history purge

This commit is contained in:
bol-van
2021-03-04 14:30:38 +03:00
commit 3703918a4b
179 changed files with 22082 additions and 0 deletions

17
ip2net/Makefile Normal file
View File

@@ -0,0 +1,17 @@
CC ?= gcc
CFLAGS += -std=gnu99 -s -O3
CFLAGS_BSD = -Wno-address-of-packed-member -Wno-logical-op-parentheses -Wno-switch
LIBS =
SRC_FILES = *.c
all: ip2net
mac: bsd
ip2net: $(SRC_FILES)
$(CC) $(CFLAGS) -o $@ $(SRC_FILES) $(LDFLAGS) $(LIBS)
bsd: $(SRC_FILES)
$(CC) $(CFLAGS) $(CFLAGS_BSD) -o ip2net $(SRC_FILES) $(LDFLAGS) $(LIBS)
clean:
rm -f ip2net *.o

1
ip2net/ip2net Symbolic link
View File

@@ -0,0 +1 @@
../binaries/x86_64/ip2net

397
ip2net/ip2net.c Normal file
View File

@@ -0,0 +1,397 @@
// group ipv4/ipv6 list from stdout into subnets
// each line must contain either ip or ip/bitcount
// valid ip/bitcount and ip1-ip2 are passed through without modification
// ips are groupped into subnets
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <stdint.h>
#include <string.h>
#include <arpa/inet.h>
#include <netinet/in.h>
#include <sys/socket.h>
#include <getopt.h>
#include "qsort.h"
#define ALLOC_STEP 16384
// minimum subnet fill percent is PCTMULT/PCTDIV (for example 3/4)
#define DEFAULT_PCTMULT 3
#define DEFAULT_PCTDIV 4
// subnet search range in "zero bit count"
// means search start from /(32-ZCT_MAX) to /(32-ZCT_MIN)
#define DEFAULT_V4_ZCT_MAX 10 // /22
#define DEFAULT_V4_ZCT_MIN 2 // /30
#define DEFAULT_V6_ZCT_MAX 72 // /56
#define DEFAULT_V6_ZCT_MIN 64 // /64
// must be no less than N ipv6 in subnet
#define DEFAULT_V6_THRESHOLD 5
static int ucmp(const void * a, const void * b, void *arg)
{
if (*(uint32_t*)a < *(uint32_t*)b)
return -1;
else if (*(uint32_t*)a > *(uint32_t*)b)
return 1;
else
return 0;
}
static uint32_t mask_from_bitcount(uint32_t zct)
{
return ~((1 << zct) - 1);
}
// make presorted array unique. return number of unique items.
// 1,1,2,3,3,0,0,0 (ct=8) => 1,2,3,0 (ct=4)
static uint32_t unique(uint32_t *pu, uint32_t ct)
{
uint32_t i, j, u;
for (i = j = 0; j < ct; i++)
{
u = pu[j++];
for (; j < ct && pu[j] == u; j++);
pu[i] = u;
}
return i;
}
static int cmp6(const void * a, const void * b, void *arg)
{
for (uint8_t i = 0; i < sizeof(((struct in6_addr *)0)->s6_addr); i++)
{
if (((struct in6_addr *)a)->s6_addr[i] < ((struct in6_addr *)b)->s6_addr[i])
return -1;
else if (((struct in6_addr *)a)->s6_addr[i] > ((struct in6_addr *)b)->s6_addr[i])
return 1;
}
return 0;
}
// make presorted array unique. return number of unique items.
static uint32_t unique6(struct in6_addr *pu, uint32_t ct)
{
uint32_t i, j, k;
for (i = j = 0; j < ct; i++)
{
for (k = j++; j < ct && !memcmp(pu + j, pu + k, sizeof(struct in6_addr)); j++);
