mirror of
https://github.com/bol-van/zapret.git
synced 2025-05-24 22:32:58 +03:00
nfqws: QUIC initial dissection support
This commit is contained in:
38
nfq/crypto/aes-gcm.c
Normal file
38
nfq/crypto/aes-gcm.c
Normal file
@@ -0,0 +1,38 @@
|
||||
#include "aes-gcm.h"
|
||||
|
||||
int aes_gcm_encrypt(unsigned char* output, const unsigned char* input, size_t input_length, const unsigned char* key, const size_t key_len, const unsigned char * iv, const size_t iv_len) {
|
||||
|
||||
int ret = 0; // our return value
|
||||
gcm_context ctx; // includes the AES context structure
|
||||
|
||||
size_t tag_len = 0;
|
||||
unsigned char * tag_buf = NULL;
|
||||
|
||||
gcm_setkey(&ctx, key, (const uint)key_len);
|
||||
|
||||
ret = gcm_crypt_and_tag(&ctx, ENCRYPT, iv, iv_len, NULL, 0,
|
||||
input, output, input_length, tag_buf, tag_len);
|
||||
|
||||
gcm_zero_ctx(&ctx);
|
||||
|
||||
return(ret);
|
||||
}
|
||||
|
||||
int aes_gcm_decrypt(unsigned char* output, const unsigned char* input, size_t input_length, const unsigned char* key, const size_t key_len, const unsigned char * iv, const size_t iv_len) {
|
||||
|
||||
int ret = 0; // our return value
|
||||
gcm_context ctx; // includes the AES context structure
|
||||
|
||||
size_t tag_len = 0;
|
||||
unsigned char * tag_buf = NULL;
|
||||
|
||||
gcm_setkey(&ctx, key, (const uint)key_len);
|
||||
|
||||
ret = gcm_crypt_and_tag(&ctx, DECRYPT, iv, iv_len, NULL, 0,
|
||||
input, output, input_length, tag_buf, tag_len);
|
||||
|
||||
gcm_zero_ctx(&ctx);
|
||||
|
||||
return(ret);
|
||||
|
||||
}
|
6
nfq/crypto/aes-gcm.h
Normal file
6
nfq/crypto/aes-gcm.h
Normal file
@@ -0,0 +1,6 @@
|
||||
#pragma once
|
||||
|
||||
#include "gcm.h"
|
||||
|
||||
int aes_gcm_encrypt(unsigned char* output, const unsigned char* input, size_t input_length, const unsigned char* key, const size_t key_len, const unsigned char * iv, const size_t iv_len);
|
||||
int aes_gcm_decrypt(unsigned char* output, const unsigned char* input, size_t input_length, const unsigned char* key, const size_t key_len, const unsigned char * iv, const size_t iv_len);
|
483
nfq/crypto/aes.c
Normal file
483
nfq/crypto/aes.c
Normal file
@@ -0,0 +1,483 @@
|
||||
/******************************************************************************
|
||||
*
|
||||
* THIS SOURCE CODE IS HEREBY PLACED INTO THE PUBLIC DOMAIN FOR THE GOOD OF ALL
|
||||
*
|
||||
* This is a simple and straightforward implementation of the AES Rijndael
|
||||
* 128-bit block cipher designed by Vincent Rijmen and Joan Daemen. The focus
|
||||
* of this work was correctness & accuracy. It is written in 'C' without any
|
||||
* particular focus upon optimization or speed. It should be endian (memory
|
||||
* byte order) neutral since the few places that care are handled explicitly.
|
||||
*
|
||||
* This implementation of Rijndael was created by Steven M. Gibson of GRC.com.
|
||||
*
|
||||
* It is intended for general purpose use, but was written in support of GRC's
|
||||
* reference implementation of the SQRL (Secure Quick Reliable Login) client.
|
||||
*
|
||||
* See: http://csrc.nist.gov/archive/aes/rijndael/wsdindex.html
|
||||
*
|
||||
* NO COPYRIGHT IS CLAIMED IN THIS WORK, HOWEVER, NEITHER IS ANY WARRANTY MADE
|
||||
* REGARDING ITS FITNESS FOR ANY PARTICULAR PURPOSE. USE IT AT YOUR OWN RISK.
|
||||
*
|
||||
*******************************************************************************/
|
||||
|
||||
#include "aes.h"
|
||||
|
||||
static int aes_tables_inited = 0; // run-once flag for performing key
|
||||
// expasion table generation (see below)
|
||||
/*
|
||||
* The following static local tables must be filled-in before the first use of
|
||||
* the GCM or AES ciphers. They are used for the AES key expansion/scheduling
|
||||
* and once built are read-only and thread safe. The "gcm_initialize" function
|
||||
* must be called once during system initialization to populate these arrays
|
||||
* for subsequent use by the AES key scheduler. If they have not been built
|
||||
* before attempted use, an error will be returned to the caller.
|
||||
*
|
||||
* NOTE: GCM Encryption/Decryption does NOT REQUIRE AES decryption. Since
|
||||
* GCM uses AES in counter-mode, where the AES cipher output is XORed with
|
||||
* the GCM input, we ONLY NEED AES encryption. Thus, to save space AES
|
||||
* decryption is typically disabled by setting AES_DECRYPTION to 0 in aes.h.
|
||||
*/
|
||||
// We always need our forward tables
|
||||
static uchar FSb[256]; // Forward substitution box (FSb)
|
||||
static uint32_t FT0[256]; // Forward key schedule assembly tables
|
||||
static uint32_t FT1[256];
|
||||
static uint32_t FT2[256];
|
||||
static uint32_t FT3[256];
|
||||
|
||||
#if AES_DECRYPTION // We ONLY need reverse for decryption
|
||||
static uchar RSb[256]; // Reverse substitution box (RSb)
|
||||
static uint32_t RT0[256]; // Reverse key schedule assembly tables
|
||||
static uint32_t RT1[256];
|
||||
static uint32_t RT2[256];
|
||||
static uint32_t RT3[256];
|
||||
#endif /* AES_DECRYPTION */
|
||||
|
||||
static uint32_t RCON[10]; // AES round constants
|
||||
|
||||
/*
|
||||
* Platform Endianness Neutralizing Load and Store Macro definitions
|
||||
* AES wants platform-neutral Little Endian (LE) byte ordering
|
||||
*/
|
||||
#define GET_UINT32_LE(n,b,i) { \
|
||||
(n) = ( (uint32_t) (b)[(i) ] ) \
|
||||
| ( (uint32_t) (b)[(i) + 1] << 8 ) \
|
||||
| ( (uint32_t) (b)[(i) + 2] << 16 ) \
|
||||
| ( (uint32_t) (b)[(i) + 3] << 24 ); }
|
||||
|
||||
#define PUT_UINT32_LE(n,b,i) { \
|
||||
(b)[(i) ] = (uchar) ( (n) ); \
|
||||
(b)[(i) + 1] = (uchar) ( (n) >> 8 ); \
|
||||
(b)[(i) + 2] = (uchar) ( (n) >> 16 ); \
|
||||
(b)[(i) + 3] = (uchar) ( (n) >> 24 ); }
|
||||
|
||||
/*
|
||||
* AES forward and reverse encryption round processing macros
|
||||
*/
|
||||
#define AES_FROUND(X0,X1,X2,X3,Y0,Y1,Y2,Y3) \
|
||||
{ \
|
||||
X0 = *RK++ ^ FT0[ ( Y0 ) & 0xFF ] ^ \
|
||||
FT1[ ( Y1 >> 8 ) & 0xFF ] ^ \
|
||||
FT2[ ( Y2 >> 16 ) & 0xFF ] ^ \
|
||||
FT3[ ( Y3 >> 24 ) & 0xFF ]; \
|
||||
\
|
||||
X1 = *RK++ ^ FT0[ ( Y1 ) & 0xFF ] ^ \
|
||||
FT1[ ( Y2 >> 8 ) & 0xFF ] ^ \
|
||||
FT2[ ( Y3 >> 16 ) & 0xFF ] ^ \
|
||||
FT3[ ( Y0 >> 24 ) & 0xFF ]; \
|
||||
\
|
||||
X2 = *RK++ ^ FT0[ ( Y2 ) & 0xFF ] ^ \
|
||||
FT1[ ( Y3 >> 8 ) & 0xFF ] ^ \
|
||||
FT2[ ( Y0 >> 16 ) & 0xFF ] ^ \
|
||||
FT3[ ( Y1 >> 24 ) & 0xFF ]; \
|
||||
\
|
||||
X3 = *RK++ ^ FT0[ ( Y3 ) & 0xFF ] ^ \
|
||||
FT1[ ( Y0 >> 8 ) & 0xFF ] ^ \
|
||||
FT2[ ( Y1 >> 16 ) & 0xFF ] ^ \
|
||||
FT3[ ( Y2 >> 24 ) & 0xFF ]; \
|
||||
}
|
||||
|
||||
#define AES_RROUND(X0,X1,X2,X3,Y0,Y1,Y2,Y3) \
|
||||
{ \
|
||||
X0 = *RK++ ^ RT0[ ( Y0 ) & 0xFF ] ^ \
|
||||
RT1[ ( Y3 >> 8 ) & 0xFF ] ^ \
|
||||
RT2[ ( Y2 >> 16 ) & 0xFF ] ^ \
|
||||
RT3[ ( Y1 >> 24 ) & 0xFF ]; \
|
||||
\
|
||||
X1 = *RK++ ^ RT0[ ( Y1 ) & 0xFF ] ^ \
|
||||
RT1[ ( Y0 >> 8 ) & 0xFF ] ^ \
|
||||
RT2[ ( Y3 >> 16 ) & 0xFF ] ^ \
|
||||
RT3[ ( Y2 >> 24 ) & 0xFF ]; \
|
||||
\
|
||||
X2 = *RK++ ^ RT0[ ( Y2 ) & 0xFF ] ^ \
|
||||
RT1[ ( Y1 >> 8 ) & 0xFF ] ^ \
|
||||
RT2[ ( Y0 >> 16 ) & 0xFF ] ^ \
|
||||
RT3[ ( Y3 >> 24 ) & 0xFF ]; \
|
||||
\
|
||||
X3 = *RK++ ^ RT0[ ( Y3 ) & 0xFF ] ^ \
|
||||
RT1[ ( Y2 >> 8 ) & 0xFF ] ^ \
|
||||
RT2[ ( Y1 >> 16 ) & 0xFF ] ^ \
|
||||
RT3[ ( Y0 >> 24 ) & 0xFF ]; \
|
||||
}
|
||||
|
||||
/*
|
||||
* These macros improve the readability of the key
|
||||
* generation initialization code by collapsing
|
||||
* repetitive common operations into logical pieces.
|
||||
*/
|
||||
#define ROTL8(x) ( ( x << 8 ) & 0xFFFFFFFF ) | ( x >> 24 )
|
||||
#define XTIME(x) ( ( x << 1 ) ^ ( ( x & 0x80 ) ? 0x1B : 0x00 ) )
|
||||
#define MUL(x,y) ( ( x && y ) ? pow[(log[x]+log[y]) % 255] : 0 )
|
||||
#define MIX(x,y) { y = ( (y << 1) | (y >> 7) ) & 0xFF; x ^= y; }
|
||||
#define CPY128 { *RK++ = *SK++; *RK++ = *SK++; \
|
||||
*RK++ = *SK++; *RK++ = *SK++; }
|
||||
|
||||
/******************************************************************************
|
||||
*
|
||||
* AES_INIT_KEYGEN_TABLES
|
||||
*
|
||||
* Fills the AES key expansion tables allocated above with their static
|
||||
* data. This is not "per key" data, but static system-wide read-only
|
||||
* table data. THIS FUNCTION IS NOT THREAD SAFE. It must be called once
|
||||
* at system initialization to setup the tables for all subsequent use.
|
||||
*
|
||||
******************************************************************************/
|
||||
void aes_init_keygen_tables(void)
|
||||
{
|
||||
int i, x, y, z; // general purpose iteration and computation locals
|
||||
int pow[256];
|
||||
int log[256];
|
||||
|
||||
if (aes_tables_inited) return;
|
||||
|
||||
// fill the 'pow' and 'log' tables over GF(2^8)
|
||||
for (i = 0, x = 1; i < 256; i++) {
|
||||
pow[i] = x;
|
||||
log[x] = i;
|
||||
x = (x ^ XTIME(x)) & 0xFF;
|
||||
}
|
||||
// compute the round constants
|
||||
for (i = 0, x = 1; i < 10; i++) {
|
||||
RCON[i] = (uint32_t)x;
|
||||
x = XTIME(x) & 0xFF;
|
||||
}
|
||||
// fill the forward and reverse substitution boxes
|
||||
FSb[0x00] = 0x63;
|
||||
#if AES_DECRYPTION // whether AES decryption is supported
|
||||
RSb[0x63] = 0x00;
|
||||
#endif /* AES_DECRYPTION */
|
||||
|
||||
for (i = 1; i < 256; i++) {
|
||||
x = y = pow[255 - log[i]];
|
||||
MIX(x, y);
|
||||
MIX(x, y);
|
||||
MIX(x, y);
|
||||
MIX(x, y);
|
||||
FSb[i] = (uchar)(x ^= 0x63);
|
||||
#if AES_DECRYPTION // whether AES decryption is supported
|
||||
RSb[x] = (uchar)i;
|
||||
#endif /* AES_DECRYPTION */
|
||||
|
||||
}
|
||||
// generate the forward and reverse key expansion tables
|
||||
for (i = 0; i < 256; i++) {
|
||||
x = FSb[i];
|
||||
y = XTIME(x) & 0xFF;
|
||||
z = (y ^ x) & 0xFF;
|
||||
|
||||
FT0[i] = ((uint32_t)y) ^ ((uint32_t)x << 8) ^
|
||||
((uint32_t)x << 16) ^ ((uint32_t)z << 24);
|
||||
|
||||
FT1[i] = ROTL8(FT0[i]);
|
||||
FT2[i] = ROTL8(FT1[i]);
|
||||
FT3[i] = ROTL8(FT2[i]);
|
||||
|
||||
#if AES_DECRYPTION // whether AES decryption is supported
|
||||
x = RSb[i];
|
||||
|
||||
RT0[i] = ((uint32_t)MUL(0x0E, x)) ^
|
||||
((uint32_t)MUL(0x09, x) << 8) ^
|
||||
((uint32_t)MUL(0x0D, x) << 16) ^
|
||||
((uint32_t)MUL(0x0B, x) << 24);
|
||||
|
||||
RT1[i] = ROTL8(RT0[i]);
|
||||
RT2[i] = ROTL8(RT1[i]);
|
||||
RT3[i] = ROTL8(RT2[i]);
|
||||
#endif /* AES_DECRYPTION */
|
||||
}
|
||||
aes_tables_inited = 1; // flag that the tables have been generated
|
||||
} // to permit subsequent use of the AES cipher
|
||||
|
||||
/******************************************************************************
|
||||
*
|
||||
* AES_SET_ENCRYPTION_KEY
|
||||
*
|
||||
* This is called by 'aes_setkey' when we're establishing a key for
|
||||
* subsequent encryption. We give it a pointer to the encryption
|
||||
* context, a pointer to the key, and the key's length in bytes.
|
||||
* Valid lengths are: 16, 24 or 32 bytes (128, 192, 256 bits).
