mirror of
https://github.com/bol-van/zapret.git
synced 2025-05-24 22:32:58 +03:00
Truncated history
This commit is contained in:
28
ip2net/Makefile
Normal file
28
ip2net/Makefile
Normal file
@@ -0,0 +1,28 @@
|
||||
CC ?= gcc
|
||||
CFLAGS += -std=gnu99 -O3
|
||||
CFLAGS_BSD = -Wno-address-of-packed-member
|
||||
CFLAGS_WIN = -static
|
||||
LIBS =
|
||||
LIBS_WIN = -lws2_32
|
||||
SRC_FILES = ip2net.c qsort.c
|
||||
|
||||
all: ip2net
|
||||
|
||||
ip2net: $(SRC_FILES)
|
||||
$(CC) -s $(CFLAGS) -o $@ $(SRC_FILES) $(LDFLAGS) $(LIBS)
|
||||
|
||||
bsd: $(SRC_FILES)
|
||||
$(CC) -s $(CFLAGS) $(CFLAGS_BSD) -o ip2net $(SRC_FILES) $(LDFLAGS) $(LIBS)
|
||||
|
||||
mac: $(SRC_FILES)
|
||||
$(CC) $(CFLAGS) $(CFLAGS_BSD) -o ip2neta $(SRC_FILES) $(LDFLAGS) -target arm64-apple-macos10.8 $(LIBS)
|
||||
$(CC) $(CFLAGS) $(CFLAGS_BSD) -o ip2netx $(SRC_FILES) $(LDFLAGS) -target x86_64-apple-macos10.8 $(LIBS)
|
||||
strip ip2neta ip2netx
|
||||
lipo -create -output ip2net ip2netx ip2neta
|
||||
rm -f ip2netx ip2neta
|
||||
|
||||
win: $(SRC_FILES)
|
||||
$(CC) -s $(CFLAGS) $(CFLAGS_WIN) -o ip2net $(SRC_FILES) $(LDFLAGS) $(LIBS_WIN)
|
||||
|
||||
clean:
|
||||
rm -f ip2net *.o
|
495
ip2net/ip2net.c
Normal file
495
ip2net/ip2net.c
Normal file
@@ -0,0 +1,495 @@
|
||||
// group ipv4/ipv6 list from stdout into subnets
|
||||
// each line must contain either ip or ip/bitcount
|
||||
// valid ip/bitcount and ip1-ip2 are passed through without modification
|
||||
// ips are groupped into subnets
|
||||
|
||||
// can be compiled in mingw. msvc not supported because of absent getopt
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <stdbool.h>
|
||||
#include <stdint.h>
|
||||
#include <string.h>
|
||||
#ifdef _WIN32
|
||||
#undef _WIN32_WINNT
|
||||
#define _WIN32_WINNT 0x600
|
||||
#include <winsock2.h>
|
||||
#include <ws2ipdef.h>
|
||||
#include <ws2tcpip.h>
|
||||
#else
|
||||
#include <arpa/inet.h>
|
||||
#include <netinet/in.h>
|
||||
#include <sys/socket.h>
|
||||
#endif
|
||||
#include <getopt.h>
|
||||
#include "qsort.h"
|
||||
|
||||
#define ALLOC_STEP 16384
|
||||
|
||||
// minimum subnet fill percent is PCTMULT/PCTDIV (for example 3/4)
|
||||
#define DEFAULT_PCTMULT 3
|
||||
#define DEFAULT_PCTDIV 4
|
||||
// subnet search range in "zero bit count"
|
||||
// means search start from /(32-ZCT_MAX) to /(32-ZCT_MIN)
|
||||
#define DEFAULT_V4_ZCT_MAX 10 // /22
|
||||
#define DEFAULT_V4_ZCT_MIN 2 // /30
|
||||
#define DEFAULT_V6_ZCT_MAX 72 // /56
|
||||
#define DEFAULT_V6_ZCT_MIN 64 // /64
|
||||
// must be no less than N ipv6 in subnet
|
||||
#define DEFAULT_V6_THRESHOLD 5
|
||||
|
||||
static int ucmp(const void * a, const void * b, void *arg)
|
||||
{
|
||||
if (*(uint32_t*)a < *(uint32_t*)b)
|
||||
return -1;
|
||||
else if (*(uint32_t*)a > *(uint32_t*)b)
|
||||
return 1;
|
||||
else
|
||||
return 0;
|
||||
}
|
||||
static uint32_t mask_from_bitcount(uint32_t zct)
|
||||
{
|
||||
return zct<32 ? ~((1 << zct) - 1) : 0;
|
||||
}
|
||||
// make presorted array unique. return number of unique items.
