes)) == -1) { perror("rawsend: setsockopt(IP_HDRINCL)"); goto exiterr; } #endif #endif #ifdef __linux__ if (setsockopt(*sock, SOL_SOCKET, SO_PRIORITY, &pri, sizeof(pri)) == -1) { perror("rawsend: setsockopt(SO_PRIORITY)"); goto exiterr; } if (family==AF_INET && setsockopt(*sock, IPPROTO_IP, IP_NODEFRAG, &yes, sizeof(yes)) == -1) { perror("rawsend: setsockopt(IP_NODEFRAG)"); goto exiterr; } if (family==AF_INET && setsockopt(*sock, IPPROTO_IP, IP_FREEBIND, &yes, sizeof(yes)) == -1) { perror("rawsend: setsockopt(IP_FREEBIND)"); goto exiterr; } if (family==AF_INET6 && setsockopt(*sock, SOL_IPV6, IPV6_FREEBIND, &yes, sizeof(yes)) == -1) { //perror("rawsend: setsockopt(IPV6_FREEBIND)"); // dont error because it's supported only from kernel 4.15 } #endif } return *sock; exiterr: rawsend_clean_sock(sock); return -1; } bool rawsend_preinit(bool bind_fix4, bool bind_fix6) { b_bind_fix4 = bind_fix4; b_bind_fix6 = bind_fix6; // allow ipv6 disabled systems return rawsend_socket(AF_INET)!=-1 && (rawsend_socket(AF_INET6)!=-1 || errno==EAFNOSUPPORT); } bool rawsend(const struct sockaddr* dst,uint32_t fwmark,const char *ifout,const void *data,size_t len) { ssize_t bytes; int sock=rawsend_socket(dst->sa_family); if (sock==-1) return false; if (!set_socket_fwmark(sock,fwmark)) return false; int salen = dst->sa_family == AF_INET ? sizeof(struct sockaddr_in) : sizeof(struct sockaddr_in6); struct sockaddr_storage dst2; memcpy(&dst2,dst,salen); if (dst->sa_family==AF_INET6) ((struct sockaddr_in6 *)&dst2)->sin6_port = 0; // or will be EINVAL in linux #ifdef BSD /* // this works only for local connections and not working for transit : cant spoof source addr if (len>=sizeof(struct ip6_hdr)) { // BSD ipv6 raw socks are limited. cannot pass the whole packet with ip6 header. struct sockaddr_storage sa_src; int v; extract_endpoints(NULL,(struct ip6_hdr *)data,NULL,NULL, &sa_src, NULL); v = ((struct ip6_hdr *)data)->ip6_ctlun.ip6_un1.ip6_un1_hlim; if (setsockopt(sock, IPPROTO_IPV6, IPV6_UNICAST_HOPS, &v, sizeof(v)) == -1) perror("rawsend: setsockopt(IPV6_HOPLIMIT)"); // the only way to control source address is bind. make it equal to ip6_hdr if (bind(sock, (struct sockaddr*)&sa_src, salen) < 0) perror("rawsend bind: "); //printf("BSD v6 RAWSEND "); print_sockaddr((struct sockaddr*)&sa_src); printf(" -> "); print_sockaddr((struct sockaddr*)&dst2); printf("\n"); proto_skip_ipv6((uint8_t**)&data, &len, NULL); } */ #if !(defined(__OpenBSD__) || defined (__APPLE__)) // OpenBSD doesnt allow rawsending tcp frames. always use divert socket if (dst->sa_family==AF_INET6) #endif { ssize_t bytes = rawsend_sendto_divert(dst->sa_family,sock,data,len); if (bytes==-1) { perror("rawsend: sendto_divert"); return false; } return true; } #endif #if defined(__FreeBSD__) && __FreeBSD__<=10 // old FreeBSD requires some fields in host byte order if (dst->sa_family==AF_INET && len>=sizeof(struct ip)) { ((struct ip*)data)->ip_len = htons(((struct ip*)data)->ip_len); ((struct ip*)data)->ip_off = htons(((struct ip*)data)->ip_off); } #endif #if defined(__linux__) struct sockaddr_storage sa_src; switch(dst->sa_family) { case AF_INET: if (!b_bind_fix4) goto nofix; extract_endpoints(data,NULL,NULL,NULL, &sa_src, NULL); break; case AF_INET6: if (!b_bind_fix6) goto nofix; extract_endpoints(NULL,data,NULL,NULL, &sa_src, NULL); break; default: return false; // should not happen } //printf("family %u dev %s bind : ", dst->sa_family, ifout); print_sockaddr((struct sockaddr *)&sa_src); printf("\n"); if (setsockopt(sock, SOL_SOCKET, SO_BINDTODEVICE, ifout, ifout ? strlen(ifout)+1 : 0) == -1) { perror("rawsend: setsockopt(SO_BINDTODEVICE)"); return false; } if (bind(sock, (const struct sockaddr*)&sa_src, dst->sa_family==AF_INET ? sizeof(struct sockaddr_in) : sizeof(struct sockaddr_in6))) { perror("rawsend: bind (ignoring)"); // do not fail. this can happen regardless of IP_FREEBIND // rebind to any address memset(&sa_src,0,sizeof(sa_src)); sa_src.ss_family = dst->sa_family; if (bind(sock, (const struct sockaddr*)&sa_src, dst->sa_family==AF_INET ? sizeof(struct sockaddr_in) : sizeof(struct sockaddr_in6))) { perror("rawsend: bind to any"); return false; } } nofix: #endif // normal raw socket sendto bytes = sendto(sock, data, len, 0, (struct sockaddr*)&dst2, salen); #if defined(__FreeBSD) && __FreeBSD__<=10 // restore byte order if (dst->sa_family==AF_INET && len>=sizeof(struct ip)) { ((struct ip*)data)->ip_len = htons(((struct ip*)data)->ip_len); ((struct ip*)data)->ip_off = htons(((struct ip*)data)->ip_off); } #endif if (bytes==-1) { perror("rawsend: sendto"); return false; } return true; } #endif // not CYGWIN bool rawsend_rp(const struct rawpacket *rp) { return rawsend((struct sockaddr*)&rp->dst,rp->fwmark,rp->ifout,rp->packet,rp->len); } bool rawsend_queue(struct rawpacket_tailhead *q) { struct rawpacket *rp; bool b; for (b=true; (rp=rawpacket_dequeue(q)) ; rawpacket_free(rp)) b &= rawsend_rp(rp); return b; } // return guessed fake ttl value. 0 means unsuccessfull, should not perform autottl fooling // ttl = TTL of incoming packet uint8_t autottl_guess(uint8_t ttl, const autottl *attl) { uint8_t orig, path, fake; // 18.65.168.125 ( cloudfront ) 255 // 157.254.246.178 128 // 1.1.1.1 64 // guess original ttl. consider path lengths less than 32 hops if (ttl>223) orig=255; else if (ttl<128 && ttl>96) orig=128; else if (ttl<64 && ttl>32) orig=64; else return 0; path = orig - ttl; fake = path > attl->delta ? path - attl->delta : attl->min; if (fakemin) fake=attl->min; else if (fake>attl->max) fake=attl->max; if (fake>=path) return 0; return fake; } void do_nat(bool bOutbound, struct ip *ip, struct ip6_hdr *ip6, struct tcphdr *tcphdr, struct udphdr *udphdr, const struct sockaddr_in *target4, const struct sockaddr_in6 *target6) { uint16_t nport; if (ip && target4) { nport = target4->sin_port; if (bOutbound) ip->ip_dst = target4->sin_addr; else ip->ip_src = target4->sin_addr; ip4_fix_checksum(ip); } else if (ip6 && target6) { nport = target6->sin6_port; if (bOutbound) ip6->ip6_dst = target6->sin6_addr; else ip6->ip6_src = target6->sin6_addr; } else return; if (nport) { if (tcphdr) { if (bOutbound) tcphdr->th_dport = nport; else tcphdr->th_sport = nport; } if (udphdr) { if (bOutbound) udphdr->uh_dport = nport; else udphdr->uh_sport = nport; } } } void verdict_tcp_csum_fix(uint8_t verdict, struct tcphdr *tcphdr, size_t transport_len, struct ip *ip, struct ip6_hdr *ip6hdr) { if (!(verdict & VERDICT_NOCSUM)) { // always fix csum for windivert. original can be partial or bad #ifndef __CYGWIN__ #ifdef __FreeBSD__ // FreeBSD tend to pass ipv6 frames with wrong checksum if ((verdict & VERDICT_MASK)==VERDICT_MODIFY || ip6hdr) #else // if original packet was tampered earlier it needs checksum fixed if ((verdict & VERDICT_MASK)==VERDICT_MODIFY) #endif #endif tcp_fix_checksum(tcphdr,transport_len,ip,ip6hdr); } } void verdict_udp_csum_fix(uint8_t verdict, struct udphdr *udphdr, size_t transport_len, struct ip *ip, struct ip6_hdr *ip6hdr) { if (!(verdict & VERDICT_NOCSUM)) { // always fix csum for windivert. original can be partial or bad #ifndef __CYGWIN__ #ifdef __FreeBSD__ // FreeBSD tend to pass ipv6 frames with wrong checksum if ((verdict & VERDICT_MASK)==VERDICT_MODIFY || ip6hdr) #else // if original packet was tampered earlier it needs checksum fixed if ((verdict & VERDICT_MASK)==VERDICT_MODIFY) #endif #endif udp_fix_checksum(udphdr,transport_len,ip,ip6hdr); } }