|
||||
*
|
||||
******************************************************************************/
|
||||
int aes_set_encryption_key(aes_context *ctx,
|
||||
const uchar *key,
|
||||
uint keysize)
|
||||
{
|
||||
uint i; // general purpose iteration local
|
||||
uint32_t *RK = ctx->rk; // initialize our RoundKey buffer pointer
|
||||
|
||||
for (i = 0; i < (keysize >> 2); i++) {
|
||||
GET_UINT32_LE(RK[i], key, i << 2);
|
||||
}
|
||||
|
||||
switch (ctx->rounds)
|
||||
{
|
||||
case 10:
|
||||
for (i = 0; i < 10; i++, RK += 4) {
|
||||
RK[4] = RK[0] ^ RCON[i] ^
|
||||
((uint32_t)FSb[(RK[3] >> 8) & 0xFF]) ^
|
||||
((uint32_t)FSb[(RK[3] >> 16) & 0xFF] << 8) ^
|
||||
((uint32_t)FSb[(RK[3] >> 24) & 0xFF] << 16) ^
|
||||
((uint32_t)FSb[(RK[3]) & 0xFF] << 24);
|
||||
|
||||
RK[5] = RK[1] ^ RK[4];
|
||||
RK[6] = RK[2] ^ RK[5];
|
||||
RK[7] = RK[3] ^ RK[6];
|
||||
}
|
||||
break;
|
||||
|
||||
case 12:
|
||||
for (i = 0; i < 8; i++, RK += 6) {
|
||||
RK[6] = RK[0] ^ RCON[i] ^
|
||||
((uint32_t)FSb[(RK[5] >> 8) & 0xFF]) ^
|
||||
((uint32_t)FSb[(RK[5] >> 16) & 0xFF] << 8) ^
|
||||
((uint32_t)FSb[(RK[5] >> 24) & 0xFF] << 16) ^
|
||||
((uint32_t)FSb[(RK[5]) & 0xFF] << 24);
|
||||
|
||||
RK[7] = RK[1] ^ RK[6];
|
||||
RK[8] = RK[2] ^ RK[7];
|
||||
RK[9] = RK[3] ^ RK[8];
|
||||
RK[10] = RK[4] ^ RK[9];
|
||||
RK[11] = RK[5] ^ RK[10];
|
||||
}
|
||||
break;
|
||||
|
||||
case 14:
|
||||
for (i = 0; i < 7; i++, RK += 8) {
|
||||
RK[8] = RK[0] ^ RCON[i] ^
|
||||
((uint32_t)FSb[(RK[7] >> 8) & 0xFF]) ^
|
||||
((uint32_t)FSb[(RK[7] >> 16) & 0xFF] << 8) ^
|
||||
((uint32_t)FSb[(RK[7] >> 24) & 0xFF] << 16) ^
|
||||
((uint32_t)FSb[(RK[7]) & 0xFF] << 24);
|
||||
|
||||
RK[9] = RK[1] ^ RK[8];
|
||||
RK[10] = RK[2] ^ RK[9];
|
||||
RK[11] = RK[3] ^ RK[10];
|
||||
|
||||
RK[12] = RK[4] ^
|
||||
((uint32_t)FSb[(RK[11]) & 0xFF]) ^
|
||||
((uint32_t)FSb[(RK[11] >> 8) & 0xFF] << 8) ^
|
||||
((uint32_t)FSb[(RK[11] >> 16) & 0xFF] << 16) ^
|
||||
((uint32_t)FSb[(RK[11] >> 24) & 0xFF] << 24);
|
||||
|
||||
RK[13] = RK[5] ^ RK[12];
|
||||
RK[14] = RK[6] ^ RK[13];
|
||||
RK[15] = RK[7] ^ RK[14];
|
||||
}
|
||||
break;
|
||||
|
||||
default:
|
||||
return -1;
|
||||
}
|
||||
return(0);
|
||||
}
|
||||
|
||||
#if AES_DECRYPTION // whether AES decryption is supported
|
||||
|
||||
/******************************************************************************
|
||||
*
|
||||
* AES_SET_DECRYPTION_KEY
|
||||
*
|
||||
* This is called by 'aes_setkey' when we're establishing a
|
||||
* key for subsequent decryption. We give it a pointer to
|
||||
* the encryption context, a pointer to the key, and the key's
|
||||
* length in bits. Valid lengths are: 128, 192, or 256 bits.
|
||||
*
|
||||
******************************************************************************/
|
||||
int aes_set_decryption_key(aes_context *ctx,
|
||||
const uchar *key,
|
||||
uint keysize)
|
||||
{
|
||||
int i, j;
|
||||
aes_context cty; // a calling aes context for set_encryption_key
|
||||
uint32_t *RK = ctx->rk; // initialize our RoundKey buffer pointer
|
||||
uint32_t *SK;
|
||||
int ret;
|
||||
|
||||
cty.rounds = ctx->rounds; // initialize our local aes context
|
||||
cty.rk = cty.buf; // round count and key buf pointer
|
||||
|
||||
if ((ret = aes_set_encryption_key(&cty, key, keysize)) != 0)
|
||||
return(ret);
|
||||
|
||||
SK = cty.rk + cty.rounds * 4;
|
||||
|
||||
CPY128 // copy a 128-bit block from *SK to *RK
|
||||
|
||||
for (i = ctx->rounds - 1, SK -= 8; i > 0; i--, SK -= 8) {
|
||||
for (j = 0; j < 4; j++, SK++) {
|
||||
*RK++ = RT0[FSb[(*SK) & 0xFF]] ^
|
||||
RT1[FSb[(*SK >> 8) & 0xFF]] ^
|
||||
RT2[FSb[(*SK >> 16) & 0xFF]] ^
|
||||
RT3[FSb[(*SK >> 24) & 0xFF]];
|
||||
}
|
||||
}
|
||||
CPY128 // copy a 128-bit block from *SK to *RK
|
||||
memset(&cty, 0, sizeof(aes_context)); // clear local aes context
|
||||
return(0);
|
||||
}
|
||||
|
||||
#endif /* AES_DECRYPTION */
|
||||
|
||||
/******************************************************************************
|
||||
*
|
||||
* AES_SETKEY
|
||||
*
|
||||
* Invoked to establish the key schedule for subsequent encryption/decryption
|
||||
*
|
||||
******************************************************************************/
|
||||
int aes_setkey(aes_context *ctx, // AES context provided by our caller
|
||||
int mode, // ENCRYPT or DECRYPT flag
|
||||
const uchar *key, // pointer to the key
|
||||
uint keysize) // key length in bytes
|
||||
{
|
||||
// since table initialization is not thread safe, we could either add
|
||||
// system-specific mutexes and init the AES key generation tables on
|
||||
// demand, or ask the developer to simply call "gcm_initialize" once during
|
||||
// application startup before threading begins. That's what we choose.
|
||||
if (!aes_tables_inited) return (-1); // fail the call when not inited.
|
||||
|
||||
ctx->mode = mode; // capture the key type we're creating
|
||||
ctx->rk = ctx->buf; // initialize our round key pointer
|
||||
|
||||
switch (keysize) // set the rounds count based upon the keysize
|
||||
{
|
||||
case 16: ctx->rounds = 10; break; // 16-byte, 128-bit key
|
||||
case 24: ctx->rounds = 12; break; // 24-byte, 192-bit key
|
||||
case 32: ctx->rounds = 14; break; // 32-byte, 256-bit key
|
||||
default: return(-1);
|
||||
}
|
||||
|
||||
#if AES_DECRYPTION
|
||||
if (mode == DECRYPT) // expand our key for encryption or decryption
|
||||
return(aes_set_decryption_key(ctx, key, keysize));
|
||||
else /* ENCRYPT */
|
||||
#endif /* AES_DECRYPTION */
|
||||
return(aes_set_encryption_key(ctx, key, keysize));
|
||||
}
|
||||
|
||||
/******************************************************************************
|
||||
*
|
||||
* AES_CIPHER
|
||||
*
|
||||
* Perform AES encryption and decryption.
|
||||
* The AES context will have been setup with the encryption mode
|
||||
* and all keying information appropriate for the task.
|
||||
*
|
||||
******************************************************************************/
|
||||
int aes_cipher(aes_context *ctx,
|
||||
const uchar input[16],
|
||||
uchar output[16])
|
||||
{
|
||||
int i;
|
||||
uint32_t *RK, X0, X1, X2, X3, Y0, Y1, Y2, Y3; // general purpose locals
|
||||
|
||||
RK = ctx->rk;
|
||||
|
||||
GET_UINT32_LE(X0, input, 0); X0 ^= *RK++; // load our 128-bit
|
||||
GET_UINT32_LE(X1, input, 4); X1 ^= *RK++; // input buffer in a storage
|
||||
GET_UINT32_LE(X2, input, 8); X2 ^= *RK++; // memory endian-neutral way
|
||||
GET_UINT32_LE(X3, input, 12); X3 ^= *RK++;
|
||||
|
||||
#if AES_DECRYPTION // whether AES decryption is supported
|
||||
|
||||
if (ctx->mode == DECRYPT)
|
||||
{
|
||||
for (i = (ctx->rounds >> 1) - 1; i > 0; i--)
|
||||
{
|
||||
AES_RROUND(Y0, Y1, Y2, Y3, X0, X1, X2, X3);
|
||||
AES_RROUND(X0, X1, X2, X3, Y0, Y1, Y2, Y3);
|
||||
}
|
||||
|
||||
AES_RROUND(Y0, Y1, Y2, Y3, X0, X1, X2, X3);
|
||||
|
||||
X0 = *RK++ ^ \
|
||||
((uint32_t)RSb[(Y0) & 0xFF]) ^
|
||||
((uint32_t)RSb[(Y3 >> 8) & 0xFF] << 8) ^
|
||||
((uint32_t)RSb[(Y2 >> 16) & 0xFF] << 16) ^
|
||||
((uint32_t)RSb[(Y1 >> 24) & 0xFF] << 24);
|
||||
|
||||
X1 = *RK++ ^ \
|
||||
((uint32_t)RSb[(Y1) & 0xFF]) ^
|
||||
((uint32_t)RSb[(Y0 >> 8) & 0xFF] << 8) ^
|
||||
((uint32_t)RSb[(Y3 >> 16) & 0xFF] << 16) ^
|
||||
((uint32_t)RSb[(Y2 >> 24) & 0xFF] << 24);
|
||||
|
||||
X2 = *RK++ ^ \
|
||||
((uint32_t)RSb[(Y2) & 0xFF]) ^
|
||||
((uint32_t)RSb[(Y1 >> 8) & 0xFF] << 8) ^
|
||||
((uint32_t)RSb[(Y0 >> 16) & 0xFF] << 16) ^
|
||||
((uint32_t)RSb[(Y3 >> 24) & 0xFF] << 24);
|
||||
|
||||
X3 = *RK++ ^ \
|
||||
((uint32_t)RSb[(Y3) & 0xFF]) ^
|
||||
((uint32_t)RSb[(Y2 >> 8) & 0xFF] << 8) ^
|
||||
((uint32_t)RSb[(Y1 >> 16) & 0xFF] << 16) ^
|
||||
((uint32_t)RSb[(Y0 >> 24) & 0xFF] << 24);
|
||||
}
|
||||
else /* ENCRYPT */
|
||||
{
|
||||
#endif /* AES_DECRYPTION */
|
||||
|
||||
for (i = (ctx->rounds >> 1) - 1; i > 0; i--)
|
||||
{
|
||||
AES_FROUND(Y0, Y1, Y2, Y3, X0, X1, X2, X3);
|
||||
AES_FROUND(X0, X1, X2, X3, Y0, Y1, Y2, Y3);
|
||||
}
|
||||
|
||||
AES_FROUND(Y0, Y1, Y2, Y3, X0, X1, X2, X3);
|
||||
|
||||
X0 = *RK++ ^ \
|
||||
((uint32_t)FSb[(Y0) & 0xFF]) ^
|
||||
((uint32_t)FSb[(Y1 >> 8) & 0xFF] << 8) ^
|
||||
((uint32_t)FSb[(Y2 >> 16) & 0xFF] << 16) ^
|
||||
((uint32_t)FSb[(Y3 >> 24) & 0xFF] << 24);
|
||||
|
||||
X1 = *RK++ ^ \
|
||||
((uint32_t)FSb[(Y1) & 0xFF]) ^
|
||||
((uint32_t)FSb[(Y2 >> 8) & 0xFF] << 8) ^
|
||||
((uint32_t)FSb[(Y3 >> 16) & 0xFF] << 16) ^
|
||||
((uint32_t)FSb[(Y0 >> 24) & 0xFF] << 24);
|
||||
|
||||
X2 = *RK++ ^ \
|
||||
((uint32_t)FSb[(Y2) & 0xFF]) ^
|
||||
((uint32_t)FSb[(Y3 >> 8) & 0xFF] << 8) ^
|
||||
((uint32_t)FSb[(Y0 >> 16) & 0xFF] << 16) ^
|
||||
((uint32_t)FSb[(Y1 >> 24) & 0xFF] << 24);
|
||||
|
||||
X3 = *RK++ ^ \
|
||||
((uint32_t)FSb[(Y3) & 0xFF]) ^
|
||||
((uint32_t)FSb[(Y0 >> 8) & 0xFF] << 8) ^
|
||||
((uint32_t)FSb[(Y1 >> 16) & 0xFF] << 16) ^
|
||||
((uint32_t)FSb[(Y2 >> 24) & 0xFF] << 24);
|
||||
|
||||
#if AES_DECRYPTION // whether AES decryption is supported
|
||||
}
|
||||
#endif /* AES_DECRYPTION */
|
||||
|
||||
PUT_UINT32_LE(X0, output, 0);
|
||||
PUT_UINT32_LE(X1, output, 4);
|
||||
PUT_UINT32_LE(X2, output, 8);
|
||||
PUT_UINT32_LE(X3, output, 12);
|
||||
|
||||
return(0);
|
||||
}
|
||||
/* end of aes.c */
|
78
nfq/crypto/aes.h
Normal file
78
nfq/crypto/aes.h
Normal file
@@ -0,0 +1,78 @@
|
||||
/******************************************************************************
|
||||
*
|
||||
* THIS SOURCE CODE IS HEREBY PLACED INTO THE PUBLIC DOMAIN FOR THE GOOD OF ALL
|
||||
*
|
||||
* This is a simple and straightforward implementation of the AES Rijndael
|
||||
* 128-bit block cipher designed by Vincent Rijmen and Joan Daemen. The focus
|
||||
* of this work was correctness & accuracy. It is written in 'C' without any
|
||||
* particular focus upon optimization or speed. It should be endian (memory
|
||||
* byte order) neutral since the few places that care are handled explicitly.
|
||||
*
|
||||
* This implementation of Rijndael was created by Steven M. Gibson of GRC.com.
|
||||
*
|
||||
* It is intended for general purpose use, but was written in support of GRC's
|
||||
* reference implementation of the SQRL (Secure Quick Reliable Login) client.
|
||||
*
|
||||
* See: http://csrc.nist.gov/archive/aes/rijndael/wsdindex.html
|
||||
*
|
||||
* NO COPYRIGHT IS CLAIMED IN THIS WORK, HOWEVER, NEITHER IS ANY WARRANTY MADE
|
||||
* REGARDING ITS FITNESS FOR ANY PARTICULAR PURPOSE. USE IT AT YOUR OWN RISK.
|
||||
*
|
||||
*******************************************************************************/
|
||||
|
||||
#pragma once
|
||||
|
||||
/******************************************************************************/
|
||||
#define AES_DECRYPTION 0 // whether AES decryption is supported
|
||||
/******************************************************************************/
|
||||
|
||||
#include <string.h>
|
||||
|
||||
#define ENCRYPT 1 // specify whether we're encrypting
|
||||
#define DECRYPT 0 // or decrypting
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#include <basetsd.h>
|
||||
typedef UINT32 uint32_t;
|
||||
#else
|
||||
#include <inttypes.h>
|
||||
#endif
|
||||
|
||||
typedef unsigned char uchar; // add some convienent shorter types
|
||||
typedef unsigned int uint;
|
||||
|
||||
|
||||
/******************************************************************************
|
||||
* AES_INIT_KEYGEN_TABLES : MUST be called once before any AES use
|
||||
******************************************************************************/
|
||||
void aes_init_keygen_tables(void);
|
||||
|
||||
|
||||
/******************************************************************************
|
||||
* AES_CONTEXT : cipher context / holds inter-call data
|
||||
******************************************************************************/
|
||||
typedef struct {
|
||||
int mode; // 1 for Encryption, 0 for Decryption
|
||||
int rounds; // keysize-based rounds count
|
||||
uint32_t *rk; // pointer to current round key
|
||||
uint32_t buf[68]; // key expansion buffer
|
||||
} aes_context;
|
||||
|
||||
|
||||
/******************************************************************************
|
||||
* AES_SETKEY : called to expand the key for encryption or decryption
|
||||
******************************************************************************/
|
||||
int aes_setkey(aes_context *ctx, // pointer to context
|
||||
int mode, // 1 or 0 for Encrypt/Decrypt
|
||||
const uchar *key, // AES input key
|
||||
uint keysize); // size in bytes (must be 16, 24, 32 for
|
||||
// 128, 192 or 256-bit keys respectively)
|
||||
// returns 0 for success
|
||||
|
||||
/******************************************************************************
|
||||
* AES_CIPHER : called to encrypt or decrypt ONE 128-bit block of data
|
||||
******************************************************************************/
|
||||
int aes_cipher(aes_context *ctx, // pointer to context
|
||||
const uchar input[16], // 128-bit block to en/decipher
|
||||
uchar output[16]); // 128-bit output result block
|
||||
// returns 0 for success
|
511
nfq/crypto/gcm.c
Normal file
511
nfq/crypto/gcm.c
Normal file
@@ -0,0 +1,511 @@
|
||||
/******************************************************************************
|
||||
*
|
||||
* THIS SOURCE CODE IS HEREBY PLACED INTO THE PUBLIC DOMAIN FOR THE GOOD OF ALL
|
||||
*
|
||||
* This is a simple and straightforward implementation of AES-GCM authenticated
|
||||
* encryption. The focus of this work was correctness & accuracy. It is written
|
||||
* in straight 'C' without any particular focus upon optimization or speed. It
|
||||
* should be endian (memory byte order) neutral since the few places that care
|
||||
* are handled explicitly.