pu[i] = pu[k];
}
return i;
}
static void mask_from_bitcount6(uint32_t zct, struct in6_addr *a)
{
if (zct >= 128)
memset(a->s6_addr,0x00,16);
else
{
int32_t n = (127 - zct) >> 3;
memset(a->s6_addr,0xFF,n);
memset(a->s6_addr+n,0x00,16-n);
a->s6_addr[n] = ~((1 << (zct & 7)) - 1);
}
}
// result = a & b
static void ip6_and(const struct in6_addr *a, const struct in6_addr *b, struct in6_addr *result)
{
((uint64_t*)result->s6_addr)[0] = ((uint64_t*)a->s6_addr)[0] & ((uint64_t*)b->s6_addr)[0];
((uint64_t*)result->s6_addr)[1] = ((uint64_t*)a->s6_addr)[1] & ((uint64_t*)b->s6_addr)[1];
}
static void rtrim(char *s)
{
if (s)
for (char *p = s + strlen(s) - 1; p >= s && (*p == '\n' || *p == '\r'); p--) *p = '\0';
}
static struct params_s
{
bool ipv6;
uint32_t pctmult, pctdiv; // for v4
uint32_t zct_min, zct_max; // for v4 and v6
uint32_t v6_threshold; // for v6
} params;
static void exithelp()
{
printf(
" -4\t\t\t\t; ipv4 list (default)\n"
" -6\t\t\t\t; ipv6 list\n"
" --prefix-length=min[-max]\t; consider prefix lengths from 'min' to 'max'. examples : 22-30 (ipv4), 56-64 (ipv6)\n"
" --v4-threshold=mul/div\t\t; ipv4 only : include subnets with more than mul/div ips. example : 3/4\n"
" --v6-threshold=N\t\t; ipv6 only : include subnets with more than N v6 ips. example : 5\n"
);
exit(1);
}
static void parse_params(int argc, char *argv[])
{
int option_index = 0;
int v, i;
uint32_t plen1=-1, plen2=-1;
memset(&params, 0, sizeof(params));
params.pctmult = DEFAULT_PCTMULT;
params.pctdiv = DEFAULT_PCTDIV;
params.v6_threshold = DEFAULT_V6_THRESHOLD;
const struct option long_options[] = {
{ "help",no_argument,0,0 },// optidx=0
{ "h",no_argument,0,0 },// optidx=1
{ "4",no_argument,0,0 },// optidx=2
{ "6",no_argument,0,0 },// optidx=3
{ "prefix-length",required_argument,0,0 },// optidx=4
{ "v4-threshold",required_argument,0,0 },// optidx=5
{ "v6-threshold",required_argument,0,0 },// optidx=6
{ NULL,0,NULL,0 }
};
while ((v = getopt_long_only(argc, argv, "", long_options, &option_index)) != -1)
{
if (v) exithelp();
switch (option_index)
{
case 0:
case 1:
exithelp();
break;
case 2:
params.ipv6 = false;
break;
case 3:
params.ipv6 = true;
break;
case 4:
i = sscanf(optarg,"%u-%u",&plen1,&plen2);
if (i == 1) plen2 = plen1;
if (!i || plen2<plen1 || !plen1 || !plen2)
{
fprintf(stderr, "invalid parameter for prefix-length : %s\n", optarg);
exit(1);
}
break;
case 5:
i = sscanf(optarg, "%u/%u", &params.pctmult, &params.pctdiv);
if (i!=2 || params.pctdiv<2 || params.pctmult<1 || params.pctmult>=params.pctdiv)
{
fprintf(stderr, "invalid parameter for v4-threshold : %s\n", optarg);
exit(1);
}
break;
case 6:
i = sscanf(optarg, "%u", &params.v6_threshold);
if (i != 1 || params.v6_threshold<1)
{
fprintf(stderr, "invalid parameter for v6-threshold : %s\n", optarg);
exit(1);
}
break;
}
}
if (plen1 != -1 && (!params.ipv6 && (plen1>31 || plen2>31) || params.ipv6 && (plen1>127 || plen2>127)))
{
fprintf(stderr, "invalid parameter for prefix-length\n");
exit(1);
}
params.zct_min = params.ipv6 ? plen2==-1 ? DEFAULT_V6_ZCT_MIN : 128-plen2 : plen2==-1 ? DEFAULT_V4_ZCT_MIN : 32-plen2;
params.zct_max = params.ipv6 ? plen1==-1 ? DEFAULT_V6_ZCT_MAX : 128-plen1 : plen1==-1 ? DEFAULT_V4_ZCT_MAX : 32-plen1;
}
int main(int argc, char **argv)
{
char str[256],d;
uint32_t ipct = 0, iplist_size = 0, pos = 0, p, zct, ip_ct, pos_end;
parse_params(argc, argv);
if (params.ipv6) // ipv6
{
char *s;
struct in6_addr a, *iplist = NULL, *iplist_new;
while (fgets(str, sizeof(str), stdin))
{
rtrim(str);
d = 0;
if ((s = strchr(str, '/')) || (s = strchr(str, '-')))
{
d = *s;
*s = '\0';
}
if (inet_pton(AF_INET6, str, &a))
{
if (d=='/')
{
// we have subnet ip6/y
// output it as is
*s = d;
if (sscanf(s + 1, "%u", &zct) && zct!=128)
{
if (zct<128) printf("%s\n", str);
continue;
}
}
else if (d=='-')
{
*s = d;
if (inet_pton(AF_INET6, s+1, &a)) printf("%s\n", str);
continue;
}
if (ipct >= iplist_size)
{
iplist_size += ALLOC_STEP;
iplist_new = (struct in6_addr*)(iplist ? realloc(iplist, sizeof(*iplist)*iplist_size) : malloc(sizeof(*iplist)*iplist_size));
if (!iplist_new)
{
free(iplist);
fprintf(stderr, "out of memory\n");
return 100;
}
iplist = iplist_new;
}
iplist[ipct++] = a;
}
}
gnu_quicksort(iplist, ipct, sizeof(*iplist), cmp6, NULL);
ipct = unique6(iplist, ipct);
/*
for(uint32_t i=0;i<ipct;i++)
if (inet_ntop(AF_INET6,iplist+i,str,256))
printf("%s\n",str);
printf("\n");
*/
while (pos < ipct)
{
struct in6_addr mask, ip_start, ip;
uint32_t ip_ct_best = 0, zct_best = 0;
pos_end = pos + 1;
// find smallest network with maximum ip coverage with no less than ip6_subnet_threshold addresses
for (zct = params.zct_max; zct >= params.zct_min; zct--)
{
mask_from_bitcount6(zct, &mask);
ip6_and(iplist + pos, &mask, &ip_start);
for (p = pos + 1, ip_ct = 1; p < ipct; p++, ip_ct++)
{
ip6_and(iplist + p, &mask, &ip);
if (memcmp(&ip_start, &ip, sizeof(ip)))
break;
}
if (ip_ct == 1) break;
if (ip_ct >= params.v6_threshold)
{
// network found. but is there smaller network with the same ip_ct ? dont do carpet bombing if possible, use smaller subnets
if (!ip_ct_best || ip_ct == ip_ct_best)
{
ip_ct_best = ip_ct;
zct_best = zct;
pos_end = p;
}
else
break;
}
}
if (!zct_best) ip_start = iplist[pos], pos_end = pos + 1; // network not found, use single ip
inet_ntop(AF_INET6, &ip_start, str, sizeof(str));