|
||||
// 1,1,2,3,3,0,0,0 (ct=8) => 1,2,3,0 (ct=4)
|
||||
static uint32_t unique(uint32_t *pu, uint32_t ct)
|
||||
{
|
||||
uint32_t i, j, u;
|
||||
for (i = j = 0; j < ct; i++)
|
||||
{
|
||||
u = pu[j++];
|
||||
for (; j < ct && pu[j] == u; j++);
|
||||
pu[i] = u;
|
||||
}
|
||||
return i;
|
||||
}
|
||||
|
||||
|
||||
|
||||
#if defined(__GNUC__) && !defined(__llvm__)
|
||||
__attribute__((optimize ("no-strict-aliasing")))
|
||||
#endif
|
||||
static int cmp6(const void * a, const void * b, void *arg)
|
||||
{
|
||||
// this function is critical for sort performance
|
||||
// on big endian systems cpu byte order is equal to network byte order
|
||||
// no conversion required. it's possible to improve speed by using big size compares
|
||||
// on little endian systems byte conversion also gives better result than byte comparision
|
||||
// 64-bit archs often have cpu command to reverse byte order
|
||||
// assume that a and b are properly aligned
|
||||
|
||||
#if defined(__BYTE_ORDER__) && ((__BYTE_ORDER__==__ORDER_BIG_ENDIAN__) || (__BYTE_ORDER__==__ORDER_LITTLE_ENDIAN__))
|
||||
|
||||
uint64_t aa,bb;
|
||||
#if __BYTE_ORDER__==__ORDER_LITTLE_ENDIAN__
|
||||
aa = __builtin_bswap64(((uint64_t*)((struct in6_addr *)a)->s6_addr)[0]);
|
||||
bb = __builtin_bswap64(((uint64_t*)((struct in6_addr *)b)->s6_addr)[0]);
|
||||
#else
|
||||
aa = ((uint64_t*)((struct in6_addr *)a)->s6_addr)[0];
|
||||
bb = ((uint64_t*)((struct in6_addr *)b)->s6_addr)[0];
|
||||
#endif
|
||||
if (aa < bb)
|
||||
return -1;
|
||||
else if (aa > bb)
|
||||
return 1;
|
||||
else
|
||||
{
|
||||
#if __BYTE_ORDER__==__ORDER_LITTLE_ENDIAN__
|
||||
aa = __builtin_bswap64(((uint64_t*)((struct in6_addr *)a)->s6_addr)[1]);
|
||||
bb = __builtin_bswap64(((uint64_t*)((struct in6_addr *)b)->s6_addr)[1]);
|
||||
#else
|
||||
aa = ((uint64_t*)((struct in6_addr *)a)->s6_addr)[1];
|
||||
bb = ((uint64_t*)((struct in6_addr *)b)->s6_addr)[1];
|
||||
#endif
|
||||
return aa < bb ? -1 : aa > bb ? 1 : 0;
|
||||
}
|
||||
|
||||
#else
|
||||
// fallback case
|
||||
for (uint8_t i = 0; i < sizeof(((struct in6_addr *)0)->s6_addr); i++)
|
||||
{
|
||||
if (((struct in6_addr *)a)->s6_addr[i] < ((struct in6_addr *)b)->s6_addr[i])
|
||||
return -1;
|
||||
else if (((struct in6_addr *)a)->s6_addr[i] > ((struct in6_addr *)b)->s6_addr[i])
|
||||
return 1;
|
||||
}
|
||||
return 0;
|
||||
#endif
|
||||
}
|
||||
|
||||
// make presorted array unique. return number of unique items.