|
||||
*
|
||||
* This implementation of AES-GCM was created by Steven M. Gibson of GRC.com.
|
||||
*
|
||||
* It is intended for general purpose use, but was written in support of GRC's
|
||||
* reference implementation of the SQRL (Secure Quick Reliable Login) client.
|
||||
*
|
||||
* See: http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
|
||||
* http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/
|
||||
* gcm/gcm-revised-spec.pdf
|
||||
*
|
||||
* NO COPYRIGHT IS CLAIMED IN THIS WORK, HOWEVER, NEITHER IS ANY WARRANTY MADE
|
||||
* REGARDING ITS FITNESS FOR ANY PARTICULAR PURPOSE. USE IT AT YOUR OWN RISK.
|
||||
*
|
||||
*******************************************************************************/
|
||||
|
||||
#include "gcm.h"
|
||||
#include "aes.h"
|
||||
|
||||
/******************************************************************************
|
||||
* ==== IMPLEMENTATION WARNING ====
|
||||
*
|
||||
* This code was developed for use within SQRL's fixed environmnent. Thus, it
|
||||
* is somewhat less "general purpose" than it would be if it were designed as
|
||||
* a general purpose AES-GCM library. Specifically, it bothers with almost NO
|
||||
* error checking on parameter limits, buffer bounds, etc. It assumes that it
|
||||
* is being invoked by its author or by someone who understands the values it
|
||||
* expects to receive. Its behavior will be undefined otherwise.
|
||||
*
|
||||
* All functions that might fail are defined to return 'ints' to indicate a
|
||||
* problem. Most do not do so now. But this allows for error propagation out
|
||||
* of internal functions if robust error checking should ever be desired.
|
||||
*
|
||||
******************************************************************************/
|
||||
|
||||
/* Calculating the "GHASH"
|
||||
*
|
||||
* There are many ways of calculating the so-called GHASH in software, each with
|
||||
* a traditional size vs performance tradeoff. The GHASH (Galois field hash) is
|
||||
* an intriguing construction which takes two 128-bit strings (also the cipher's
|
||||
* block size and the fundamental operation size for the system) and hashes them
|
||||
* into a third 128-bit result.
|
||||
*
|
||||
* Many implementation solutions have been worked out that use large precomputed
|
||||
* table lookups in place of more time consuming bit fiddling, and this approach
|
||||
* can be scaled easily upward or downward as needed to change the time/space
|
||||
* tradeoff. It's been studied extensively and there's a solid body of theory and
|
||||
* practice. For example, without using any lookup tables an implementation
|
||||
* might obtain 119 cycles per byte throughput, whereas using a simple, though
|
||||
* large, key-specific 64 kbyte 8-bit lookup table the performance jumps to 13
|
||||
* cycles per byte.
|
||||
*
|
||||
* And Intel's processors have, since 2010, included an instruction which does
|
||||
* the entire 128x128->128 bit job in just several 64x64->128 bit pieces.
|
||||
*
|
||||
* Since SQRL is interactive, and only processing a few 128-bit blocks, I've
|
||||
* settled upon a relatively slower but appealing small-table compromise which
|
||||
* folds a bunch of not only time consuming but also bit twiddling into a simple
|
||||
* 16-entry table which is attributed to Victor Shoup's 1996 work while at
|
||||
* Bellcore: "On Fast and Provably Secure MessageAuthentication Based on
|
||||
* Universal Hashing." See: http://www.shoup.net/papers/macs.pdf
|
||||
* See, also section 4.1 of the "gcm-revised-spec" cited above.
|
||||
*/
|
||||
|
||||
/*
|
||||
* This 16-entry table of pre-computed constants is used by the
|
||||
* GHASH multiplier to improve over a strictly table-free but
|
||||
* significantly slower 128x128 bit multiple within GF(2^128).
|
||||
*/
|
||||
static const uint64_t last4[16] = {
|
||||
0x0000, 0x1c20, 0x3840, 0x2460, 0x7080, 0x6ca0, 0x48c0, 0x54e0,
|
||||
0xe100, 0xfd20, 0xd940, 0xc560, 0x9180, 0x8da0, 0xa9c0, 0xb5e0 };
|
||||
|
||||
/*
|
||||
* Platform Endianness Neutralizing Load and Store Macro definitions
|
||||
* GCM wants platform-neutral Big Endian (BE) byte ordering
|
||||
*/
|
||||
#define GET_UINT32_BE(n,b,i) { \
|
||||
(n) = ( (uint32_t) (b)[(i) ] << 24 ) \
|
||||
| ( (uint32_t) (b)[(i) + 1] << 16 ) \
|
||||
| ( (uint32_t) (b)[(i) + 2] << 8 ) \
|
||||
| ( (uint32_t) (b)[(i) + 3] ); }
|
||||
|
||||
#define PUT_UINT32_BE(n,b,i) { \
|
||||
(b)[(i) ] = (uchar) ( (n) >> 24 ); \
|
||||
(b)[(i) + 1] = (uchar) ( (n) >> 16 ); \
|
||||
(b)[(i) + 2] = (uchar) ( (n) >> 8 ); \
|
||||
(b)[(i) + 3] = (uchar) ( (n) ); }
|
||||
|
||||
|
||||
/******************************************************************************
|
||||
*
|
||||
* GCM_INITIALIZE
|
||||
*
|
||||
* Must be called once to initialize the GCM library.
|
||||
*
|
||||
* At present, this only calls the AES keygen table generator, which expands
|
||||
* the AES keying tables for use. This is NOT A THREAD-SAFE function, so it
|
||||
* MUST be called during system initialization before a multi-threading
|
||||
* environment is running.
|
||||
*
|
||||
******************************************************************************/
|
||||
int gcm_initialize(void)
|
||||
{
|
||||
aes_init_keygen_tables();
|
||||
return(0);
|
||||
}
|
||||
|
||||
|
||||
/******************************************************************************
|
||||
*
|
||||
* GCM_MULT
|
||||
*
|
||||
* Performs a GHASH operation on the 128-bit input vector 'x', setting
|
||||
* the 128-bit output vector to 'x' times H using our precomputed tables.
|
||||
* 'x' and 'output' are seen as elements of GCM's GF(2^128) Galois field.
|
||||
*
|
||||
******************************************************************************/
|
||||
static void gcm_mult(gcm_context *ctx, // pointer to established context
|
||||
const uchar x[16], // pointer to 128-bit input vector
|
||||
uchar output[16]) // pointer to 128-bit output vector
|
||||
{
|
||||
int i;
|
||||
uchar lo, hi, rem;
|
||||
uint64_t zh, zl;
|
||||
|
||||
lo = (uchar)(x[15] & 0x0f);
|
||||
hi = (uchar)(x[15] >> 4);
|
||||
zh = ctx->HH[lo];
|
||||
zl = ctx->HL[lo];
|
||||
|
||||
for (i = 15; i >= 0; i--) {
|
||||
lo = (uchar)(x[i] & 0x0f);
|
||||
hi = (uchar)(x[i] >> 4);
|
||||
|
||||
if (i != 15) {
|
||||
rem = (uchar)(zl & 0x0f);
|
||||
zl = (zh << 60) | (zl >> 4);
|
||||
zh = (zh >> 4);
|
||||
zh ^= (uint64_t)last4[rem] << 48;
|
||||
zh ^= ctx->HH[lo];
|
||||
zl ^= ctx->HL[lo];
|
||||
}
|
||||
rem = (uchar)(zl & 0x0f);
|
||||
zl = (zh << 60) | (zl >> 4);
|
||||
zh = (zh >> 4);
|
||||
zh ^= (uint64_t)last4[rem] << 48;
|
||||
zh ^= ctx->HH[hi];
|
||||
zl ^= ctx->HL[hi];
|
||||
}
|
||||
PUT_UINT32_BE(zh >> 32, output, 0);
|
||||
PUT_UINT32_BE(zh, output, 4);
|
||||
PUT_UINT32_BE(zl >> 32, output, 8);
|
||||
PUT_UINT32_BE(zl, output, 12);
|
||||
}
|
||||
|
||||
|
||||
/******************************************************************************
|
||||
*
|
||||
* GCM_SETKEY
|
||||
*
|
||||
* This is called to set the AES-GCM key. It initializes the AES key
|
||||
* and populates the gcm context's pre-calculated HTables.
|
||||
*
|
||||
******************************************************************************/
|
||||
int gcm_setkey(gcm_context *ctx, // pointer to caller-provided gcm context
|
||||
const uchar *key, // pointer to the AES encryption key
|
||||
const uint keysize) // size in bytes (must be 16, 24, 32 for
|
||||
// 128, 192 or 256-bit keys respectively)
|
||||
{
|
||||
int ret, i, j;
|
||||
uint64_t hi, lo;
|
||||
uint64_t vl, vh;
|
||||
unsigned char h[16];
|
||||
|
||||
memset(ctx, 0, sizeof(gcm_context)); // zero caller-provided GCM context
|
||||
memset(h, 0, 16); // initialize the block to encrypt
|
||||
|
||||
// encrypt the null 128-bit block to generate a key-based value
|
||||
// which is then used to initialize our GHASH lookup tables
|
||||
if ((ret = aes_setkey(&ctx->aes_ctx, ENCRYPT, key, keysize)) != 0)
|
||||
return(ret);
|
||||
if ((ret = aes_cipher(&ctx->aes_ctx, h, h)) != 0)
|
||||
return(ret);
|
||||
|
||||
GET_UINT32_BE(hi, h, 0); // pack h as two 64-bit ints, big-endian
|
||||
GET_UINT32_BE(lo, h, 4);
|
||||
vh = (uint64_t)hi << 32 | lo;
|
||||
|
||||
GET_UINT32_BE(hi, h, 8);
|
||||
GET_UINT32_BE(lo, h, 12);
|
||||
vl = (uint64_t)hi << 32 | lo;
|
||||
|
||||
ctx->HL[8] = vl; // 8 = 1000 corresponds to 1 in GF(2^128)
|
||||
ctx->HH[8] = vh;
|
||||
ctx->HH[0] = 0; // 0 corresponds to 0 in GF(2^128)
|
||||
ctx->HL[0] = 0;
|
||||
|
||||
for (i = 4; i > 0; i >>= 1) {
|
||||
uint32_t T = (uint32_t)(vl & 1) * 0xe1000000U;
|
||||
vl = (vh << 63) | (vl >> 1);
|
||||
vh = (vh >> 1) ^ ((uint64_t)T << 32);
|
||||
ctx->HL[i] = vl;
|
||||
ctx->HH[i] = vh;
|
||||
}
|
||||
for (i = 2; i < 16; i <<= 1) {
|
||||
uint64_t *HiL = ctx->HL + i, *HiH = ctx->HH + i;
|
||||
vh = *HiH;
|
||||
vl = *HiL;
|
||||
for (j = 1; j < i; j++) {
|
||||
HiH[j] = vh ^ ctx->HH[j];
|
||||
HiL[j] = vl ^ ctx->HL[j];
|
||||
}
|
||||
}
|
||||
return(0);
|
||||
}
|
||||
|
||||
|
||||
/******************************************************************************
|
||||
*
|
||||
* GCM processing occurs four phases: SETKEY, START, UPDATE and FINISH.
|
||||
*
|
||||
* SETKEY:
|
||||
*
|
||||
* START: Sets the Encryption/Decryption mode.
|
||||
* Accepts the initialization vector and additional data.
|
||||
*
|
||||
* UPDATE: Encrypts or decrypts the plaintext or ciphertext.
|
||||
*
|
||||
* FINISH: Performs a final GHASH to generate the authentication tag.
|
||||
*
|
||||
******************************************************************************
|
||||
*
|
||||
* GCM_START
|
||||
*
|
||||
* Given a user-provided GCM context, this initializes it, sets the encryption
|
||||
* mode, and preprocesses the initialization vector and additional AEAD data.
|
||||
*
|
||||
******************************************************************************/
|
||||
int gcm_start(gcm_context *ctx, // pointer to user-provided GCM context
|
||||
int mode, // GCM_ENCRYPT or GCM_DECRYPT
|
||||
const uchar *iv, // pointer to initialization vector
|
||||
size_t iv_len, // IV length in bytes (should == 12)
|
||||
const uchar *add, // ptr to additional AEAD data (NULL if none)
|
||||
size_t add_len) // length of additional AEAD data (bytes)
|
||||
{
|
||||
int ret; // our error return if the AES encrypt fails
|
||||
uchar work_buf[16]; // XOR source built from provided IV if len != 16
|
||||
const uchar *p; // general purpose array pointer
|
||||
size_t use_len; // byte count to process, up to 16 bytes
|
||||
size_t i; // local loop iterator
|
||||
|
||||
// since the context might be reused under the same key
|
||||
// we zero the working buffers for this next new process
|
||||
memset(ctx->y, 0x00, sizeof(ctx->y));
|
||||
memset(ctx->buf, 0x00, sizeof(ctx->buf));
|
||||
ctx->len = 0;
|
||||
ctx->add_len = 0;
|
||||
|
||||
ctx->mode = mode; // set the GCM encryption/decryption mode
|
||||
ctx->aes_ctx.mode = ENCRYPT; // GCM *always* runs AES in ENCRYPTION mode
|
||||
|
||||
if (iv_len == 12) { // GCM natively uses a 12-byte, 96-bit IV
|
||||
memcpy(ctx->y, iv, iv_len); // copy the IV to the top of the 'y' buff
|
||||
ctx->y[15] = 1; // start "counting" from 1 (not 0)
|
||||
}
|
||||
else // if we don't have a 12-byte IV, we GHASH whatever we've been given
|
||||
{
|
||||
memset(work_buf, 0x00, 16); // clear the working buffer
|
||||
PUT_UINT32_BE(iv_len * 8, work_buf, 12); // place the IV into buffer
|
||||
|
||||
p = iv;
|
||||
while (iv_len > 0) {
|
||||
use_len = (iv_len < 16) ? iv_len : 16;
|
||||
for (i = 0; i < use_len; i++) ctx->y[i] ^= p[i];
|
||||
gcm_mult(ctx, ctx->y, ctx->y);
|
||||
iv_len -= use_len;
|
||||
p += use_len;
|
||||
}
|
||||
for (i = 0; i < 16; i++) ctx->y[i] ^= work_buf[i];
|
||||
gcm_mult(ctx, ctx->y, ctx->y);
|
||||
}
|
||||
if ((ret = aes_cipher(&ctx->aes_ctx, ctx->y, ctx->base_ectr)) != 0)
|
||||
return(ret);
|
||||
|
||||
ctx->add_len = add_len;
|
||||
p = add;
|
||||
while (add_len > 0) {
|
||||
use_len = (add_len < 16) ? add_len : 16;
|
||||
for (i = 0; i < use_len; i++) ctx->buf[i] ^= p[i];
|
||||
gcm_mult(ctx, ctx->buf, ctx->buf);
|
||||
add_len -= use_len;
|
||||
p += use_len;
|
||||
}
|
||||
return(0);
|
||||
}
|
||||
|
||||
/******************************************************************************
|
||||
*
|
||||
* GCM_UPDATE
|
||||
*
|
||||
* This is called once or more to process bulk plaintext or ciphertext data.
|
||||
* We give this some number of bytes of input and it returns the same number
|
||||
* of output bytes. If called multiple times (which is fine) all but the final
|
||||
* invocation MUST be called with length mod 16 == 0. (Only the final call can
|
||||
* have a partial block length of < 128 bits.)
|
||||
*
|
||||
******************************************************************************/
|
||||
int gcm_update(gcm_context *ctx, // pointer to user-provided GCM context
|
||||
size_t length, // length, in bytes, of data to process
|
||||
const uchar *input, // pointer to source data
|
||||
uchar *output) // pointer to destination data
|
||||
{
|
||||
int ret; // our error return if the AES encrypt fails
|
||||
uchar ectr[16]; // counter-mode cipher output for XORing
|
||||
size_t use_len; // byte count to process, up to 16 bytes
|
||||
size_t i; // local loop iterator
|
||||
|
||||
ctx->len += length; // bump the GCM context's running length count
|
||||
|
||||
while (length > 0) {
|
||||
// clamp the length to process at 16 bytes
|
||||
use_len = (length < 16) ? length : 16;
|
||||
|
||||
// increment the context's 128-bit IV||Counter 'y' vector
|
||||
for (i = 16; i > 12; i--) if (++ctx->y[i - 1] != 0) break;
|
||||
|
||||
// encrypt the context's 'y' vector under the established key
|
||||
if ((ret = aes_cipher(&ctx->aes_ctx, ctx->y, ectr)) != 0)
|
||||
return(ret);
|
||||
|
||||
// encrypt or decrypt the input to the output
|
||||
if (ctx->mode == ENCRYPT)
|
||||
{
|
||||
for (i = 0; i < use_len; i++) {
|
||||
// XOR the cipher's ouptut vector (ectr) with our input
|
||||
output[i] = (uchar)(ectr[i] ^ input[i]);
|
||||
// now we mix in our data into the authentication hash.