printf(zct_best ? "%s/%u\n" : "%s\n", str, 128 - zct_best);
pos = pos_end;
}
free(iplist);
}
else // ipv4
{
uint32_t u1,u2,u3,u4, u11,u22,u33,u44, ip;
uint32_t *iplist = NULL, *iplist_new, i;
while (fgets(str, sizeof(str), stdin))
{
if ((i = sscanf(str, "%u.%u.%u.%u-%u.%u.%u.%u", &u1, &u2, &u3, &u4, &u11, &u22, &u33, &u44)) >= 8 &&
!(u1 & 0xFFFFFF00) && !(u2 & 0xFFFFFF00) && !(u3 & 0xFFFFFF00) && !(u4 & 0xFFFFFF00) &&
!(u11 & 0xFFFFFF00) && !(u22 & 0xFFFFFF00) && !(u33 & 0xFFFFFF00) && !(u44 & 0xFFFFFF00))
{
printf("%u.%u.%u.%u-%u.%u.%u.%u\n", u1, u2, u3, u4, u11, u22, u33, u44);
}
else
if ((i = sscanf(str, "%u.%u.%u.%u/%u", &u1, &u2, &u3, &u4, &zct)) >= 4 &&
!(u1 & 0xFFFFFF00) && !(u2 & 0xFFFFFF00) && !(u3 & 0xFFFFFF00) && !(u4 & 0xFFFFFF00))
{
if (i == 5 && zct != 32)
{
// we have subnet x.x.x.x/y
// output it as is if valid, ignore otherwise
if (zct < 32)
printf("%u.%u.%u.%u/%u\n", u1, u2, u3, u4, zct);
}
else
{
ip = u1 << 24 | u2 << 16 | u3 << 8 | u4;
if (ipct >= iplist_size)
{
iplist_size += ALLOC_STEP;
iplist_new = (uint32_t*)(iplist ? realloc(iplist, sizeof(*iplist)*iplist_size) : malloc(sizeof(*iplist)*iplist_size));
if (!iplist_new)
{
free(iplist);
fprintf(stderr, "out of memory\n");
return 100;
}
iplist = iplist_new;
}
iplist[ipct++] = ip;
}
}
}
gnu_quicksort(iplist, ipct, sizeof(*iplist), ucmp, NULL);
ipct = unique(iplist, ipct);
while (pos < ipct)
{
uint32_t mask, ip_start, ip_end, subnet_ct;
uint32_t ip_ct_best = 0, zct_best = 0;
// find smallest network with maximum ip coverage with no less than mul/div percent addresses
for (zct = params.zct_max; zct >= params.zct_min; zct--)
{
mask = mask_from_bitcount(zct);
ip_start = iplist[pos] & mask;
subnet_ct = ~mask + 1;
if (iplist[pos] > (ip_start + subnet_ct*(params.pctdiv - params.pctmult) / params.pctdiv))
continue; // ip is higher than (1-PCT). definitely coverage is not enough. skip searching
ip_end = ip_start | ~mask;
for (p=pos+1, ip_ct=1; p < ipct && iplist[p] <= ip_end; p++) ip_ct++; // count ips within subnet range
if (ip_ct == 1) break;
if (ip_ct >= (subnet_ct*params.pctmult / params.pctdiv))
{
// network found. but is there smaller network with the same ip_ct ? dont do carpet bombing if possible, use smaller subnets
if (!ip_ct_best || ip_ct == ip_ct_best)
{
ip_ct_best = ip_ct;
zct_best = zct;
pos_end = p;
}
else
break;
}
}
if (!zct_best) ip_start = iplist[pos], pos_end = pos + 1; // network not found, use single ip
u1 = ip_start >> 24;
u2 = (ip_start >> 16) & 0xFF;
u3 = (ip_start >> 8) & 0xFF;
u4 = ip_start & 0xFF;
printf(zct_best ? "%u.%u.%u.%u/%u\n" : "%u.%u.%u.%u\n", u1, u2, u3, u4, 32 - zct_best);
pos = pos_end;
}
free(iplist);
}
return 0;
}