|
||||
static uint32_t unique6(struct in6_addr *pu, uint32_t ct)
|
||||
{
|
||||
uint32_t i, j, k;
|
||||
for (i = j = 0; j < ct; i++)
|
||||
{
|
||||
for (k = j++; j < ct && !memcmp(pu + j, pu + k, sizeof(struct in6_addr)); j++);
|
||||
pu[i] = pu[k];
|
||||
}
|
||||
return i;
|
||||
}
|
||||
static void mask_from_bitcount6_make(uint32_t zct, struct in6_addr *a)
|
||||
{
|
||||
if (zct >= 128)
|
||||
memset(a->s6_addr,0x00,16);
|
||||
else
|
||||
{
|
||||
int32_t n = (127 - zct) >> 3;
|
||||
memset(a->s6_addr,0xFF,n);
|
||||
memset(a->s6_addr+n,0x00,16-n);
|
||||
a->s6_addr[n] = ~((1 << (zct & 7)) - 1);
|
||||
}
|
||||
}
|
||||
static struct in6_addr ip6_mask[129];
|
||||
static void mask_from_bitcount6_prepare(void)
|
||||
{
|
||||
for (int zct=0;zct<=128;zct++) mask_from_bitcount6_make(zct, ip6_mask+zct);
|
||||
}
|
||||
static inline const struct in6_addr *mask_from_bitcount6(uint32_t zct)
|
||||
{
|
||||
return ip6_mask+zct;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
// this is "correct" solution for strict aliasing feature
|
||||
// but I don't like this style of coding
|
||||
// write what I don't mean to force smart optimizer to do what it's best
|
||||
// it produces better code sometimes but not on all compilers/versions/archs
|
||||
// sometimes it even generates real memcpy calls (mips32,arm32)
|
||||
// so I will not do it
|
||||
|
||||
static void ip6_and(const struct in6_addr *a, const struct in6_addr *b, struct in6_addr *result)
|
||||
{
|
||||
uint64_t a_addr[2], b_addr[2];
|
||||
memcpy(a_addr, a->s6_addr, 16);
|
||||
memcpy(b_addr, b->s6_addr, 16);
|
||||
a_addr[0] &= b_addr[0];
|
||||
a_addr[1] &= b_addr[1];
|
||||
memcpy(result->s6_addr, a_addr, 16);
|
||||
}
|
||||
*/
|
||||
|
||||
// YES, from my point of view C should work as a portable assembler. It must do what I instruct it to do.
|
||||
// that's why I disable strict aliasing for this function. I observed gcc can miscompile with O2/O3 setting if inlined and not coded "correct"
|
||||
// result = a & b
|
||||
// assume that a and b are properly aligned
|
||||
#if defined(__GNUC__) && !defined(__llvm__)
|
||||
__attribute__((optimize ("no-strict-aliasing")))
|
||||
#endif
|
||||
static void ip6_and(const struct in6_addr * restrict a, const struct in6_addr * restrict b, struct in6_addr * restrict result)
|
||||
{
|
||||
#ifdef __SIZEOF_INT128__
|
||||
// gcc and clang have 128 bit int types on some 64-bit archs. take some advantage
|
||||
*((unsigned __int128*)result->s6_addr) = *((unsigned __int128*)a->s6_addr) & *((unsigned __int128*)b->s6_addr);
|
||||
#else
|
||||
((uint64_t*)result->s6_addr)[0] = ((uint64_t*)a->s6_addr)[0] & ((uint64_t*)b->s6_addr)[0];
|
||||
((uint64_t*)result->s6_addr)[1] = ((uint64_t*)a->s6_addr)[1] & ((uint64_t*)b->s6_addr)[1];
|
||||
#endif
|
||||
}
|
||||
|
||||
static void rtrim(char *s)
|
||||
{
|
||||
if (s)
|
||||
for (char *p = s + strlen(s) - 1; p >= s && (*p == '\n' || *p == '\r'); p--) *p = '\0';
|
||||
}
|
||||
|
||||
|
||||
static struct params_s
|
||||
{
|
||||
bool ipv6;
|
||||
uint32_t pctmult, pctdiv; // for v4
|
||||
uint32_t zct_min, zct_max; // for v4 and v6
|
||||
uint32_t v6_threshold; // for v6
|
||||
} params;
|
||||
|
||||
|
||||
static void exithelp(void)
|
||||
{
|
||||
printf(
|
||||
" -4\t\t\t\t; ipv4 list (default)\n"
|
||||
" -6\t\t\t\t; ipv6 list\n"
|
||||
" --prefix-length=min[-max]\t; consider prefix lengths from 'min' to 'max'. examples : 22-30 (ipv4), 56-64 (ipv6)\n"
|
||||