|
||||
// if we're ENcrypting we XOR in the post-XOR (output)
|
||||
// results, but if we're DEcrypting we XOR in the input
|
||||
// data
|
||||
ctx->buf[i] ^= output[i];
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for (i = 0; i < use_len; i++) {
|
||||
// but if we're DEcrypting we XOR in the input data first,
|
||||
// i.e. before saving to ouput data, otherwise if the input
|
||||
// and output buffer are the same (inplace decryption) we
|
||||
// would not get the correct auth tag
|
||||
|
||||
ctx->buf[i] ^= input[i];
|
||||
|
||||
// XOR the cipher's ouptut vector (ectr) with our input
|
||||
output[i] = (uchar)(ectr[i] ^ input[i]);
|
||||
}
|
||||
}
|
||||
gcm_mult(ctx, ctx->buf, ctx->buf); // perform a GHASH operation
|
||||
|
||||
length -= use_len; // drop the remaining byte count to process
|
||||
input += use_len; // bump our input pointer forward
|
||||
output += use_len; // bump our output pointer forward
|
||||
}
|
||||
return(0);
|
||||
}
|
||||
|
||||
/******************************************************************************
|
||||
*
|
||||
* GCM_FINISH
|
||||
*
|
||||
* This is called once after all calls to GCM_UPDATE to finalize the GCM.
|
||||
* It performs the final GHASH to produce the resulting authentication TAG.
|
||||
*
|
||||
******************************************************************************/
|
||||
int gcm_finish(gcm_context *ctx, // pointer to user-provided GCM context
|
||||
uchar *tag, // pointer to buffer which receives the tag
|
||||
size_t tag_len) // length, in bytes, of the tag-receiving buf
|
||||
{
|
||||
uchar work_buf[16];
|
||||
uint64_t orig_len = ctx->len * 8;
|
||||
uint64_t orig_add_len = ctx->add_len * 8;
|
||||
size_t i;
|
||||
|
||||
if (tag_len != 0) memcpy(tag, ctx->base_ectr, tag_len);
|
||||
|
||||
if (orig_len || orig_add_len) {
|
||||
memset(work_buf, 0x00, 16);
|
||||
|
||||
PUT_UINT32_BE((orig_add_len >> 32), work_buf, 0);
|
||||
PUT_UINT32_BE((orig_add_len), work_buf, 4);
|
||||
PUT_UINT32_BE((orig_len >> 32), work_buf, 8);
|
||||
PUT_UINT32_BE((orig_len), work_buf, 12);
|
||||
|
||||
for (i = 0; i < 16; i++) ctx->buf[i] ^= work_buf[i];
|
||||
gcm_mult(ctx, ctx->buf, ctx->buf);
|
||||
for (i = 0; i < tag_len; i++) tag[i] ^= ctx->buf[i];
|
||||
}
|
||||
return(0);
|
||||
}
|
||||
|
||||
|
||||
/******************************************************************************
|
||||
*
|
||||
* GCM_CRYPT_AND_TAG
|
||||
*
|
||||
* This either encrypts or decrypts the user-provided data and, either
|
||||
* way, generates an authentication tag of the requested length. It must be
|
||||
* called with a GCM context whose key has already been set with GCM_SETKEY.
|
||||
*
|
||||
* The user would typically call this explicitly to ENCRYPT a buffer of data
|
||||
* and optional associated data, and produce its an authentication tag.
|
||||
*
|
||||
* To reverse the process the user would typically call the companion
|
||||
* GCM_AUTH_DECRYPT function to decrypt data and verify a user-provided
|
||||
* authentication tag. The GCM_AUTH_DECRYPT function calls this function
|
||||
* to perform its decryption and tag generation, which it then compares.
|
||||
*
|
||||
******************************************************************************/
|
||||
int gcm_crypt_and_tag(
|
||||
gcm_context *ctx, // gcm context with key already setup
|
||||
int mode, // cipher direction: GCM_ENCRYPT or GCM_DECRYPT
|
||||
const uchar *iv, // pointer to the 12-byte initialization vector
|
||||
size_t iv_len, // byte length if the IV. should always be 12
|
||||
const uchar *add, // pointer to the non-ciphered additional data
|
||||
size_t add_len, // byte length of the additional AEAD data
|
||||
const uchar *input, // pointer to the cipher data source
|
||||
uchar *output, // pointer to the cipher data destination
|
||||
size_t length, // byte length of the cipher data
|
||||
uchar *tag, // pointer to the tag to be generated
|
||||
size_t tag_len) // byte length of the tag to be generated
|
||||
{ /*
|
||||
assuming that the caller has already invoked gcm_setkey to
|
||||
prepare the gcm context with the keying material, we simply
|
||||
invoke each of the three GCM sub-functions in turn...
|
||||
*/
|
||||
gcm_start(ctx, mode, iv, iv_len, add, add_len);
|
||||
gcm_update(ctx, length, input, output);
|
||||
gcm_finish(ctx, tag, tag_len);
|
||||
return(0);
|
||||
}
|
||||
|
||||
|
||||
/******************************************************************************
|
||||
*
|
||||
* GCM_AUTH_DECRYPT
|
||||
*
|
||||
* This DECRYPTS a user-provided data buffer with optional associated data.
|
||||
* It then verifies a user-supplied authentication tag against the tag just
|
||||
* re-created during decryption to verify that the data has not been altered.
|
||||
*
|
||||
* This function calls GCM_CRYPT_AND_TAG (above) to perform the decryption
|
||||
* and authentication tag generation.
|
||||
*
|
||||
******************************************************************************/
|
||||
int gcm_auth_decrypt(
|
||||
gcm_context *ctx, // gcm context with key already setup
|
||||
const uchar *iv, // pointer to the 12-byte initialization vector
|
||||
size_t iv_len, // byte length if the IV. should always be 12
|
||||
const uchar *add, // pointer to the non-ciphered additional data
|
||||
size_t add_len, // byte length of the additional AEAD data
|
||||
const uchar *input, // pointer to the cipher data source
|
||||
uchar *output, // pointer to the cipher data destination
|
||||
size_t length, // byte length of the cipher data
|
||||
const uchar *tag, // pointer to the tag to be authenticated
|
||||
size_t tag_len) // byte length of the tag <= 16
|
||||
{
|
||||
uchar check_tag[16]; // the tag generated and returned by decryption
|
||||
int diff; // an ORed flag to detect authentication errors
|
||||
size_t i; // our local iterator
|
||||
/*
|
||||
we use GCM_DECRYPT_AND_TAG (above) to perform our decryption
|
||||
(which is an identical XORing to reverse the previous one)
|
||||
and also to re-generate the matching authentication tag
|
||||
*/
|
||||
gcm_crypt_and_tag(ctx, DECRYPT, iv, iv_len, add, add_len,
|
||||
input, output, length, check_tag, tag_len);
|
||||
|
||||
// now we verify the authentication tag in 'constant time'
|
||||
for (diff = 0, i = 0; i < tag_len; i++)
|
||||
diff |= tag[i] ^ check_tag[i];
|
||||
|
||||
if (diff != 0) { // see whether any bits differed?
|
||||
memset(output, 0, length); // if so... wipe the output data
|
||||
return(GCM_AUTH_FAILURE); // return GCM_AUTH_FAILURE
|
||||
}
|
||||
return(0);
|
||||
}
|
||||
|
||||
/******************************************************************************
|
||||
*
|
||||
* GCM_ZERO_CTX
|
||||
*
|
||||
* The GCM context contains both the GCM context and the AES context.
|
||||
* This includes keying and key-related material which is security-
|
||||
* sensitive, so it MUST be zeroed after use. This function does that.
|
||||
*
|
||||
******************************************************************************/
|
||||
void gcm_zero_ctx(gcm_context *ctx)
|
||||
{
|
||||
// zero the context originally provided to us
|
||||
memset(ctx, 0, sizeof(gcm_context));
|
||||
}
|
183
nfq/crypto/gcm.h
Normal file
183
nfq/crypto/gcm.h
Normal file
@@ -0,0 +1,183 @@
|
||||
/******************************************************************************
|
||||
*
|
||||
* THIS SOURCE CODE IS HEREBY PLACED INTO THE PUBLIC DOMAIN FOR THE GOOD OF ALL
|
||||
*
|
||||
* This is a simple and straightforward implementation of AES-GCM authenticated
|
||||
* encryption. The focus of this work was correctness & accuracy. It is written
|
||||
* in straight 'C' without any particular focus upon optimization or speed. It
|
||||
* should be endian (memory byte order) neutral since the few places that care
|
||||
* are handled explicitly.
|
||||
*
|
||||
* This implementation of AES-GCM was created by Steven M. Gibson of GRC.com.
|
||||
*
|
||||
* It is intended for general purpose use, but was written in support of GRC's
|
||||
* reference implementation of the SQRL (Secure Quick Reliable Login) client.
|
||||
*
|
||||
* See: http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
|
||||
* http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/ \
|
||||
* gcm/gcm-revised-spec.pdf
|
||||
*
|
||||
* NO COPYRIGHT IS CLAIMED IN THIS WORK, HOWEVER, NEITHER IS ANY WARRANTY MADE
|
||||
* REGARDING ITS FITNESS FOR ANY PARTICULAR PURPOSE. USE IT AT YOUR OWN RISK.
|
||||
*
|
||||
*******************************************************************************/
|
||||
#pragma once
|
||||
|
||||
#define GCM_AUTH_FAILURE 0x55555555 // authentication failure
|
||||
|
||||
#include "aes.h" // gcm_context includes aes_context
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#include <basetsd.h>
|
||||
typedef unsigned int size_t;// use the right type for length declarations
|
||||
typedef UINT32 uint32_t;
|
||||
typedef UINT64 uint64_t;
|
||||
#else
|
||||
#include <stdint.h>
|
||||
#endif
|
||||
|
||||
|
||||
/******************************************************************************
|
||||
* GCM_CONTEXT : GCM context / holds keytables, instance data, and AES ctx
|
||||
******************************************************************************/
|
||||
typedef struct {
|
||||
int mode; // cipher direction: encrypt/decrypt
|
||||
uint64_t len; // cipher data length processed so far
|
||||
uint64_t add_len; // total add data length
|
||||
uint64_t HL[16]; // precalculated lo-half HTable
|
||||
uint64_t HH[16]; // precalculated hi-half HTable
|
||||
uchar base_ectr[16]; // first counter-mode cipher output for tag
|
||||
uchar y[16]; // the current cipher-input IV|Counter value
|
||||
uchar buf[16]; // buf working value
|
||||
aes_context aes_ctx; // cipher context used
|
||||
} gcm_context;
|
||||
|
||||
|
||||
/******************************************************************************
|
||||
* GCM_CONTEXT : MUST be called once before ANY use of this library
|
||||
******************************************************************************/
|
||||
int gcm_initialize(void);
|
||||
|
||||
|
||||
/******************************************************************************
|
||||
* GCM_SETKEY : sets the GCM (and AES) keying material for use
|
||||
******************************************************************************/
|
||||
int gcm_setkey(gcm_context *ctx, // caller-provided context ptr
|
||||
const uchar *key, // pointer to cipher key
|
||||
const uint keysize // size in bytes (must be 16, 24, 32 for
|
||||
// 128, 192 or 256-bit keys respectively)
|
||||
); // returns 0 for success
|
||||
|
||||
|
||||
/******************************************************************************
|
||||
*
|
||||
* GCM_CRYPT_AND_TAG
|
||||
*
|
||||
* This either encrypts or decrypts the user-provided data and, either
|
||||
* way, generates an authentication tag of the requested length. It must be
|
||||
* called with a GCM context whose key has already been set with GCM_SETKEY.
|
||||
*
|
||||
* The user would typically call this explicitly to ENCRYPT a buffer of data
|
||||
* and optional associated data, and produce its an authentication tag.
|
||||
*
|
||||
* To reverse the process the user would typically call the companion
|
||||
* GCM_AUTH_DECRYPT function to decrypt data and verify a user-provided
|
||||
* authentication tag. The GCM_AUTH_DECRYPT function calls this function
|
||||
* to perform its decryption and tag generation, which it then compares.
|
||||
*
|
||||
******************************************************************************/
|
||||
int gcm_crypt_and_tag(
|
||||
gcm_context *ctx, // gcm context with key already setup
|
||||
int mode, // cipher direction: ENCRYPT (1) or DECRYPT (0)
|
||||
const uchar *iv, // pointer to the 12-byte initialization vector
|
||||
size_t iv_len, // byte length if the IV. should always be 12
|
||||
const uchar *add, // pointer to the non-ciphered additional data
|
||||
size_t add_len, // byte length of the additional AEAD data
|
||||
const uchar *input, // pointer to the cipher data source
|
||||
uchar *output, // pointer to the cipher data destination
|
||||
size_t length, // byte length of the cipher data
|
||||
uchar *tag, // pointer to the tag to be generated
|
||||
size_t tag_len); // byte length of the tag to be generated
|
||||
|
||||
|
||||
/******************************************************************************
|
||||
*
|
||||
* GCM_AUTH_DECRYPT
|
||||
*
|
||||
* This DECRYPTS a user-provided data buffer with optional associated data.
|
||||
* It then verifies a user-supplied authentication tag against the tag just
|
||||
* re-created during decryption to verify that the data has not been altered.
|
||||
*
|
||||
* This function calls GCM_CRYPT_AND_TAG (above) to perform the decryption
|
||||
* and authentication tag generation.
|
||||
*
|
||||
******************************************************************************/
|
||||
int gcm_auth_decrypt(
|
||||
gcm_context *ctx, // gcm context with key already setup
|
||||
const uchar *iv, // pointer to the 12-byte initialization vector
|
||||
size_t iv_len, // byte length if the IV. should always be 12
|
||||
const uchar *add, // pointer to the non-ciphered additional data
|
||||
size_t add_len, // byte length of the additional AEAD data
|
||||
const uchar *input, // pointer to the cipher data source
|
||||
uchar *output, // pointer to the cipher data destination
|
||||
size_t length, // byte length of the cipher data
|
||||
const uchar *tag, // pointer to the tag to be authenticated
|
||||
size_t tag_len); // byte length of the tag <= 16
|
||||
|
||||
|
||||
/******************************************************************************
|
||||
*
|
||||
* GCM_START
|
||||
*
|
||||
* Given a user-provided GCM context, this initializes it, sets the encryption
|
||||
* mode, and preprocesses the initialization vector and additional AEAD data.
|
||||
*
|
||||
******************************************************************************/
|
||||
int gcm_start(gcm_context *ctx, // pointer to user-provided GCM context
|
||||
int mode, // ENCRYPT (1) or DECRYPT (0)
|
||||
const uchar *iv, // pointer to initialization vector
|
||||
size_t iv_len, // IV length in bytes (should == 12)
|
||||
const uchar *add, // pointer to additional AEAD data (NULL if none)
|
||||
size_t add_len); // length of additional AEAD data (bytes)
|
||||
|
||||
|
||||
/******************************************************************************
|
||||
*
|
||||
* GCM_UPDATE
|
||||
*
|
||||
* This is called once or more to process bulk plaintext or ciphertext data.
|
||||
* We give this some number of bytes of input and it returns the same number
|
||||
* of output bytes. If called multiple times (which is fine) all but the final
|
||||
* invocation MUST be called with length mod 16 == 0. (Only the final call can
|
||||
* have a partial block length of < 128 bits.)
|
||||
*
|
||||
******************************************************************************/
|
||||
int gcm_update(gcm_context *ctx, // pointer to user-provided GCM context
|
||||
size_t length, // length, in bytes, of data to process
|
||||
const uchar *input, // pointer to source data
|
||||
uchar *output); // pointer to destination data
|
||||
|
||||
|
||||
/******************************************************************************
|
||||
*
|
||||
* GCM_FINISH
|
||||
*
|
||||
* This is called once after all calls to GCM_UPDATE to finalize the GCM.
|
||||
* It performs the final GHASH to produce the resulting authentication TAG.
|
||||
*
|
||||
******************************************************************************/
|
||||
int gcm_finish(gcm_context *ctx, // pointer to user-provided GCM context
|
||||
uchar *tag, // ptr to tag buffer - NULL if tag_len = 0
|
||||
size_t tag_len); // length, in bytes, of the tag-receiving buf
|
||||
|
||||
|
||||
/******************************************************************************
|
||||
*
|
||||
* GCM_ZERO_CTX
|
||||
*
|
||||
* The GCM context contains both the GCM context and the AES context.
|
||||
* This includes keying and key-related material which is security-
|
||||
* sensitive, so it MUST be zeroed after use. This function does that.