250
ip2net/qsort.c Normal file
View File

@@ -0,0 +1,250 @@
/* Copyright (C) 1991-2018 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Written by Douglas C. Schmidt (schmidt@ics.uci.edu).
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
/* If you consider tuning this algorithm, you should consult first:
Engineering a sort function; Jon Bentley and M. Douglas McIlroy;
Software - Practice and Experience; Vol. 23 (11), 1249-1265, 1993. */
//#include <alloca.h>
#include <limits.h>
#include <stdlib.h>
//#include <string.h>
#include "qsort.h"
/* Byte-wise swap two items of size SIZE. */
#define SWAP(a, b, size) \
do \
{ \
size_t __size = (size); \
char *__a = (a), *__b = (b); \
do \
{ \
char __tmp = *__a; \
*__a++ = *__b; \
*__b++ = __tmp; \
} while (--__size > 0); \
} while (0)
/* Discontinue quicksort algorithm when partition gets below this size.
This particular magic number was chosen to work best on a Sun 4/260. */
#define MAX_THRESH 4
/* Stack node declarations used to store unfulfilled partition obligations. */
typedef struct
{
char *lo;
char *hi;
} stack_node;
/* The next 4 #defines implement a very fast in-line stack abstraction. */
/* The stack needs log (total_elements) entries (we could even subtract
log(MAX_THRESH)). Since total_elements has type size_t, we get as
upper bound for log (total_elements):
bits per byte (CHAR_BIT) * sizeof(size_t). */
#define STACK_SIZE (CHAR_BIT * sizeof(size_t))
#define PUSH(low, high) ((void) ((top->lo = (low)), (top->hi = (high)), ++top))
#define POP(low, high) ((void) (--top, (low = top->lo), (high = top->hi)))
#define STACK_NOT_EMPTY (stack < top)
/* Order size using quicksort. This implementation incorporates
four optimizations discussed in Sedgewick:
1. Non-recursive, using an explicit stack of pointer that store the
next array partition to sort. To save time, this maximum amount
of space required to store an array of SIZE_MAX is allocated on the
stack. Assuming a 32-bit (64 bit) integer for size_t, this needs
only 32 * sizeof(stack_node) == 256 bytes (for 64 bit: 1024 bytes).
Pretty cheap, actually.
2. Chose the pivot element using a median-of-three decision tree.
This reduces the probability of selecting a bad pivot value and
eliminates certain extraneous comparisons.
3. Only quicksorts TOTAL_ELEMS / MAX_THRESH partitions, leaving
insertion sort to order the MAX_THRESH items within each partition.
This is a big win, since insertion sort is faster for small, mostly
sorted array segments.
4. The larger of the two sub-partitions is always pushed onto the
stack first, with the algorithm then concentrating on the
smaller partition. This *guarantees* no more than log (total_elems)
stack size is needed (actually O(1) in this case)! */
void
gnu_quicksort (void *const pbase, size_t total_elems, size_t size,
__gnu_compar_d_fn_t cmp, void *arg)
{
char *base_ptr = (char *) pbase;
const size_t max_thresh = MAX_THRESH * size;
if (total_elems == 0)
/* Avoid lossage with unsigned arithmetic below. */
return;
if (total_elems > MAX_THRESH)
{
char *lo = base_ptr;
char *hi = &lo[size * (total_elems - 1)];
stack_node stack[STACK_SIZE];
stack_node *top = stack;
PUSH (NULL, NULL);
while (STACK_NOT_EMPTY)
{
char *left_ptr;
char *right_ptr;
/* Select median value from among LO, MID, and HI. Rearrange
LO and HI so the three values are sorted. This lowers the
probability of picking a pathological pivot value and