" --v4-threshold=mul/div\t\t; ipv4 only : include subnets with more than mul/div ips. example : 3/4\n"
|
||||
" --v6-threshold=N\t\t; ipv6 only : include subnets with more than N v6 ips. example : 5\n"
|
||||
);
|
||||
exit(1);
|
||||
}
|
||||
|
||||
static void parse_params(int argc, char *argv[])
|
||||
{
|
||||
int option_index = 0;
|
||||
int v, i;
|
||||
uint32_t plen1=-1, plen2=-1;
|
||||
|
||||
memset(¶ms, 0, sizeof(params));
|
||||
params.pctmult = DEFAULT_PCTMULT;
|
||||
params.pctdiv = DEFAULT_PCTDIV;
|
||||
params.v6_threshold = DEFAULT_V6_THRESHOLD;
|
||||
|
||||
const struct option long_options[] = {
|
||||
{ "help",no_argument,0,0 },// optidx=0
|
||||
{ "h",no_argument,0,0 },// optidx=1
|
||||
{ "4",no_argument,0,0 },// optidx=2
|
||||
{ "6",no_argument,0,0 },// optidx=3
|
||||
{ "prefix-length",required_argument,0,0 },// optidx=4
|
||||
{ "v4-threshold",required_argument,0,0 },// optidx=5
|
||||
{ "v6-threshold",required_argument,0,0 },// optidx=6
|
||||
{ NULL,0,NULL,0 }
|
||||
};
|
||||
while ((v = getopt_long_only(argc, argv, "", long_options, &option_index)) != -1)
|
||||
{
|
||||
if (v) exithelp();
|
||||
switch (option_index)
|
||||
{
|
||||
case 0:
|
||||
case 1:
|
||||
exithelp();
|
||||
break;
|
||||
case 2:
|
||||
params.ipv6 = false;
|
||||
break;
|
||||
case 3:
|
||||
params.ipv6 = true;
|
||||
break;
|
||||
case 4:
|
||||
i = sscanf(optarg,"%u-%u",&plen1,&plen2);
|
||||
if (i == 1) plen2 = plen1;
|
||||
if (i<=0 || plen2<plen1 || !plen1 || !plen2)
|
||||
{
|
||||
fprintf(stderr, "invalid parameter for prefix-length : %s\n", optarg);
|
||||
exit(1);
|
||||
}
|
||||
break;
|
||||
case 5:
|
||||
i = sscanf(optarg, "%u/%u", ¶ms.pctmult, ¶ms.pctdiv);
|
||||
if (i!=2 || params.pctdiv<2 || params.pctmult<1 || params.pctmult>=params.pctdiv)
|
||||
{
|
||||
fprintf(stderr, "invalid parameter for v4-threshold : %s\n", optarg);
|
||||
exit(1);
|
||||
}
|
||||
break;
|
||||
case 6:
|
||||
i = sscanf(optarg, "%u", ¶ms.v6_threshold);
|
||||
if (i != 1 || params.v6_threshold<1)
|
||||
{
|
||||
fprintf(stderr, "invalid parameter for v6-threshold : %s\n", optarg);
|
||||
exit(1);
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (plen1 != -1 && ((!params.ipv6 && (plen1>31 || plen2>31)) || (params.ipv6 && (plen1>127 || plen2>127))))
|
||||
{
|
||||
fprintf(stderr, "invalid parameter for prefix-length\n");
|
||||
exit(1);
|
||||
}
|
||||
params.zct_min = params.ipv6 ? plen2==-1 ? DEFAULT_V6_ZCT_MIN : 128-plen2 : plen2==-1 ? DEFAULT_V4_ZCT_MIN : 32-plen2;
|
||||
params.zct_max = params.ipv6 ? plen1==-1 ? DEFAULT_V6_ZCT_MAX : 128-plen1 : plen1==-1 ? DEFAULT_V4_ZCT_MAX : 32-plen1;
|
||||
}
|
||||
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
char str[256],d;
|
||||
uint32_t ipct = 0, iplist_size = 0, pos = 0, p, zct, ip_ct, pos_end;
|
||||
|
||||
parse_params(argc, argv);
|
||||
|
||||
if (params.ipv6) // ipv6
|
||||
{
|
||||
char *s;
|
||||
struct in6_addr a, *iplist = NULL, *iplist_new;
|
||||
|
||||
while (fgets(str, sizeof(str), stdin))
|
||||
{
|
||||
rtrim(str);
|
||||
d = 0;
|
||||
if ((s = strchr(str, '/')) || (s = strchr(str, '-')))
|
||||
{
|
||||
d = *s;
|
||||
*s = '\0';
|
||||
}
|
||||
if (inet_pton(AF_INET6, str, &a))
|
||||
{
|
||||
if (d=='/')
|
||||
{
|
||||
// we have subnet ip6/y
|
||||
// output it as is
|
||||
if (sscanf(s + 1, "%u", &zct)==1 && zct!=128)
|
||||
{
|
||||
if (zct<128) printf("%s/%u\n", str, zct);
|
||||
continue;
|
||||
}
|
||||
}
|
||||
else if (d=='-')
|
||||
{
|
||||