|
||||
*
|
||||
******************************************************************************/
|
||||
void gcm_zero_ctx(gcm_context *ctx);
|
337
nfq/crypto/hkdf.c
Normal file
337
nfq/crypto/hkdf.c
Normal file
@@ -0,0 +1,337 @@
|
||||
/**************************** hkdf.c ***************************/
|
||||
/***************** See RFC 6234 for details. *******************/
|
||||
/* Copyright (c) 2011 IETF Trust and the persons identified as */
|
||||
/* authors of the code. All rights reserved. */
|
||||
/* See sha.h for terms of use and redistribution. */
|
||||
|
||||
/*
|
||||
* Description:
|
||||
* This file implements the HKDF algorithm (HMAC-based
|
||||
* Extract-and-Expand Key Derivation Function, RFC 5869),
|
||||
* expressed in terms of the various SHA algorithms.
|
||||
*/
|
||||
|
||||
#include "sha.h"
|
||||
#include <string.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
/*
|
||||
* hkdf
|
||||
*
|
||||
* Description:
|
||||
* This function will generate keying material using HKDF.
|
||||
*
|
||||
* Parameters:
|
||||
* whichSha: [in]
|
||||
* One of SHA1, SHA224, SHA256, SHA384, SHA512
|
||||
* salt[ ]: [in]
|
||||
* The optional salt value (a non-secret random value);
|
||||
* if not provided (salt == NULL), it is set internally
|
||||
* to a string of HashLen(whichSha) zeros.
|
||||
* salt_len: [in]
|
||||
* The length of the salt value. (Ignored if salt == NULL.)
|
||||
* ikm[ ]: [in]
|
||||
* Input keying material.
|
||||
* ikm_len: [in]
|
||||
* The length of the input keying material.
|
||||
* info[ ]: [in]
|
||||
* The optional context and application specific information.
|
||||
* If info == NULL or a zero-length string, it is ignored.
|
||||
* info_len: [in]
|
||||
* The length of the optional context and application specific
|
||||
* information. (Ignored if info == NULL.)
|
||||
* okm[ ]: [out]
|
||||
* Where the HKDF is to be stored.
|
||||
* okm_len: [in]
|
||||
* The length of the buffer to hold okm.
|
||||
* okm_len must be <= 255 * USHABlockSize(whichSha)
|
||||
*
|
||||
* Notes:
|
||||
* Calls hkdfExtract() and hkdfExpand().
|
||||
*
|
||||
* Returns:
|
||||
* sha Error Code.
|
||||
*
|
||||
*/
|
||||
int hkdf(SHAversion whichSha,
|
||||
const unsigned char *salt, size_t salt_len,
|
||||
const unsigned char *ikm, size_t ikm_len,
|
||||
const unsigned char *info, size_t info_len,
|
||||
uint8_t okm[], size_t okm_len)
|
||||
{
|
||||
uint8_t prk[USHAMaxHashSize];
|
||||
return hkdfExtract(whichSha, salt, salt_len, ikm, ikm_len, prk) ||
|
||||
hkdfExpand(whichSha, prk, USHAHashSize(whichSha), info,
|
||||
info_len, okm, okm_len);
|
||||
}
|
||||
|
||||
/*
|
||||
* hkdfExtract
|
||||
*
|
||||
* Description:
|
||||
* This function will perform HKDF extraction.
|
||||
*
|
||||
* Parameters:
|
||||
* whichSha: [in]
|
||||
* One of SHA1, SHA224, SHA256, SHA384, SHA512
|
||||
* salt[ ]: [in]
|
||||
* The optional salt value (a non-secret random value);
|
||||
* if not provided (salt == NULL), it is set internally
|
||||
* to a string of HashLen(whichSha) zeros.
|
||||
* salt_len: [in]
|
||||
* The length of the salt value. (Ignored if salt == NULL.)
|
||||
* ikm[ ]: [in]
|
||||
* Input keying material.
|
||||
* ikm_len: [in]
|
||||
* The length of the input keying material.
|
||||
* prk[ ]: [out]
|
||||
* Array where the HKDF extraction is to be stored.
|
||||
* Must be larger than USHAHashSize(whichSha);
|
||||
*
|
||||
* Returns:
|
||||
* sha Error Code.
|
||||
*
|
||||
*/
|
||||
int hkdfExtract(SHAversion whichSha,
|
||||
const unsigned char *salt, size_t salt_len,
|
||||
const unsigned char *ikm, size_t ikm_len,
|
||||
uint8_t prk[USHAMaxHashSize])
|
||||
{
|
||||
unsigned char nullSalt[USHAMaxHashSize];
|
||||
if (salt == 0) {
|
||||
salt = nullSalt;
|
||||
salt_len = USHAHashSize(whichSha);
|
||||
memset(nullSalt, '\0', salt_len);
|
||||
}
|
||||
else if (salt_len < 0) {
|
||||
return shaBadParam;
|
||||
}
|
||||
return hmac(whichSha, ikm, ikm_len, salt, salt_len, prk);
|
||||
}
|
||||
|
||||
/*
|
||||
* hkdfExpand
|
||||
*
|
||||
* Description:
|
||||
* This function will perform HKDF expansion.
|
||||
*
|
||||
* Parameters:
|
||||
* whichSha: [in]
|
||||
* One of SHA1, SHA224, SHA256, SHA384, SHA512
|
||||
* prk[ ]: [in]
|
||||
* The pseudo-random key to be expanded; either obtained
|
||||
* directly from a cryptographically strong, uniformly
|
||||
* distributed pseudo-random number generator, or as the
|
||||
* output from hkdfExtract().
|
||||
* prk_len: [in]
|
||||
* The length of the pseudo-random key in prk;
|
||||
* should at least be equal to USHAHashSize(whichSHA).
|
||||
* info[ ]: [in]
|
||||
* The optional context and application specific information.
|
||||
* If info == NULL or a zero-length string, it is ignored.
|
||||
* info_len: [in]
|
||||
* The length of the optional context and application specific
|
||||
* information. (Ignored if info == NULL.)
|
||||
* okm[ ]: [out]
|
||||
* Where the HKDF is to be stored.
|
||||
* okm_len: [in]
|
||||
* The length of the buffer to hold okm.
|
||||
* okm_len must be <= 255 * USHABlockSize(whichSha)
|
||||
*
|
||||
* Returns:
|
||||
* sha Error Code.
|
||||
*
|
||||
*/
|
||||
int hkdfExpand(SHAversion whichSha, const uint8_t prk[], size_t prk_len,
|
||||
const unsigned char *info, size_t info_len,
|
||||
uint8_t okm[], size_t okm_len)
|
||||
{
|
||||
size_t hash_len, N;
|
||||
unsigned char T[USHAMaxHashSize];
|
||||
size_t Tlen, where, i;
|
||||
|
||||
if (info == 0) {
|
||||
info = (const unsigned char *)"";
|
||||
info_len = 0;
|
||||
}
|
||||
else if (info_len < 0) {
|
||||
return shaBadParam;
|
||||
}
|
||||
if (okm_len <= 0) return shaBadParam;
|
||||
if (!okm) return shaBadParam;
|
||||
|
||||
hash_len = USHAHashSize(whichSha);
|
||||
if (prk_len < hash_len) return shaBadParam;
|
||||
N = okm_len / hash_len;
|
||||
if ((okm_len % hash_len) != 0) N++;
|
||||
if (N > 255) return shaBadParam;
|
||||
|
||||
Tlen = 0;
|
||||
where = 0;
|
||||
for (i = 1; i <= N; i++) {
|
||||
HMACContext context;
|
||||
unsigned char c = i;
|
||||
int ret = hmacReset(&context, whichSha, prk, prk_len) ||
|
||||
hmacInput(&context, T, Tlen) ||
|
||||
hmacInput(&context, info, info_len) ||
|
||||
hmacInput(&context, &c, 1) ||
|
||||
hmacResult(&context, T);
|
||||
if (ret != shaSuccess) return ret;
|
||||
memcpy(okm + where, T,
|
||||
(i != N) ? hash_len : (okm_len - where));
|
||||
where += hash_len;
|
||||
Tlen = hash_len;
|
||||
}
|
||||
return shaSuccess;
|
||||
}
|
||||
|
||||
/*
|
||||
* hkdfReset
|
||||
*
|
||||
* Description:
|
||||
* This function will initialize the hkdfContext in preparation
|
||||
* for key derivation using the modular HKDF interface for
|
||||
* arbitrary length inputs.
|
||||
*
|
||||
* Parameters:
|
||||
* context: [in/out]
|
||||
* The context to reset.
|
||||
* whichSha: [in]
|
||||
* One of SHA1, SHA224, SHA256, SHA384, SHA512
|
||||
* salt[ ]: [in]
|
||||
* The optional salt value (a non-secret random value);
|
||||
* if not provided (salt == NULL), it is set internally
|
||||
* to a string of HashLen(whichSha) zeros.
|
||||
* salt_len: [in]
|
||||
* The length of the salt value. (Ignored if salt == NULL.)
|
||||
*
|
||||
* Returns:
|
||||
* sha Error Code.
|
||||
*
|
||||
*/
|
||||
int hkdfReset(HKDFContext *context, enum SHAversion whichSha,
|
||||
const unsigned char *salt, size_t salt_len)
|
||||
{
|
||||
unsigned char nullSalt[USHAMaxHashSize];
|
||||
if (!context) return shaNull;
|
||||
|
||||
context->whichSha = whichSha;
|
||||
context->hashSize = USHAHashSize(whichSha);
|
||||
if (salt == 0) {
|
||||
salt = nullSalt;
|
||||
salt_len = context->hashSize;
|
||||
memset(nullSalt, '\0', salt_len);
|
||||
}
|
||||
|
||||
return hmacReset(&context->hmacContext, whichSha, salt, salt_len);
|
||||
}
|
||||
|
||||
/*
|
||||
* hkdfInput
|
||||
*
|
||||
* Description:
|
||||
* This function accepts an array of octets as the next portion
|
||||
* of the input keying material. It may be called multiple times.
|
||||
*
|
||||
* Parameters:
|
||||
* context: [in/out]
|
||||
* The HKDF context to update.
|
||||
* ikm[ ]: [in]
|
||||
* An array of octets representing the next portion of
|
||||
* the input keying material.
|
||||
* ikm_len: [in]
|
||||
* The length of ikm.
|
||||
*
|
||||
* Returns:
|
||||
* sha Error Code.
|
||||
*
|
||||
*/
|
||||
int hkdfInput(HKDFContext *context, const unsigned char *ikm,
|
||||
size_t ikm_len)
|
||||
{
|
||||
if (!context) return shaNull;
|
||||
if (context->Corrupted) return context->Corrupted;
|
||||
if (context->Computed) return context->Corrupted = shaStateError;
|
||||
return hmacInput(&context->hmacContext, ikm, ikm_len);
|
||||
}
|
||||
|
||||
/*
|
||||
* hkdfFinalBits
|
||||
*
|
||||
* Description:
|
||||
* This function will add in any final bits of the
|
||||
* input keying material.
|
||||
*
|
||||
* Parameters:
|
||||
* context: [in/out]
|
||||
* The HKDF context to update
|
||||
* ikm_bits: [in]
|
||||
* The final bits of the input keying material, in the upper
|
||||
* portion of the byte. (Use 0b###00000 instead of 0b00000###
|
||||
* to input the three bits ###.)
|
||||
* ikm_bit_count: [in]
|
||||
* The number of bits in message_bits, between 1 and 7.
|
||||
*
|
||||
* Returns:
|
||||
* sha Error Code.
|
||||
*/
|
||||
int hkdfFinalBits(HKDFContext *context, uint8_t ikm_bits,
|
||||
unsigned int ikm_bit_count)
|
||||
{
|
||||
if (!context) return shaNull;
|
||||
if (context->Corrupted) return context->Corrupted;
|
||||
if (context->Computed) return context->Corrupted = shaStateError;
|
||||
return hmacFinalBits(&context->hmacContext, ikm_bits, ikm_bit_count);
|
||||
}
|
||||
|
||||
/*
|
||||
* hkdfResult
|
||||
*
|
||||
* Description:
|
||||
* This function will finish the HKDF extraction and perform the
|
||||
* final HKDF expansion.
|
||||
*
|
||||
* Parameters:
|
||||
* context: [in/out]
|
||||
* The HKDF context to use to calculate the HKDF hash.
|
||||
* prk[ ]: [out]
|
||||
* An optional location to store the HKDF extraction.
|
||||
* Either NULL, or pointer to a buffer that must be
|
||||
* larger than USHAHashSize(whichSha);
|
||||
* info[ ]: [in]
|
||||
* The optional context and application specific information.
|
||||
* If info == NULL or a zero-length string, it is ignored.
|
||||
* info_len: [in]
|
||||
* The length of the optional context and application specific
|
||||
* information. (Ignored if info == NULL.)
|
||||
* okm[ ]: [out]
|
||||
* Where the HKDF is to be stored.
|
||||
* okm_len: [in]
|
||||
* The length of the buffer to hold okm.
|
||||
* okm_len must be <= 255 * USHABlockSize(whichSha)
|
||||
*
|
||||
* Returns:
|
||||
* sha Error Code.
|
||||
*
|
||||
*/
|
||||
int hkdfResult(HKDFContext *context,
|
||||
uint8_t prk[USHAMaxHashSize],
|
||||
const unsigned char *info, size_t info_len,
|
||||
uint8_t okm[], size_t okm_len)
|
||||
{
|
||||
uint8_t prkbuf[USHAMaxHashSize];
|
||||
int ret;
|
||||
|
||||
if (!context) return shaNull;
|
||||
if (context->Corrupted) return context->Corrupted;
|
||||
if (context->Computed) return context->Corrupted = shaStateError;
|
||||
if (!okm) return context->Corrupted = shaBadParam;
|
||||
if (!prk) prk = prkbuf;
|
||||
|
||||
ret = hmacResult(&context->hmacContext, prk) ||
|
||||
hkdfExpand(context->whichSha, prk, context->hashSize, info,
|
||||
info_len, okm, okm_len);
|
||||
context->Computed = 1;
|
||||
return context->Corrupted = ret;
|
||||
}
|
||||
|
250
nfq/crypto/hmac.c
Normal file
250
nfq/crypto/hmac.c
Normal file
@@ -0,0 +1,250 @@
|
||||
/**************************** hmac.c ***************************/
|
||||
/***************** See RFC 6234 for details. *******************/
|
||||
/* Copyright (c) 2011 IETF Trust and the persons identified as */
|
||||
/* authors of the code. All rights reserved. */
|
||||
/* See sha.h for terms of use and redistribution. */
|
||||
|
||||
/*
|
||||
* Description:
|
||||
* This file implements the HMAC algorithm (Keyed-Hashing for
|
||||
* Message Authentication, [RFC 2104]), expressed in terms of
|
||||
* the various SHA algorithms.
|
||||
*/
|
||||
|
||||
#include "sha.h"
|
||||
#include <stddef.h>
|
||||
|
||||
/*
|
||||
* hmac
|
||||
*
|
||||
* Description:
|
||||
* This function will compute an HMAC message digest.
|
||||
*
|
||||
* Parameters:
|
||||
* whichSha: [in]
|
||||
* One of SHA1, SHA224, SHA256, SHA384, SHA512
|
||||
* message_array[ ]: [in]
|
||||
* An array of octets representing the message.
|
||||
* Note: in RFC 2104, this parameter is known
|
||||
* as 'text'.
|
||||
* length: [in]
|
||||
* The length of the message in message_array.
|
||||
* key[ ]: [in]
|
||||
* The secret shared key.
|
||||
* key_len: [in]
|
||||
* The length of the secret shared key.
|
||||
* digest[ ]: [out]
|
||||
* Where the digest is to be returned.
|
||||
* NOTE: The length of the digest is determined by
|
||||
* the value of whichSha.
|
||||
*
|
||||
* Returns:
|
||||
* sha Error Code.
|
||||
*
|
||||
*/
|
||||
|
||||
int hmac(SHAversion whichSha,
|
||||
const unsigned char *message_array, size_t length,
|
||||
const unsigned char *key, size_t key_len,
|
||||
uint8_t digest[USHAMaxHashSize])
|
||||
{
|
||||
HMACContext context;
|
||||
return hmacReset(&context, whichSha, key, key_len) ||
|
||||
hmacInput(&context, message_array, length) ||
|
||||
hmacResult(&context, digest);
|
||||
}
|
||||
|
||||
/*
|
||||
* hmacReset
|
||||
*
|
||||
* Description:
|
||||
* This function will initialize the hmacContext in preparation
|
||||
* for computing a new HMAC message digest.
|
||||
*
|
||||
* Parameters:
|
||||
* context: [in/out]
|
||||
* The context to reset.
|
||||
* whichSha: [in]
|
||||
* One of SHA1, SHA224, SHA256, SHA384, SHA512
|
||||
* key[ ]: [in]
|
||||
* The secret shared key.
|
||||
* key_len: [in]
|
||||
* The length of the secret shared key.