skips a comparison for both the LEFT_PTR and RIGHT_PTR in
the while loops. */
char *mid = lo + size * ((hi - lo) / size >> 1);
if ((*cmp) ((void *) mid, (void *) lo, arg) < 0)
SWAP (mid, lo, size);
if ((*cmp) ((void *) hi, (void *) mid, arg) < 0)
SWAP (mid, hi, size);
else
goto jump_over;
if ((*cmp) ((void *) mid, (void *) lo, arg) < 0)
SWAP (mid, lo, size);
jump_over:;
left_ptr = lo + size;
right_ptr = hi - size;
/* Here's the famous ``collapse the walls'' section of quicksort.
Gotta like those tight inner loops! They are the main reason
that this algorithm runs much faster than others. */
do
{
while ((*cmp) ((void *) left_ptr, (void *) mid, arg) < 0)
left_ptr += size;
while ((*cmp) ((void *) mid, (void *) right_ptr, arg) < 0)
right_ptr -= size;
if (left_ptr < right_ptr)
{
SWAP (left_ptr, right_ptr, size);
if (mid == left_ptr)
mid = right_ptr;
else if (mid == right_ptr)
mid = left_ptr;
left_ptr += size;
right_ptr -= size;
}
else if (left_ptr == right_ptr)
{
left_ptr += size;
right_ptr -= size;
break;
}
}
while (left_ptr <= right_ptr);
/* Set up pointers for next iteration. First determine whether
left and right partitions are below the threshold size. If so,
ignore one or both. Otherwise, push the larger partition's
bounds on the stack and continue sorting the smaller one. */
if ((size_t) (right_ptr - lo) <= max_thresh)
{
if ((size_t) (hi - left_ptr) <= max_thresh)
/* Ignore both small partitions. */
POP (lo, hi);
else
/* Ignore small left partition. */
lo = left_ptr;
}
else if ((size_t) (hi - left_ptr) <= max_thresh)
/* Ignore small right partition. */
hi = right_ptr;
else if ((right_ptr - lo) > (hi - left_ptr))
{
/* Push larger left partition indices. */
PUSH (lo, right_ptr);
lo = left_ptr;
}
else
{
/* Push larger right partition indices. */
PUSH (left_ptr, hi);
hi = right_ptr;
}
}
}
/* Once the BASE_PTR array is partially sorted by quicksort the rest
is completely sorted using insertion sort, since this is efficient
for partitions below MAX_THRESH size. BASE_PTR points to the beginning
of the array to sort, and END_PTR points at the very last element in
the array (*not* one beyond it!). */
#define min(x, y) ((x) < (y) ? (x) : (y))
{
char *const end_ptr = &base_ptr[size * (total_elems - 1)];
char *tmp_ptr = base_ptr;
char *thresh = min(end_ptr, base_ptr + max_thresh);
char *run_ptr;
/* Find smallest element in first threshold and place it at the
array's beginning. This is the smallest array element,
and the operation speeds up insertion sort's inner loop. */
for (run_ptr = tmp_ptr + size; run_ptr <= thresh; run_ptr += size)
if ((*cmp) ((void *) run_ptr, (void *) tmp_ptr, arg) < 0)
tmp_ptr = run_ptr;
if (tmp_ptr != base_ptr)
SWAP (tmp_ptr, base_ptr, size);
/* Insertion sort, running from left-hand-side up to right-hand-side. */
run_ptr = base_ptr + size;
while ((run_ptr += size) <= end_ptr)
{
tmp_ptr = run_ptr - size;
while ((*cmp) ((void *) run_ptr, (void *) tmp_ptr, arg) < 0)
tmp_ptr -= size;
tmp_ptr += size;
if (tmp_ptr != run_ptr)
{
char *trav;
trav = run_ptr + size;
while (--trav >= run_ptr)
{
char c = *trav;
char *hi, *lo;
for (hi = lo = trav; (lo -= size) >= tmp_ptr; hi = lo)
*hi = *lo;
*hi = c;
}
}
}
}
}

6
ip2net/qsort.h Normal file
View File

@@ -0,0 +1,6 @@
#pragma once
// GNU qsort is 2x faster than musl
typedef int (*__gnu_compar_d_fn_t) (const void *, const void *, void *);
void gnu_quicksort (void *const pbase, size_t total_elems, size_t size, __gnu_compar_d_fn_t cmp, void *arg);