if (inet_pton(AF_INET6, s+1, &a)) printf("%s-%s\n", str, s+1);
|
||||
continue;
|
||||
}
|
||||
if (ipct >= iplist_size)
|
||||
{
|
||||
iplist_size += ALLOC_STEP;
|
||||
iplist_new = (struct in6_addr*)(iplist ? realloc(iplist, sizeof(*iplist)*iplist_size) : malloc(sizeof(*iplist)*iplist_size));
|
||||
if (!iplist_new)
|
||||
{
|
||||
free(iplist);
|
||||
fprintf(stderr, "out of memory\n");
|
||||
return 100;
|
||||
}
|
||||
iplist = iplist_new;
|
||||
}
|
||||
iplist[ipct++] = a;
|
||||
}
|
||||
}
|
||||
gnu_quicksort(iplist, ipct, sizeof(*iplist), cmp6, NULL);
|
||||
ipct = unique6(iplist, ipct);
|
||||
mask_from_bitcount6_prepare();
|
||||
|
||||
/*
|
||||
for(uint32_t i=0;i<ipct;i++)
|
||||
if (inet_ntop(AF_INET6,iplist+i,str,sizeof(str)))
|
||||
printf("%s\n",str);
|
||||
printf("\n");
|
||||
*/
|
||||
while (pos < ipct)
|
||||
{
|
||||
const struct in6_addr *mask;
|
||||
struct in6_addr ip_start, ip;
|
||||
uint32_t ip_ct_best = 0, zct_best = 0;
|
||||
|
||||
pos_end = pos + 1;
|
||||
// find smallest network with maximum ip coverage with no less than ip6_subnet_threshold addresses
|
||||
for (zct = params.zct_max; zct >= params.zct_min; zct--)
|
||||
{
|
||||
mask = mask_from_bitcount6(zct);
|
||||
ip6_and(iplist + pos, mask, &ip_start);
|
||||
for (p = pos + 1, ip_ct = 1; p < ipct; p++, ip_ct++)
|
||||
{
|
||||
ip6_and(iplist + p, mask, &ip);
|
||||
if (memcmp(&ip_start, &ip, sizeof(ip)))
|
||||
break;
|
||||
}
|
||||
if (ip_ct == 1) break;
|
||||
if (ip_ct >= params.v6_threshold)
|
||||
{
|
||||
// network found. but is there smaller network with the same ip_ct ? dont do carpet bombing if possible, use smaller subnets
|
||||
if (!ip_ct_best || ip_ct == ip_ct_best)
|
||||
{
|
||||
ip_ct_best = ip_ct;
|
||||
zct_best = zct;
|
||||
pos_end = p;
|
||||
}
|
||||
else
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (zct_best)
|
||||
// network was found
|
||||
ip6_and(iplist + pos, mask_from_bitcount6(zct_best), &ip_start);
|
||||
else
|
||||
ip_start = iplist[pos], pos_end = pos + 1; // network not found, use single ip
|
||||
inet_ntop(AF_INET6, &ip_start, str, sizeof(str));
|
||||
printf(zct_best ? "%s/%u\n" : "%s\n", str, 128 - zct_best);
|
||||
|
||||
pos = pos_end;
|
||||
}
|
||||
|
||||
free(iplist);
|
||||
}
|
||||
else // ipv4
|
||||
{
|
||||
uint32_t u1,u2,u3,u4, u11,u22,u33,u44, ip;
|
||||
uint32_t *iplist = NULL, *iplist_new, i;
|
||||
|
||||
while (fgets(str, sizeof(str), stdin))
|
||||
{
|
||||
if ((i = sscanf(str, "%u.%u.%u.%u-%u.%u.%u.%u", &u1, &u2, &u3, &u4, &u11, &u22, &u33, &u44)) >= 8 &&
|
||||
!(u1 & 0xFFFFFF00) && !(u2 & 0xFFFFFF00) && !(u3 & 0xFFFFFF00) && !(u4 & 0xFFFFFF00) &&
|
||||
!(u11 & 0xFFFFFF00) && !(u22 & 0xFFFFFF00) && !(u33 & 0xFFFFFF00) && !(u44 & 0xFFFFFF00))
|
||||
{
|
||||
printf("%u.%u.%u.%u-%u.%u.%u.%u\n", u1, u2, u3, u4, u11, u22, u33, u44);
|
||||
}
|
||||
else
|
||||
if ((i = sscanf(str, "%u.%u.%u.%u/%u", &u1, &u2, &u3, &u4, &zct)) >= 4 &&
|
||||
!(u1 & 0xFFFFFF00) && !(u2 & 0xFFFFFF00) && !(u3 & 0xFFFFFF00) && !(u4 & 0xFFFFFF00))
|
||||
{
|
||||
if (i == 5 && zct != 32)
|
||||
{
|
||||
// we have subnet x.x.x.x/y
|
||||
// output it as is if valid, ignore otherwise
|
||||
if (zct < 32)
|
||||
printf("%u.%u.%u.%u/%u\n", u1, u2, u3, u4, zct);
|
||||
}
|
||||
else
|
||||
{
|
||||
ip = u1 << 24 | u2 << 16 | u3 << 8 | u4;
|
||||
if (ipct >= iplist_size)
|
||||
{
|
||||
iplist_size += ALLOC_STEP;
|
||||
iplist_new = (uint32_t*)(iplist ? realloc(iplist, sizeof(*iplist)*iplist_size) : malloc(sizeof(*iplist)*iplist_size));