|
||||
*
|
||||
* Returns:
|
||||
* sha Error Code.
|
||||
*
|
||||
*/
|
||||
int hmacReset(HMACContext *context, enum SHAversion whichSha,
|
||||
const unsigned char *key, size_t key_len)
|
||||
{
|
||||
size_t i, blocksize, hashsize;
|
||||
int ret;
|
||||
|
||||
/* inner padding - key XORd with ipad */
|
||||
unsigned char k_ipad[USHA_Max_Message_Block_Size];
|
||||
|
||||
/* temporary buffer when keylen > blocksize */
|
||||
unsigned char tempkey[USHAMaxHashSize];
|
||||
|
||||
if (!context) return shaNull;
|
||||
context->Computed = 0;
|
||||
context->Corrupted = shaSuccess;
|
||||
|
||||
blocksize = context->blockSize = USHABlockSize(whichSha);
|
||||
hashsize = context->hashSize = USHAHashSize(whichSha);
|
||||
context->whichSha = whichSha;
|
||||
|
||||
/*
|
||||
* If key is longer than the hash blocksize,
|
||||
* reset it to key = HASH(key).
|
||||
*/
|
||||
if (key_len > blocksize) {
|
||||
USHAContext tcontext;
|
||||
int err = USHAReset(&tcontext, whichSha) ||
|
||||
USHAInput(&tcontext, key, key_len) ||
|
||||
USHAResult(&tcontext, tempkey);
|
||||
if (err != shaSuccess) return err;
|
||||
|
||||
key = tempkey;
|
||||
key_len = hashsize;
|
||||
}
|
||||
|
||||
/*
|
||||
* The HMAC transform looks like:
|
||||
*
|
||||
* SHA(K XOR opad, SHA(K XOR ipad, text))
|
||||
*
|
||||
* where K is an n byte key, 0-padded to a total of blocksize bytes,
|
||||
* ipad is the byte 0x36 repeated blocksize times,
|
||||
* opad is the byte 0x5c repeated blocksize times,
|
||||
* and text is the data being protected.
|
||||
*/
|
||||
|
||||
/* store key into the pads, XOR'd with ipad and opad values */
|
||||
for (i = 0; i < key_len; i++) {
|
||||
k_ipad[i] = key[i] ^ 0x36;
|
||||
context->k_opad[i] = key[i] ^ 0x5c;
|
||||
}
|
||||
/* remaining pad bytes are '\0' XOR'd with ipad and opad values */
|
||||
for (; i < blocksize; i++) {
|
||||
k_ipad[i] = 0x36;
|
||||
context->k_opad[i] = 0x5c;
|
||||
}
|
||||
|
||||
/* perform inner hash */
|
||||
/* init context for 1st pass */
|
||||
ret = USHAReset(&context->shaContext, whichSha) ||
|
||||
/* and start with inner pad */
|
||||
USHAInput(&context->shaContext, k_ipad, blocksize);
|
||||
return context->Corrupted = ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* hmacInput
|
||||
*
|
||||
* Description:
|
||||
* This function accepts an array of octets as the next portion
|
||||
* of the message. It may be called multiple times.
|
||||
*
|
||||
* Parameters:
|
||||
* context: [in/out]
|
||||
* The HMAC context to update.
|
||||
* text[ ]: [in]
|
||||
* An array of octets representing the next portion of
|
||||
* the message.
|
||||
* text_len: [in]
|
||||
* The length of the message in text.
|
||||
*
|
||||
* Returns:
|
||||
* sha Error Code.
|
||||
*
|
||||
*/
|
||||
int hmacInput(HMACContext *context, const unsigned char *text,
|
||||
size_t text_len)
|
||||
{
|
||||
if (!context) return shaNull;
|
||||
if (context->Corrupted) return context->Corrupted;
|
||||
if (context->Computed) return context->Corrupted = shaStateError;
|
||||
/* then text of datagram */
|
||||
return context->Corrupted =
|
||||
USHAInput(&context->shaContext, text, text_len);
|
||||
}
|
||||
|
||||
/*
|
||||
* hmacFinalBits
|
||||
*
|
||||
* Description:
|
||||
* This function will add in any final bits of the message.
|
||||
*
|
||||
* Parameters:
|
||||
* context: [in/out]
|
||||
* The HMAC context to update.
|
||||
* message_bits: [in]
|
||||
* The final bits of the message, in the upper portion of the
|
||||
* byte. (Use 0b###00000 instead of 0b00000### to input the
|
||||
* three bits ###.)
|
||||
* length: [in]
|
||||
* The number of bits in message_bits, between 1 and 7.
|
||||
*
|
||||
* Returns:
|
||||
* sha Error Code.
|
||||
*/
|
||||
int hmacFinalBits(HMACContext *context,
|
||||
uint8_t bits, unsigned int bit_count)
|
||||
{
|
||||
if (!context) return shaNull;
|
||||
if (context->Corrupted) return context->Corrupted;
|
||||
if (context->Computed) return context->Corrupted = shaStateError;
|
||||
/* then final bits of datagram */
|
||||
return context->Corrupted =
|
||||
USHAFinalBits(&context->shaContext, bits, bit_count);
|
||||
}
|
||||
|
||||
/*
|
||||
* hmacResult
|
||||
*
|
||||
* Description:
|
||||
* This function will return the N-byte message digest into the
|
||||
* Message_Digest array provided by the caller.
|
||||
*
|
||||
* Parameters:
|
||||
* context: [in/out]
|
||||
* The context to use to calculate the HMAC hash.
|
||||
* digest[ ]: [out]
|
||||
* Where the digest is returned.
|
||||
* NOTE 2: The length of the hash is determined by the value of
|
||||
* whichSha that was passed to hmacReset().
|
||||
*
|
||||
* Returns:
|
||||
* sha Error Code.
|
||||
*
|
||||
*/
|
||||
int hmacResult(HMACContext *context, uint8_t *digest)
|
||||
{
|
||||
int ret;
|
||||
if (!context) return shaNull;
|
||||
if (context->Corrupted) return context->Corrupted;
|
||||
if (context->Computed) return context->Corrupted = shaStateError;
|
||||
|
||||
/* finish up 1st pass */
|
||||
/* (Use digest here as a temporary buffer.) */
|
||||
ret =
|
||||
USHAResult(&context->shaContext, digest) ||
|
||||
|
||||
/* perform outer SHA */
|
||||
/* init context for 2nd pass */
|
||||
USHAReset(&context->shaContext, context->whichSha) ||
|
||||
|
||||
/* start with outer pad */
|
||||
USHAInput(&context->shaContext, context->k_opad,
|
||||
context->blockSize) ||
|
||||
|
||||
/* then results of 1st hash */
|
||||
USHAInput(&context->shaContext, digest, context->hashSize) ||
|
||||
/* finish up 2nd pass */
|
||||
USHAResult(&context->shaContext, digest);
|
||||
|
||||
context->Computed = 1;
|
||||
return context->Corrupted = ret;
|
||||
}
|
25
nfq/crypto/sha-private.h
Normal file
25
nfq/crypto/sha-private.h
Normal file
@@ -0,0 +1,25 @@
|
||||
/************************ sha-private.h ************************/
|
||||
/***************** See RFC 6234 for details. *******************/
|
||||
#pragma once
|
||||
/*
|
||||
* These definitions are defined in FIPS 180-3, section 4.1.
|
||||
* Ch() and Maj() are defined identically in sections 4.1.1,
|
||||
* 4.1.2, and 4.1.3.
|
||||
*
|
||||
* The definitions used in FIPS 180-3 are as follows:
|
||||
*/
|
||||
|
||||
#ifndef USE_MODIFIED_MACROS
|
||||
#define SHA_Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
|
||||
#define SHA_Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
|
||||
#else /* USE_MODIFIED_MACROS */
|
||||
/*
|
||||
* The following definitions are equivalent and potentially faster.
|
||||
*/
|
||||
|
||||
#define SHA_Ch(x, y, z) (((x) & ((y) ^ (z))) ^ (z))
|
||||
#define SHA_Maj(x, y, z) (((x) & ((y) | (z))) | ((y) & (z)))
|
||||
|
||||
#endif /* USE_MODIFIED_MACROS */
|
||||
|
||||
#define SHA_Parity(x, y, z) ((x) ^ (y) ^ (z))
|
244
nfq/crypto/sha.h
Normal file
244
nfq/crypto/sha.h
Normal file
@@ -0,0 +1,244 @@
|
||||
#pragma once
|
||||
|
||||
/*
|
||||
* Description:
|
||||
* This file implements the Secure Hash Algorithms
|
||||
* as defined in the U.S. National Institute of Standards
|
||||
* and Technology Federal Information Processing Standards
|
||||
* Publication (FIPS PUB) 180-3 published in October 2008
|
||||
* and formerly defined in its predecessors, FIPS PUB 180-1
|
||||
* and FIP PUB 180-2.
|
||||
*
|
||||
* A combined document showing all algorithms is available at
|
||||
* http://csrc.nist.gov/publications/fips/
|
||||
* fips180-3/fips180-3_final.pdf
|
||||
*
|
||||
* The five hashes are defined in these sizes:
|
||||
* SHA-1 20 byte / 160 bit
|
||||
* SHA-224 28 byte / 224 bit
|
||||
* SHA-256 32 byte / 256 bit
|
||||
* SHA-384 48 byte / 384 bit
|
||||
* SHA-512 64 byte / 512 bit
|
||||
*
|
||||
* Compilation Note:
|
||||
* These files may be compiled with two options:
|
||||
* USE_32BIT_ONLY - use 32-bit arithmetic only, for systems
|
||||
* without 64-bit integers
|
||||
*
|
||||
* USE_MODIFIED_MACROS - use alternate form of the SHA_Ch()
|
||||
* and SHA_Maj() macros that are equivalent
|
||||
* and potentially faster on many systems
|
||||
*
|
||||
*/
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stddef.h>
|
||||
|
||||
/*
|
||||
* If you do not have the ISO standard stdint.h header file, then you
|
||||
* must typedef the following:
|
||||
* name meaning
|
||||
* uint64_t unsigned 64-bit integer
|
||||
* uint32_t unsigned 32-bit integer
|
||||
* uint8_t unsigned 8-bit integer (i.e., unsigned char)
|
||||
* int_least16_t integer of >= 16 bits
|
||||
*
|
||||
* See stdint-example.h
|
||||
*/
|
||||
|
||||
#ifndef _SHA_enum_
|
||||
#define _SHA_enum_
|
||||
/*
|
||||
* All SHA functions return one of these values.
|
||||
*/
|
||||
enum {
|
||||
shaSuccess = 0,
|
||||
shaNull, /* Null pointer parameter */
|
||||
shaInputTooLong, /* input data too long */
|
||||
shaStateError, /* called Input after FinalBits or Result */
|
||||
shaBadParam /* passed a bad parameter */
|
||||
};
|
||||
#endif /* _SHA_enum_ */
|
||||
|
||||
/*
|
||||
* These constants hold size information for each of the SHA
|
||||
* hashing operations
|
||||
*/
|
||||
enum {
|
||||
SHA1_Message_Block_Size = 64, SHA224_Message_Block_Size = 64,
|
||||
SHA256_Message_Block_Size = 64,
|
||||
USHA_Max_Message_Block_Size = SHA256_Message_Block_Size,
|
||||
|
||||
SHA1HashSize = 20, SHA224HashSize = 28, SHA256HashSize = 32,
|
||||
USHAMaxHashSize = SHA256HashSize,
|
||||
|
||||
SHA1HashSizeBits = 160, SHA224HashSizeBits = 224,
|
||||
SHA256HashSizeBits = 256, USHAMaxHashSizeBits = SHA256HashSizeBits
|
||||
};
|
||||
|
||||
/*
|
||||
* These constants are used in the USHA (Unified SHA) functions.
|
||||
*/
|
||||
typedef enum SHAversion {
|
||||
SHA224, SHA256
|
||||
} SHAversion;
|
||||
|
||||
/*
|
||||
* This structure will hold context information for the SHA-256
|
||||
* hashing operation.
|
||||
*/
|
||||
typedef struct SHA256Context {
|
||||
uint32_t Intermediate_Hash[SHA256HashSize/4]; /* Message Digest */
|
||||
|
||||
uint32_t Length_High; /* Message length in bits */
|
||||
uint32_t Length_Low; /* Message length in bits */
|
||||
|
||||
int_least16_t Message_Block_Index; /* Message_Block array index */
|
||||
/* 512-bit message blocks */
|
||||
uint8_t Message_Block[SHA256_Message_Block_Size];
|
||||
|
||||
int Computed; /* Is the hash computed? */
|
||||
int Corrupted; /* Cumulative corruption code */
|
||||
} SHA256Context;
|
||||
|
||||
/*
|
||||
* This structure will hold context information for the SHA-224
|
||||
* hashing operation. It uses the SHA-256 structure for computation.
|
||||
*/
|
||||
typedef struct SHA256Context SHA224Context;
|
||||
|
||||
/*
|
||||
* This structure holds context information for all SHA
|
||||
* hashing operations.
|
||||
*/
|
||||
typedef struct USHAContext {
|
||||
int whichSha; /* which SHA is being used */
|
||||
union {
|
||||
SHA224Context sha224Context; SHA256Context sha256Context;
|
||||
} ctx;
|
||||
|
||||
} USHAContext;
|
||||
|
||||
/*
|
||||
* This structure will hold context information for the HMAC
|
||||
* keyed-hashing operation.
|
||||
*/
|
||||
typedef struct HMACContext {
|
||||
int whichSha; /* which SHA is being used */
|
||||
int hashSize; /* hash size of SHA being used */
|
||||
int blockSize; /* block size of SHA being used */
|
||||
USHAContext shaContext; /* SHA context */
|
||||
unsigned char k_opad[USHA_Max_Message_Block_Size];
|
||||
/* outer padding - key XORd with opad */
|
||||
int Computed; /* Is the MAC computed? */
|
||||
int Corrupted; /* Cumulative corruption code */
|
||||
|
||||
} HMACContext;
|
||||
|
||||
/*
|
||||
* This structure will hold context information for the HKDF
|
||||
* extract-and-expand Key Derivation Functions.
|
||||
*/
|
||||
typedef struct HKDFContext {
|
||||
int whichSha; /* which SHA is being used */
|
||||
HMACContext hmacContext;
|
||||
int hashSize; /* hash size of SHA being used */
|
||||
unsigned char prk[USHAMaxHashSize];
|
||||
/* pseudo-random key - output of hkdfInput */
|
||||
int Computed; /* Is the key material computed? */
|
||||
int Corrupted; /* Cumulative corruption code */
|
||||
} HKDFContext;
|
||||
|
||||
/*
|
||||
* Function Prototypes
|
||||
*/
|
||||
|
||||
|
||||
/* SHA-224 */
|
||||
int SHA224Reset(SHA224Context *);
|
||||
int SHA224Input(SHA224Context *, const uint8_t *bytes,
|
||||
unsigned int bytecount);
|
||||
int SHA224FinalBits(SHA224Context *, uint8_t bits,
|
||||
unsigned int bit_count);
|
||||
int SHA224Result(SHA224Context *,
|
||||
uint8_t Message_Digest[SHA224HashSize]);
|
||||
|
||||
/* SHA-256 */
|
||||
int SHA256Reset(SHA256Context *);
|
||||
int SHA256Input(SHA256Context *, const uint8_t *bytes,
|
||||
unsigned int bytecount);
|
||||
int SHA256FinalBits(SHA256Context *, uint8_t bits,
|
||||
unsigned int bit_count);
|
||||
int SHA256Result(SHA256Context *,
|
||||
uint8_t Message_Digest[SHA256HashSize]);
|
||||
|
||||
/* Unified SHA functions, chosen by whichSha */
|
||||
int USHAReset(USHAContext *context, SHAversion whichSha);
|
||||
int USHAInput(USHAContext *context,
|
||||
const uint8_t *bytes, unsigned int bytecount);
|
||||
int USHAFinalBits(USHAContext *context,
|
||||
uint8_t bits, unsigned int bit_count);
|
||||
int USHAResult(USHAContext *context,
|
||||
uint8_t Message_Digest[USHAMaxHashSize]);
|
||||
int USHABlockSize(enum SHAversion whichSha);
|
||||
int USHAHashSize(enum SHAversion whichSha);
|
||||
|
||||
/*
|
||||
* HMAC Keyed-Hashing for Message Authentication, RFC 2104,
|
||||
* for all SHAs.
|
||||
* This interface allows a fixed-length text input to be used.
|
||||
*/
|
||||
int hmac(SHAversion whichSha, /* which SHA algorithm to use */
|
||||
const unsigned char *text, /* pointer to data stream */
|
||||
size_t text_len, /* length of data stream */
|
||||
const unsigned char *key, /* pointer to authentication key */
|
||||
size_t key_len, /* length of authentication key */
|
||||
uint8_t digest[USHAMaxHashSize]); /* caller digest to fill in */
|
||||
|
||||
/*
|
||||
* HMAC Keyed-Hashing for Message Authentication, RFC 2104,
|
||||
* for all SHAs.