|
||||
if (!iplist_new)
|
||||
{
|
||||
free(iplist);
|
||||
fprintf(stderr, "out of memory\n");
|
||||
return 100;
|
||||
}
|
||||
iplist = iplist_new;
|
||||
}
|
||||
iplist[ipct++] = ip;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
gnu_quicksort(iplist, ipct, sizeof(*iplist), ucmp, NULL);
|
||||
ipct = unique(iplist, ipct);
|
||||
|
||||
while (pos < ipct)
|
||||
{
|
||||
uint32_t mask, ip_start, ip_end, subnet_ct;
|
||||
uint32_t ip_ct_best = 0, zct_best = 0;
|
||||
|
||||
// find smallest network with maximum ip coverage with no less than mul/div percent addresses
|
||||
for (zct = params.zct_max; zct >= params.zct_min; zct--)
|
||||
{
|
||||
mask = mask_from_bitcount(zct);
|
||||
ip_start = iplist[pos] & mask;
|
||||
subnet_ct = ~mask + 1;
|
||||
if (iplist[pos] > (ip_start + subnet_ct*(params.pctdiv - params.pctmult) / params.pctdiv))
|
||||
continue; // ip is higher than (1-PCT). definitely coverage is not enough. skip searching
|
||||
ip_end = ip_start | ~mask;
|
||||
for (p=pos+1, ip_ct=1; p < ipct && iplist[p] <= ip_end; p++) ip_ct++; // count ips within subnet range
|
||||
if (ip_ct == 1) break;
|
||||
if (ip_ct >= (subnet_ct*params.pctmult / params.pctdiv))
|
||||
{
|
||||
// network found. but is there smaller network with the same ip_ct ? dont do carpet bombing if possible, use smaller subnets
|
||||
if (!ip_ct_best || ip_ct == ip_ct_best)
|
||||
{
|
||||
ip_ct_best = ip_ct;
|
||||
zct_best = zct;
|
||||
pos_end = p;
|
||||
}
|
||||
else
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (zct_best)
|
||||
ip_start = iplist[pos] & mask_from_bitcount(zct_best);
|
||||
else
|
||||
ip_start = iplist[pos], pos_end = pos + 1; // network not found, use single ip
|
||||
|
||||
u1 = ip_start >> 24;
|
||||
u2 = (ip_start >> 16) & 0xFF;
|
||||
u3 = (ip_start >> 8) & 0xFF;
|
||||
u4 = ip_start & 0xFF;
|
||||
printf(zct_best ? "%u.%u.%u.%u/%u\n" : "%u.%u.%u.%u\n", u1, u2, u3, u4, 32 - zct_best);
|
||||
|
||||
pos = pos_end;
|
||||
}
|
||||
|
||||
free(iplist);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
250
ip2net/qsort.c
Normal file
250
ip2net/qsort.c
Normal file
@@ -0,0 +1,250 @@
|
||||
/* Copyright (C) 1991-2018 Free Software Foundation, Inc.
|
||||
This file is part of the GNU C Library.
|
||||
Written by Douglas C. Schmidt (schmidt@ics.uci.edu).
|
||||
|
||||
The GNU C Library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2.1 of the License, or (at your option) any later version.
|
||||
|
||||
The GNU C Library is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public
|
||||
License along with the GNU C Library; if not, see
|
||||
<http://www.gnu.org/licenses/>. */
|
||||
|
||||
/* If you consider tuning this algorithm, you should consult first:
|
||||
Engineering a sort function; Jon Bentley and M. Douglas McIlroy;
|
||||
Software - Practice and Experience; Vol. 23 (11), 1249-1265, 1993. */
|
||||
|
||||
//#include <alloca.h>
|
||||
#include <limits.h>
|
||||
#include <stdlib.h>
|
||||
//#include <string.h>
|
||||
#include "qsort.h"
|
||||
|
||||
/* Byte-wise swap two items of size SIZE. */
|
||||
#define SWAP(a, b, size) \
|
||||
do \
|
||||
{ \
|
||||
size_t __size = (size); \
|
||||
char *__a = (a), *__b = (b); \
|
||||
do \
|
||||
{ \
|
||||
char __tmp = *__a; \
|
||||
*__a++ = *__b; \
|
||||
*__b++ = __tmp; \
|
||||
} while (--__size > 0); \
|
||||
} while (0)
|
||||
|
||||
/* Discontinue quicksort algorithm when partition gets below this size.
|
||||
This particular magic number was chosen to work best on a Sun 4/260. */
|
||||
#define MAX_THRESH 4
|
||||
|
||||
/* Stack node declarations used to store unfulfilled partition obligations. */
|
||||
typedef struct
|
||||
{
|
||||
char *lo;
|
||||
char *hi;
|
||||
} stack_node;
|
||||
|
||||
/* The next 4 #defines implement a very fast in-line stack abstraction. */
|
||||
/* The stack needs log (total_elements) entries (we could even subtract
|
||||
log(MAX_THRESH)). Since total_elements has type size_t, we get as
|
||||
upper bound for log (total_elements):
|
||||
bits per byte (CHAR_BIT) * sizeof(size_t). */
|
||||
#define STACK_SIZE (CHAR_BIT * sizeof(size_t))
|
||||
#define PUSH(low, high) ((void) ((top->lo = (low)), (top->hi = (high)), ++top))
|
||||
#define POP(low, high) ((void) (--top, (low = top->lo), (high = top->hi)))
|
||||
#define STACK_NOT_EMPTY (stack < top)
|
||||
|
||||
|
||||
/* Order size using quicksort. This implementation incorporates
|
||||
four optimizations discussed in Sedgewick:
|
||||
|
||||
1. Non-recursive, using an explicit stack of pointer that store the
|
||||
next array partition to sort. To save time, this maximum amount
|
||||
of space required to store an array of SIZE_MAX is allocated on the
|
||||
stack. Assuming a 32-bit (64 bit) integer for size_t, this needs
|
||||
only 32 * sizeof(stack_node) == 256 bytes (for 64 bit: 1024 bytes).
|
||||
Pretty cheap, actually.
|
||||
|
||||
2. Chose the pivot element using a median-of-three decision tree.
|
||||
This reduces the probability of selecting a bad pivot value and
|
||||
eliminates certain extraneous comparisons.
|
||||
|
||||
3. Only quicksorts TOTAL_ELEMS / MAX_THRESH partitions, leaving
|
||||
insertion sort to order the MAX_THRESH items within each partition.
|
||||
This is a big win, since insertion sort is faster for small, mostly
|
||||
sorted array segments.
|
||||
|
||||
4. The larger of the two sub-partitions is always pushed onto the
|
||||
stack first, with the algorithm then concentrating on the
|
||||
smaller partition. This *guarantees* no more than log (total_elems)
|
||||
stack size is needed (actually O(1) in this case)! */
|
||||
|
||||
void
|
||||
gnu_quicksort (void *const pbase, size_t total_elems, size_t size,
|
||||
__gnu_compar_d_fn_t cmp, void *arg)
|
||||
{
|
||||
char *base_ptr = (char *) pbase;
|
||||
|
||||
const size_t max_thresh = MAX_THRESH * size;
|
||||
|
||||
if (total_elems == 0)
|
||||
/* Avoid lossage with unsigned arithmetic below. */
|
||||
return;
|
||||
|
||||
if (total_elems > MAX_THRESH)
|
||||
{
|
||||
char *lo = base_ptr;
|
||||
char *hi = &lo[size * (total_elems - 1)];
|
||||
stack_node stack[STACK_SIZE];
|
||||
stack_node *top = stack;
|
||||
|
||||
PUSH (NULL, NULL);
|
||||
|
||||
while (STACK_NOT_EMPTY)
|
||||
{
|
||||
char *left_ptr;
|
||||
char *right_ptr;
|
||||
|
||||
/* Select median value from among LO, MID, and HI. Rearrange
|
||||
LO and HI so the three values are sorted. This lowers the
|
||||
probability of picking a pathological pivot value and
|
||||
skips a comparison for both the LEFT_PTR and RIGHT_PTR in
|
||||
the while loops. */
|
||||
|
||||
char *mid = lo + size * ((hi - lo) / size >> 1);
|
||||
|
||||
if ((*cmp) ((void *) mid, (void *) lo, arg) < 0)
|
||||
SWAP (mid, lo, size);
|
||||
if ((*cmp) ((void *) hi, (void *) mid, arg) < 0)
|
||||
SWAP (mid, hi, size);
|
||||
else
|
||||
goto jump_over;
|
||||
if ((*cmp) ((void *) mid, (void *) lo, arg) < 0)
|
||||
SWAP (mid, lo, size);
|
||||
jump_over:;
|
||||
|
||||
left_ptr = lo + size;
|
||||
right_ptr = hi - size;
|
||||
|
||||
/* Here's the famous ``collapse the walls'' section of quicksort.