|
||||
* This interface allows any length of text input to be used.
|
||||
*/
|
||||
int hmacReset(HMACContext *context, enum SHAversion whichSha,
|
||||
const unsigned char *key, size_t key_len);
|
||||
int hmacInput(HMACContext *context, const unsigned char *text,
|
||||
size_t text_len);
|
||||
int hmacFinalBits(HMACContext *context, uint8_t bits,
|
||||
unsigned int bit_count);
|
||||
int hmacResult(HMACContext *context,
|
||||
uint8_t digest[USHAMaxHashSize]);
|
||||
|
||||
|
||||
/*
|
||||
* HKDF HMAC-based Extract-and-Expand Key Derivation Function,
|
||||
* RFC 5869, for all SHAs.
|
||||
*/
|
||||
int hkdf(SHAversion whichSha,
|
||||
const unsigned char *salt, size_t salt_len,
|
||||
const unsigned char *ikm, size_t ikm_len,
|
||||
const unsigned char *info, size_t info_len,
|
||||
uint8_t okm[ ], size_t okm_len);
|
||||
|
||||
int hkdfExtract(SHAversion whichSha, const unsigned char *salt,
|
||||
size_t salt_len, const unsigned char *ikm,
|
||||
size_t ikm_len, uint8_t prk[USHAMaxHashSize]);
|
||||
int hkdfExpand(SHAversion whichSha, const uint8_t prk[ ],
|
||||
size_t prk_len, const unsigned char *info,
|
||||
size_t info_len, uint8_t okm[ ], size_t okm_len);
|
||||
|
||||
/*
|
||||
* HKDF HMAC-based Extract-and-Expand Key Derivation Function,
|
||||
* RFC 5869, for all SHAs.
|
||||
* This interface allows any length of text input to be used.
|
||||
*/
|
||||
int hkdfReset(HKDFContext *context, enum SHAversion whichSha,
|
||||
const unsigned char *salt, size_t salt_len);
|
||||
int hkdfInput(HKDFContext *context, const unsigned char *ikm,
|
||||
size_t ikm_len);
|
||||
int hkdfFinalBits(HKDFContext *context, uint8_t ikm_bits,
|
||||
unsigned int ikm_bit_count);
|
||||
int hkdfResult(HKDFContext *context,
|
||||
uint8_t prk[USHAMaxHashSize],
|
||||
const unsigned char *info, size_t info_len,
|
||||
uint8_t okm[USHAMaxHashSize], size_t okm_len);
|
581
nfq/crypto/sha224-256.c
Normal file
581
nfq/crypto/sha224-256.c
Normal file
@@ -0,0 +1,581 @@
|
||||
/************************* sha224-256.c ************************/
|
||||
/***************** See RFC 6234 for details. *******************/
|
||||
/* Copyright (c) 2011 IETF Trust and the persons identified as */
|
||||
/* authors of the code. All rights reserved. */
|
||||
/* See sha.h for terms of use and redistribution. */
|
||||
|
||||
/*
|
||||
* Description:
|
||||
* This file implements the Secure Hash Algorithms SHA-224 and
|
||||
* SHA-256 as defined in the U.S. National Institute of Standards
|
||||
* and Technology Federal Information Processing Standards
|
||||
* Publication (FIPS PUB) 180-3 published in October 2008
|
||||
* and formerly defined in its predecessors, FIPS PUB 180-1
|
||||
* and FIP PUB 180-2.
|
||||
*
|
||||
* A combined document showing all algorithms is available at
|
||||
* http://csrc.nist.gov/publications/fips/
|
||||
* fips180-3/fips180-3_final.pdf
|
||||
*
|
||||
* The SHA-224 and SHA-256 algorithms produce 224-bit and 256-bit
|
||||
* message digests for a given data stream. It should take about
|
||||
* 2**n steps to find a message with the same digest as a given
|
||||
* message and 2**(n/2) to find any two messages with the same
|
||||
* digest, when n is the digest size in bits. Therefore, this
|
||||
* algorithm can serve as a means of providing a
|
||||
* "fingerprint" for a message.
|
||||
*
|
||||
* Portability Issues:
|
||||
* SHA-224 and SHA-256 are defined in terms of 32-bit "words".
|
||||
* This code uses <stdint.h> (included via "sha.h") to define 32-
|
||||
* and 8-bit unsigned integer types. If your C compiler does not
|
||||
* support 32-bit unsigned integers, this code is not
|
||||
* appropriate.
|
||||
*
|
||||
* Caveats:
|
||||
* SHA-224 and SHA-256 are designed to work with messages less
|
||||
* than 2^64 bits long. This implementation uses SHA224/256Input()
|
||||
* to hash the bits that are a multiple of the size of an 8-bit
|
||||
* octet, and then optionally uses SHA224/256FinalBits()
|
||||
* to hash the final few bits of the input.
|
||||
*/
|
||||
|
||||
#include "sha.h"
|
||||
#include "sha-private.h"
|
||||
|
||||
/* Define the SHA shift, rotate left, and rotate right macros */
|
||||
#define SHA256_SHR(bits,word) ((word) >> (bits))
|
||||
#define SHA256_ROTL(bits,word) \
|
||||
(((word) << (bits)) | ((word) >> (32-(bits))))
|
||||
#define SHA256_ROTR(bits,word) \
|
||||
(((word) >> (bits)) | ((word) << (32-(bits))))
|
||||
|
||||
/* Define the SHA SIGMA and sigma macros */
|
||||
#define SHA256_SIGMA0(word) \
|
||||
(SHA256_ROTR( 2,word) ^ SHA256_ROTR(13,word) ^ SHA256_ROTR(22,word))
|
||||
#define SHA256_SIGMA1(word) \
|
||||
(SHA256_ROTR( 6,word) ^ SHA256_ROTR(11,word) ^ SHA256_ROTR(25,word))
|
||||
#define SHA256_sigma0(word) \
|
||||
(SHA256_ROTR( 7,word) ^ SHA256_ROTR(18,word) ^ SHA256_SHR( 3,word))
|
||||
#define SHA256_sigma1(word) \
|
||||
(SHA256_ROTR(17,word) ^ SHA256_ROTR(19,word) ^ SHA256_SHR(10,word))
|
||||
|
||||
/*
|
||||
* Add "length" to the length.
|
||||
* Set Corrupted when overflow has occurred.
|
||||
*/
|
||||
static uint32_t addTemp;
|
||||
#define SHA224_256AddLength(context, length) \
|
||||
(addTemp = (context)->Length_Low, (context)->Corrupted = \
|
||||
(((context)->Length_Low += (length)) < addTemp) && \
|
||||
(++(context)->Length_High == 0) ? shaInputTooLong : \
|
||||
(context)->Corrupted )
|
||||
|
||||
/* Local Function Prototypes */
|
||||
static int SHA224_256Reset(SHA256Context *context, uint32_t *H0);
|
||||
static void SHA224_256ProcessMessageBlock(SHA256Context *context);
|
||||
static void SHA224_256Finalize(SHA256Context *context,
|
||||
uint8_t Pad_Byte);
|
||||
static void SHA224_256PadMessage(SHA256Context *context,
|
||||
uint8_t Pad_Byte);
|
||||
static int SHA224_256ResultN(SHA256Context *context,
|
||||
uint8_t Message_Digest[ ], int HashSize);
|
||||
|
||||
/* Initial Hash Values: FIPS 180-3 section 5.3.2 */
|
||||
static uint32_t SHA224_H0[SHA256HashSize/4] = {
|
||||
0xC1059ED8, 0x367CD507, 0x3070DD17, 0xF70E5939,
|
||||
0xFFC00B31, 0x68581511, 0x64F98FA7, 0xBEFA4FA4
|
||||
};
|
||||
|
||||
/* Initial Hash Values: FIPS 180-3 section 5.3.3 */
|
||||
static uint32_t SHA256_H0[SHA256HashSize/4] = {
|
||||
0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A,
|
||||
0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19
|
||||
};
|
||||
|
||||
/*
|
||||
* SHA224Reset
|
||||
*
|
||||
* Description:
|
||||
* This function will initialize the SHA224Context in preparation
|
||||
* for computing a new SHA224 message digest.
|
||||
*
|
||||
* Parameters:
|
||||
* context: [in/out]
|
||||
* The context to reset.
|
||||
*
|
||||
* Returns:
|
||||
* sha Error Code.
|
||||
*/
|
||||
int SHA224Reset(SHA224Context *context)
|
||||
{
|
||||
return SHA224_256Reset(context, SHA224_H0);
|
||||
}
|
||||
|
||||
/*
|
||||
* SHA224Input
|
||||
*
|
||||
* Description:
|
||||
* This function accepts an array of octets as the next portion
|
||||
* of the message.
|
||||
*
|
||||
* Parameters:
|
||||
* context: [in/out]
|
||||
* The SHA context to update.
|
||||
* message_array[ ]: [in]
|
||||
* An array of octets representing the next portion of
|
||||
* the message.
|
||||
* length: [in]
|
||||
* The length of the message in message_array.
|
||||
*
|
||||
* Returns:
|
||||
* sha Error Code.
|
||||
*
|
||||
*/
|
||||
int SHA224Input(SHA224Context *context, const uint8_t *message_array,
|
||||
unsigned int length)
|
||||
{
|
||||
return SHA256Input(context, message_array, length);
|
||||
}
|
||||
|
||||
/*
|
||||
* SHA224FinalBits
|
||||
*
|
||||
* Description:
|
||||
* This function will add in any final bits of the message.
|
||||
*
|
||||
* Parameters:
|
||||
* context: [in/out]
|
||||
* The SHA context to update.
|
||||
* message_bits: [in]
|
||||
* The final bits of the message, in the upper portion of the
|
||||
* byte. (Use 0b###00000 instead of 0b00000### to input the
|
||||
* three bits ###.)
|
||||
* length: [in]
|
||||
* The number of bits in message_bits, between 1 and 7.
|
||||
*
|
||||
* Returns:
|
||||
* sha Error Code.
|
||||
*/
|
||||
int SHA224FinalBits(SHA224Context *context,
|
||||
uint8_t message_bits, unsigned int length)
|
||||
{
|
||||
return SHA256FinalBits(context, message_bits, length);
|
||||
}
|
||||
|
||||
/*
|
||||
* SHA224Result
|
||||
*
|
||||
* Description:
|
||||
* This function will return the 224-bit message digest
|
||||
* into the Message_Digest array provided by the caller.
|
||||
* NOTE:
|
||||
* The first octet of hash is stored in the element with index 0,
|
||||
* the last octet of hash in the element with index 27.
|
||||
*
|
||||
* Parameters:
|
||||
* context: [in/out]
|
||||
* The context to use to calculate the SHA hash.
|
||||
* Message_Digest[ ]: [out]
|
||||
* Where the digest is returned.
|
||||
*
|
||||
* Returns:
|
||||
* sha Error Code.
|
||||
*/
|
||||
int SHA224Result(SHA224Context *context,
|
||||
uint8_t Message_Digest[SHA224HashSize])
|
||||
{
|
||||
return SHA224_256ResultN(context, Message_Digest, SHA224HashSize);
|
||||
}
|
||||
|
||||
/*
|
||||
* SHA256Reset
|
||||
*
|
||||
* Description:
|
||||
* This function will initialize the SHA256Context in preparation
|
||||
* for computing a new SHA256 message digest.
|
||||
*
|
||||
* Parameters:
|
||||
* context: [in/out]
|
||||
* The context to reset.
|
||||
*
|
||||
* Returns:
|
||||
* sha Error Code.
|
||||
*/
|
||||
int SHA256Reset(SHA256Context *context)
|
||||
{
|
||||
return SHA224_256Reset(context, SHA256_H0);
|
||||
}
|
||||
|
||||
/*
|
||||
* SHA256Input
|
||||
*
|
||||
* Description:
|
||||
* This function accepts an array of octets as the next portion
|
||||
* of the message.
|
||||
*
|
||||
* Parameters:
|
||||
* context: [in/out]
|
||||
* The SHA context to update.
|
||||
* message_array[ ]: [in]
|
||||
* An array of octets representing the next portion of
|
||||
* the message.
|
||||
* length: [in]
|
||||
* The length of the message in message_array.
|
||||
*
|
||||
* Returns:
|
||||
* sha Error Code.
|
||||
*/
|
||||
int SHA256Input(SHA256Context *context, const uint8_t *message_array,
|
||||
unsigned int length)
|
||||
{
|
||||
if (!context) return shaNull;
|
||||
if (!length) return shaSuccess;
|
||||
if (!message_array) return shaNull;
|
||||
if (context->Computed) return context->Corrupted = shaStateError;
|
||||
if (context->Corrupted) return context->Corrupted;
|
||||
|
||||
while (length--) {
|
||||
context->Message_Block[context->Message_Block_Index++] =
|
||||
*message_array;
|
||||
|
||||
if ((SHA224_256AddLength(context, 8) == shaSuccess) &&
|
||||
(context->Message_Block_Index == SHA256_Message_Block_Size))
|
||||
SHA224_256ProcessMessageBlock(context);
|
||||
|
||||
message_array++;
|
||||
}
|
||||
|
||||
return context->Corrupted;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
* SHA256FinalBits
|
||||
*
|
||||
* Description:
|
||||
* This function will add in any final bits of the message.
|
||||
*
|
||||
* Parameters:
|
||||
* context: [in/out]
|
||||
* The SHA context to update.
|
||||
* message_bits: [in]
|
||||
* The final bits of the message, in the upper portion of the
|
||||
* byte. (Use 0b###00000 instead of 0b00000### to input the
|
||||
* three bits ###.)
|
||||
* length: [in]
|
||||
* The number of bits in message_bits, between 1 and 7.
|
||||
*
|
||||
* Returns:
|
||||
* sha Error Code.
|
||||
*/
|
||||
int SHA256FinalBits(SHA256Context *context,
|
||||
uint8_t message_bits, unsigned int length)
|
||||
{
|
||||
static uint8_t masks[8] = {
|
||||
/* 0 0b00000000 */ 0x00, /* 1 0b10000000 */ 0x80,
|
||||
/* 2 0b11000000 */ 0xC0, /* 3 0b11100000 */ 0xE0,
|
||||
/* 4 0b11110000 */ 0xF0, /* 5 0b11111000 */ 0xF8,
|
||||
/* 6 0b11111100 */ 0xFC, /* 7 0b11111110 */ 0xFE
|
||||
};
|
||||
static uint8_t markbit[8] = {
|
||||
/* 0 0b10000000 */ 0x80, /* 1 0b01000000 */ 0x40,
|
||||
/* 2 0b00100000 */ 0x20, /* 3 0b00010000 */ 0x10,
|
||||
/* 4 0b00001000 */ 0x08, /* 5 0b00000100 */ 0x04,
|
||||
/* 6 0b00000010 */ 0x02, /* 7 0b00000001 */ 0x01
|
||||
};
|
||||
|
||||
if (!context) return shaNull;
|
||||
if (!length) return shaSuccess;
|
||||
if (context->Corrupted) return context->Corrupted;
|
||||
if (context->Computed) return context->Corrupted = shaStateError;
|
||||
if (length >= 8) return context->Corrupted = shaBadParam;
|
||||
|
||||
SHA224_256AddLength(context, length);
|
||||
SHA224_256Finalize(context, (uint8_t)
|
||||
((message_bits & masks[length]) | markbit[length]));
|
||||
|
||||
return context->Corrupted;
|
||||
}
|
||||
|
||||
/*
|
||||
* SHA256Result
|
||||
*
|
||||
* Description:
|
||||
* This function will return the 256-bit message digest
|
||||
* into the Message_Digest array provided by the caller.
|
||||
* NOTE:
|
||||
* The first octet of hash is stored in the element with index 0,
|
||||
* the last octet of hash in the element with index 31.
|
||||
*
|
||||
* Parameters:
|
||||
* context: [in/out]
|
||||
* The context to use to calculate the SHA hash.
|
||||
* Message_Digest[ ]: [out]
|
||||
* Where the digest is returned.
|
||||
*
|
||||
* Returns:
|
||||
* sha Error Code.
|
||||
*/
|
||||
int SHA256Result(SHA256Context *context,
|
||||
uint8_t Message_Digest[SHA256HashSize])
|
||||
{
|
||||
return SHA224_256ResultN(context, Message_Digest, SHA256HashSize);
|
||||
}
|
||||
|
||||
/*
|
||||
* SHA224_256Reset
|
||||
*
|
||||
* Description:
|
||||
* This helper function will initialize the SHA256Context in
|
||||
* preparation for computing a new SHA-224 or SHA-256 message digest.