|
||||
Gotta like those tight inner loops! They are the main reason
|
||||
that this algorithm runs much faster than others. */
|
||||
do
|
||||
{
|
||||
while ((*cmp) ((void *) left_ptr, (void *) mid, arg) < 0)
|
||||
left_ptr += size;
|
||||
|
||||
while ((*cmp) ((void *) mid, (void *) right_ptr, arg) < 0)
|
||||
right_ptr -= size;
|
||||
|
||||
if (left_ptr < right_ptr)
|
||||
{
|
||||
SWAP (left_ptr, right_ptr, size);
|
||||
if (mid == left_ptr)
|
||||
mid = right_ptr;
|
||||
else if (mid == right_ptr)
|
||||
mid = left_ptr;
|
||||
left_ptr += size;
|
||||
right_ptr -= size;
|
||||
}
|
||||
else if (left_ptr == right_ptr)
|
||||
{
|
||||
left_ptr += size;
|
||||
right_ptr -= size;
|
||||
break;
|
||||
}
|
||||
}
|
||||
while (left_ptr <= right_ptr);
|
||||
|
||||
/* Set up pointers for next iteration. First determine whether
|
||||
left and right partitions are below the threshold size. If so,
|
||||
ignore one or both. Otherwise, push the larger partition's
|
||||
bounds on the stack and continue sorting the smaller one. */
|
||||
|
||||
if ((size_t) (right_ptr - lo) <= max_thresh)
|
||||
{
|
||||
if ((size_t) (hi - left_ptr) <= max_thresh)
|
||||
/* Ignore both small partitions. */
|
||||
POP (lo, hi);
|
||||
else
|
||||
/* Ignore small left partition. */
|
||||
lo = left_ptr;
|
||||
}
|
||||
else if ((size_t) (hi - left_ptr) <= max_thresh)
|
||||
/* Ignore small right partition. */
|
||||
hi = right_ptr;
|
||||
else if ((right_ptr - lo) > (hi - left_ptr))
|
||||
{
|
||||
/* Push larger left partition indices. */
|
||||
PUSH (lo, right_ptr);
|
||||
lo = left_ptr;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Push larger right partition indices. */
|
||||
PUSH (left_ptr, hi);
|
||||
hi = right_ptr;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Once the BASE_PTR array is partially sorted by quicksort the rest
|
||||
is completely sorted using insertion sort, since this is efficient
|
||||
for partitions below MAX_THRESH size. BASE_PTR points to the beginning
|
||||
of the array to sort, and END_PTR points at the very last element in
|
||||
the array (*not* one beyond it!). */
|
||||
|
||||
#define min(x, y) ((x) < (y) ? (x) : (y))
|
||||
|
||||
{
|
||||
char *const end_ptr = &base_ptr[size * (total_elems - 1)];
|
||||
char *tmp_ptr = base_ptr;
|
||||
char *thresh = min(end_ptr, base_ptr + max_thresh);
|
||||
char *run_ptr;
|
||||
|
||||
/* Find smallest element in first threshold and place it at the
|
||||
array's beginning. This is the smallest array element,
|
||||
and the operation speeds up insertion sort's inner loop. */
|
||||
|
||||
for (run_ptr = tmp_ptr + size; run_ptr <= thresh; run_ptr += size)
|
||||
if ((*cmp) ((void *) run_ptr, (void *) tmp_ptr, arg) < 0)
|
||||
tmp_ptr = run_ptr;
|
||||
|
||||
if (tmp_ptr != base_ptr)
|
||||
SWAP (tmp_ptr, base_ptr, size);
|
||||
|
||||
/* Insertion sort, running from left-hand-side up to right-hand-side. */
|
||||
|
||||
run_ptr = base_ptr + size;
|
||||
while ((run_ptr += size) <= end_ptr)
|
||||
{
|
||||
tmp_ptr = run_ptr - size;
|
||||
while ((*cmp) ((void *) run_ptr, (void *) tmp_ptr, arg) < 0)
|
||||
tmp_ptr -= size;
|
||||
|
||||
tmp_ptr += size;
|
||||
if (tmp_ptr != run_ptr)
|
||||
{
|
||||
char *trav;
|
||||
|
||||
trav = run_ptr + size;
|
||||
while (--trav >= run_ptr)
|
||||
{
|
||||
char c = *trav;
|
||||
char *hi, *lo;
|
||||
|
||||
for (hi = lo = trav; (lo -= size) >= tmp_ptr; hi = lo)
|
||||
*hi = *lo;
|
||||
*hi = c;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
6
ip2net/qsort.h
Normal file
6
ip2net/qsort.h
Normal file
@@ -0,0 +1,6 @@
|
||||
#pragma once
|
||||
|
||||
// GNU qsort is 2x faster than musl
|
||||
|
||||
typedef int (*__gnu_compar_d_fn_t) (const void *, const void *, void *);
|
||||
void gnu_quicksort (void *const pbase, size_t total_elems, size_t size, __gnu_compar_d_fn_t cmp, void *arg);
|
Reference in New Issue
Block a user