|
||||
*
|
||||
* Parameters:
|
||||
* context: [in/out]
|
||||
* The context to reset.
|
||||
* H0[ ]: [in]
|
||||
* The initial hash value array to use.
|
||||
*
|
||||
* Returns:
|
||||
* sha Error Code.
|
||||
*/
|
||||
static int SHA224_256Reset(SHA256Context *context, uint32_t *H0)
|
||||
{
|
||||
if (!context) return shaNull;
|
||||
|
||||
context->Length_High = context->Length_Low = 0;
|
||||
context->Message_Block_Index = 0;
|
||||
|
||||
context->Intermediate_Hash[0] = H0[0];
|
||||
context->Intermediate_Hash[1] = H0[1];
|
||||
context->Intermediate_Hash[2] = H0[2];
|
||||
context->Intermediate_Hash[3] = H0[3];
|
||||
context->Intermediate_Hash[4] = H0[4];
|
||||
context->Intermediate_Hash[5] = H0[5];
|
||||
context->Intermediate_Hash[6] = H0[6];
|
||||
context->Intermediate_Hash[7] = H0[7];
|
||||
|
||||
context->Computed = 0;
|
||||
context->Corrupted = shaSuccess;
|
||||
|
||||
return shaSuccess;
|
||||
}
|
||||
|
||||
/*
|
||||
* SHA224_256ProcessMessageBlock
|
||||
*
|
||||
* Description:
|
||||
* This helper function will process the next 512 bits of the
|
||||
* message stored in the Message_Block array.
|
||||
*
|
||||
* Parameters:
|
||||
* context: [in/out]
|
||||
* The SHA context to update.
|
||||
*
|
||||
* Returns:
|
||||
* Nothing.
|
||||
*
|
||||
* Comments:
|
||||
* Many of the variable names in this code, especially the
|
||||
* single character names, were used because those were the
|
||||
* names used in the Secure Hash Standard.
|
||||
*/
|
||||
static void SHA224_256ProcessMessageBlock(SHA256Context *context)
|
||||
{
|
||||
/* Constants defined in FIPS 180-3, section 4.2.2 */
|
||||
static const uint32_t K[64] = {
|
||||
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b,
|
||||
0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01,
|
||||
0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7,
|
||||
0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
|
||||
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152,
|
||||
0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147,
|
||||
0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc,
|
||||
0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
|
||||
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819,
|
||||
0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08,
|
||||
0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f,
|
||||
0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
|
||||
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
|
||||
};
|
||||
int t, t4; /* Loop counter */
|
||||
uint32_t temp1, temp2; /* Temporary word value */
|
||||
uint32_t W[64]; /* Word sequence */
|
||||
uint32_t A, B, C, D, E, F, G, H; /* Word buffers */
|
||||
|
||||
/*
|
||||
* Initialize the first 16 words in the array W
|
||||
*/
|
||||
for (t = t4 = 0; t < 16; t++, t4 += 4)
|
||||
W[t] = (((uint32_t)context->Message_Block[t4]) << 24) |
|
||||
(((uint32_t)context->Message_Block[t4 + 1]) << 16) |
|
||||
(((uint32_t)context->Message_Block[t4 + 2]) << 8) |
|
||||
(((uint32_t)context->Message_Block[t4 + 3]));
|
||||
for (t = 16; t < 64; t++)
|
||||
W[t] = SHA256_sigma1(W[t-2]) + W[t-7] +
|
||||
SHA256_sigma0(W[t-15]) + W[t-16];
|
||||
|
||||
A = context->Intermediate_Hash[0];
|
||||
B = context->Intermediate_Hash[1];
|
||||
C = context->Intermediate_Hash[2];
|
||||
D = context->Intermediate_Hash[3];
|
||||
E = context->Intermediate_Hash[4];
|
||||
F = context->Intermediate_Hash[5];
|
||||
G = context->Intermediate_Hash[6];
|
||||
H = context->Intermediate_Hash[7];
|
||||
|
||||
for (t = 0; t < 64; t++) {
|
||||
temp1 = H + SHA256_SIGMA1(E) + SHA_Ch(E,F,G) + K[t] + W[t];
|
||||
temp2 = SHA256_SIGMA0(A) + SHA_Maj(A,B,C);
|
||||
H = G;
|
||||
G = F;
|
||||
F = E;
|
||||
E = D + temp1;
|
||||
D = C;
|
||||
C = B;
|
||||
B = A;
|
||||
A = temp1 + temp2;
|
||||
}
|
||||
|
||||
context->Intermediate_Hash[0] += A;
|
||||
context->Intermediate_Hash[1] += B;
|
||||
context->Intermediate_Hash[2] += C;
|
||||
context->Intermediate_Hash[3] += D;
|
||||
context->Intermediate_Hash[4] += E;
|
||||
context->Intermediate_Hash[5] += F;
|
||||
context->Intermediate_Hash[6] += G;
|
||||
context->Intermediate_Hash[7] += H;
|
||||
|
||||
context->Message_Block_Index = 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* SHA224_256Finalize
|
||||
*
|
||||
* Description:
|
||||
* This helper function finishes off the digest calculations.
|
||||
*
|
||||
* Parameters:
|
||||
* context: [in/out]
|
||||
* The SHA context to update.
|
||||
* Pad_Byte: [in]
|
||||
* The last byte to add to the message block before the 0-padding
|
||||
* and length. This will contain the last bits of the message
|
||||
* followed by another single bit. If the message was an
|
||||
* exact multiple of 8-bits long, Pad_Byte will be 0x80.
|
||||
*
|
||||
* Returns:
|
||||
* sha Error Code.
|
||||
*/
|
||||
static void SHA224_256Finalize(SHA256Context *context,
|
||||
uint8_t Pad_Byte)
|
||||
{
|
||||
int i;
|
||||
SHA224_256PadMessage(context, Pad_Byte);
|
||||
/* message may be sensitive, so clear it out */
|
||||
for (i = 0; i < SHA256_Message_Block_Size; ++i)
|
||||
context->Message_Block[i] = 0;
|
||||
context->Length_High = 0; /* and clear length */
|
||||
context->Length_Low = 0;
|
||||
context->Computed = 1;
|
||||
}
|
||||
|
||||
/*
|
||||
* SHA224_256PadMessage
|
||||
*
|
||||
* Description:
|
||||
* According to the standard, the message must be padded to the next
|
||||
* even multiple of 512 bits. The first padding bit must be a '1'.
|
||||
* The last 64 bits represent the length of the original message.
|
||||
* All bits in between should be 0. This helper function will pad
|
||||
* the message according to those rules by filling the
|
||||
* Message_Block array accordingly. When it returns, it can be
|
||||
* assumed that the message digest has been computed.
|
||||
*
|
||||
* Parameters:
|
||||
* context: [in/out]
|
||||
* The context to pad.
|
||||
* Pad_Byte: [in]
|
||||
* The last byte to add to the message block before the 0-padding
|
||||
* and length. This will contain the last bits of the message
|
||||
* followed by another single bit. If the message was an
|
||||
* exact multiple of 8-bits long, Pad_Byte will be 0x80.
|
||||
*
|
||||
* Returns:
|
||||
* Nothing.
|
||||
*/
|
||||
static void SHA224_256PadMessage(SHA256Context *context,
|
||||
uint8_t Pad_Byte)
|
||||
{
|
||||
/*
|
||||
* Check to see if the current message block is too small to hold
|
||||
* the initial padding bits and length. If so, we will pad the
|
||||
* block, process it, and then continue padding into a second
|
||||
* block.
|
||||
*/
|
||||
if (context->Message_Block_Index >= (SHA256_Message_Block_Size-8)) {
|
||||
context->Message_Block[context->Message_Block_Index++] = Pad_Byte;
|
||||
while (context->Message_Block_Index < SHA256_Message_Block_Size)
|
||||
context->Message_Block[context->Message_Block_Index++] = 0;
|
||||
SHA224_256ProcessMessageBlock(context);
|
||||
} else
|
||||
context->Message_Block[context->Message_Block_Index++] = Pad_Byte;
|
||||
|
||||
while (context->Message_Block_Index < (SHA256_Message_Block_Size-8))
|
||||
context->Message_Block[context->Message_Block_Index++] = 0;
|
||||
|
||||
/*
|
||||
* Store the message length as the last 8 octets
|
||||
*/
|
||||
context->Message_Block[56] = (uint8_t)(context->Length_High >> 24);
|
||||
context->Message_Block[57] = (uint8_t)(context->Length_High >> 16);
|
||||
context->Message_Block[58] = (uint8_t)(context->Length_High >> 8);
|
||||
context->Message_Block[59] = (uint8_t)(context->Length_High);
|
||||
context->Message_Block[60] = (uint8_t)(context->Length_Low >> 24);
|
||||
context->Message_Block[61] = (uint8_t)(context->Length_Low >> 16);
|
||||
context->Message_Block[62] = (uint8_t)(context->Length_Low >> 8);
|
||||
context->Message_Block[63] = (uint8_t)(context->Length_Low);
|
||||
|
||||
SHA224_256ProcessMessageBlock(context);
|
||||
}
|
||||
|
||||
/*
|
||||
* SHA224_256ResultN
|
||||
*
|
||||
* Description:
|
||||
* This helper function will return the 224-bit or 256-bit message
|
||||
* digest into the Message_Digest array provided by the caller.
|
||||
* NOTE:
|
||||
* The first octet of hash is stored in the element with index 0,
|
||||
* the last octet of hash in the element with index 27/31.
|
||||
*
|
||||
* Parameters:
|
||||
* context: [in/out]
|
||||
* The context to use to calculate the SHA hash.
|
||||
* Message_Digest[ ]: [out]
|
||||
* Where the digest is returned.
|
||||
* HashSize: [in]
|
||||
* The size of the hash, either 28 or 32.
|
||||
*
|
||||
* Returns:
|
||||
* sha Error Code.
|
||||
*/
|
||||
static int SHA224_256ResultN(SHA256Context *context,
|
||||
uint8_t Message_Digest[ ], int HashSize)
|
||||
{
|
||||
int i;
|
||||
|
||||
if (!context) return shaNull;
|
||||
if (!Message_Digest) return shaNull;
|
||||
if (context->Corrupted) return context->Corrupted;
|
||||
|
||||
if (!context->Computed)
|
||||
SHA224_256Finalize(context, 0x80);
|
||||
|
||||
for (i = 0; i < HashSize; ++i)
|
||||
Message_Digest[i] = (uint8_t)
|
||||
(context->Intermediate_Hash[i>>2] >> 8 * ( 3 - ( i & 0x03 ) ));
|
||||
|
||||
return shaSuccess;
|
||||
}
|
||||
|
191
nfq/crypto/usha.c
Normal file
191
nfq/crypto/usha.c
Normal file
@@ -0,0 +1,191 @@
|
||||
/**************************** usha.c ***************************/
|
||||
/***************** See RFC 6234 for details. *******************/
|
||||
/* Copyright (c) 2011 IETF Trust and the persons identified as */
|
||||
/* authors of the code. All rights reserved. */
|
||||
/* See sha.h for terms of use and redistribution. */
|
||||
|
||||
/*
|
||||
* Description:
|
||||
* This file implements a unified interface to the SHA algorithms.
|
||||
*/
|
||||
|
||||
#include "sha.h"
|
||||
|
||||
/*
|
||||
* USHAReset
|
||||
*
|
||||
* Description:
|
||||
* This function will initialize the SHA Context in preparation
|
||||
* for computing a new SHA message digest.
|
||||
*
|
||||
* Parameters:
|
||||
* context: [in/out]
|
||||
* The context to reset.
|
||||
* whichSha: [in]
|
||||
* Selects which SHA reset to call
|
||||
*
|
||||
* Returns:
|
||||
* sha Error Code.
|
||||
*
|
||||
*/
|
||||
int USHAReset(USHAContext *context, enum SHAversion whichSha)
|
||||
{
|
||||
if (!context) return shaNull;
|
||||
context->whichSha = whichSha;
|
||||
switch (whichSha) {
|
||||
case SHA224: return SHA224Reset((SHA224Context*)&context->ctx);
|
||||
case SHA256: return SHA256Reset((SHA256Context*)&context->ctx);
|
||||
default: return shaBadParam;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* USHAInput
|
||||
*
|
||||
* Description:
|
||||
* This function accepts an array of octets as the next portion
|
||||
* of the message.
|
||||
*
|
||||
* Parameters:
|
||||
* context: [in/out]
|
||||
* The SHA context to update.
|
||||
* message_array: [in]
|
||||
* An array of octets representing the next portion of
|
||||
* the message.
|
||||
* length: [in]
|
||||
* The length of the message in message_array.
|
||||
*
|
||||
* Returns:
|
||||
* sha Error Code.
|
||||
*
|
||||
*/
|
||||
int USHAInput(USHAContext *context,
|
||||
const uint8_t *bytes, unsigned int bytecount)
|
||||
{
|
||||
if (!context) return shaNull;
|
||||
switch (context->whichSha) {
|
||||
case SHA224:
|
||||
return SHA224Input((SHA224Context*)&context->ctx, bytes,
|
||||
bytecount);
|
||||
case SHA256:
|
||||
return SHA256Input((SHA256Context*)&context->ctx, bytes,
|
||||
bytecount);
|
||||
default: return shaBadParam;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* USHAFinalBits
|
||||
*
|
||||
* Description:
|
||||
* This function will add in any final bits of the message.
|
||||
*
|
||||
* Parameters:
|
||||
* context: [in/out]
|
||||
* The SHA context to update.
|
||||
* message_bits: [in]
|
||||
* The final bits of the message, in the upper portion of the
|
||||
* byte. (Use 0b###00000 instead of 0b00000### to input the
|
||||
* three bits ###.)
|
||||
* length: [in]
|
||||
* The number of bits in message_bits, between 1 and 7.
|
||||
*
|
||||
* Returns:
|
||||
* sha Error Code.
|
||||
*/
|
||||
int USHAFinalBits(USHAContext *context,
|
||||
uint8_t bits, unsigned int bit_count)
|
||||
{
|
||||
if (!context) return shaNull;
|
||||
switch (context->whichSha) {
|
||||
case SHA224:
|
||||
return SHA224FinalBits((SHA224Context*)&context->ctx, bits,
|
||||
bit_count);
|
||||
case SHA256:
|
||||
return SHA256FinalBits((SHA256Context*)&context->ctx, bits,
|
||||
bit_count);
|
||||
default: return shaBadParam;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* USHAResult
|
||||
*
|
||||
* Description:
|
||||
* This function will return the message digest of the appropriate
|
||||
* bit size, as returned by USHAHashSizeBits(whichSHA) for the
|
||||
* 'whichSHA' value used in the preceeding call to USHAReset,
|
||||
* into the Message_Digest array provided by the caller.
|
||||
*
|
||||
* Parameters:
|
||||
* context: [in/out]
|
||||
* The context to use to calculate the SHA-1 hash.
|
||||
* Message_Digest: [out]
|
||||
* Where the digest is returned.
|
||||
*
|
||||
* Returns:
|
||||
* sha Error Code.
|
||||
*
|
||||
*/
|
||||
int USHAResult(USHAContext *context,
|
||||
uint8_t Message_Digest[USHAMaxHashSize])
|
||||
{
|
||||
if (!context) return shaNull;
|
||||
switch (context->whichSha) {
|
||||
case SHA224:
|
||||
return SHA224Result((SHA224Context*)&context->ctx,
|
||||
Message_Digest);
|
||||
case SHA256:
|
||||
return SHA256Result((SHA256Context*)&context->ctx,
|
||||
Message_Digest);
|
||||
default: return shaBadParam;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* USHABlockSize
|
||||
*
|
||||
* Description:
|
||||
* This function will return the blocksize for the given SHA
|
||||
* algorithm.
|
||||
*
|
||||
* Parameters:
|
||||
* whichSha:
|
||||
* which SHA algorithm to query
|
||||
*
|
||||
* Returns:
|
||||
* block size
|
||||
*
|
||||
*/
|
||||
int USHABlockSize(enum SHAversion whichSha)
|
||||
{
|
||||
switch (whichSha) {
|
||||
case SHA224: return SHA224_Message_Block_Size;
|
||||
default:
|
||||
case SHA256: return SHA256_Message_Block_Size;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* USHAHashSize
|
||||
*
|
||||
* Description:
|
||||
* This function will return the hashsize for the given SHA
|
||||
* algorithm.
|
||||
*
|
||||
* Parameters:
|
||||
* whichSha:
|
||||
* which SHA algorithm to query
|
||||
*
|
||||
* Returns:
|
||||
* hash size
|
||||
*
|
||||
*/
|
||||
int USHAHashSize(enum SHAversion whichSha)
|
||||
{
|
||||
switch (whichSha) {
|
||||
case SHA224: return SHA224HashSize;
|
||||
default:
|
||||
case SHA256: return SHA256HashSize;
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user