mirror of
https://github.com/bol-van/zapret.git
synced 2024-12-02 14:40:52 +03:00
Updat
This commit is contained in:
parent
9e0bf35daf
commit
26a8b176ea
248
ip2net/qsort.c
248
ip2net/qsort.c
@ -1,250 +1,4 @@
|
|||||||
/* Copyright (C) 1991-2018 Free Software Foundation, Inc.
|
|
||||||
This file is part of the GNU C Library.
|
|
||||||
Written by Douglas C. Schmidt (schmidt@ics.uci.edu).
|
|
||||||
|
|
||||||
The GNU C Library is free software; you can redistribute it and/or
|
/* Stack nod
|
||||||
modify it under the terms of the GNU Lesser General Public
|
|
||||||
License as published by the Free Software Foundation; either
|
|
||||||
version 2.1 of the License, or (at your option) any later version.
|
|
||||||
|
|
||||||
The GNU C Library is distributed in the hope that it will be useful,
|
|
||||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
||||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
||||||
Lesser General Public License for more details.
|
|
||||||
|
|
||||||
You should have received a copy of the GNU Lesser General Public
|
|
||||||
License along with the GNU C Library; if not, see
|
|
||||||
<http://www.gnu.org/licenses/>. */
|
|
||||||
|
|
||||||
/* If you consider tuning this algorithm, you should consult first:
|
|
||||||
Engineering a sort function; Jon Bentley and M. Douglas McIlroy;
|
|
||||||
Software - Practice and Experience; Vol. 23 (11), 1249-1265, 1993. */
|
|
||||||
|
|
||||||
//#include <alloca.h>
|
|
||||||
#include <limits.h>
|
|
||||||
#include <stdlib.h>
|
|
||||||
//#include <string.h>
|
|
||||||
#include "qsort.h"
|
|
||||||
|
|
||||||
/* Byte-wise swap two items of size SIZE. */
|
|
||||||
#define SWAP(a, b, size) \
|
|
||||||
do \
|
|
||||||
{ \
|
|
||||||
size_t __size = (size); \
|
|
||||||
char *__a = (a), *__b = (b); \
|
|
||||||
do \
|
|
||||||
{ \
|
|
||||||
char __tmp = *__a; \
|
|
||||||
*__a++ = *__b; \
|
|
||||||
*__b++ = __tmp; \
|
|
||||||
} while (--__size > 0); \
|
|
||||||
} while (0)
|
|
||||||
|
|
||||||
/* Discontinue quicksort algorithm when partition gets below this size.
|
|
||||||
This particular magic number was chosen to work best on a Sun 4/260. */
|
|
||||||
#define MAX_THRESH 4
|
|
||||||
|
|
||||||
/* Stack node declarations used to store unfulfilled partition obligations. */
|
|
||||||
typedef struct
|
|
||||||
{
|
|
||||||
char *lo;
|
|
||||||
char *hi;
|
|
||||||
} stack_node;
|
|
||||||
|
|
||||||
/* The next 4 #defines implement a very fast in-line stack abstraction. */
|
|
||||||
/* The stack needs log (total_elements) entries (we could even subtract
|
|
||||||
log(MAX_THRESH)). Since total_elements has type size_t, we get as
|
|
||||||
upper bound for log (total_elements):
|
|
||||||
bits per byte (CHAR_BIT) * sizeof(size_t). */
|
|
||||||
#define STACK_SIZE (CHAR_BIT * sizeof(size_t))
|
|
||||||
#define PUSH(low, high) ((void) ((top->lo = (low)), (top->hi = (high)), ++top))
|
|
||||||
#define POP(low, high) ((void) (--top, (low = top->lo), (high = top->hi)))
|
|
||||||
#define STACK_NOT_EMPTY (stack < top)
|
|
||||||
|
|
||||||
|
|
||||||
/* Order size using quicksort. This implementation incorporates
|
|
||||||
four optimizations discussed in Sedgewick:
|
|
||||||
|
|
||||||
1. Non-recursive, using an explicit stack of pointer that store the
|
|
||||||
next array partition to sort. To save time, this maximum amount
|
|
||||||
of space required to store an array of SIZE_MAX is allocated on the
|
|
||||||
stack. Assuming a 32-bit (64 bit) integer for size_t, this needs
|
|
||||||
only 32 * sizeof(stack_node) == 256 bytes (for 64 bit: 1024 bytes).
|
|
||||||
Pretty cheap, actually.
|
|
||||||
|
|
||||||
2. Chose the pivot element using a median-of-three decision tree.
|
|
||||||
This reduces the probability of selecting a bad pivot value and
|
|
||||||
eliminates certain extraneous comparisons.
|
|
||||||
|
|
||||||
3. Only quicksorts TOTAL_ELEMS / MAX_THRESH partitions, leaving
|
|
||||||
insertion sort to order the MAX_THRESH items within each partition.
|
|
||||||
This is a big win, since insertion sort is faster for small, mostly
|
|
||||||
sorted array segments.
|
|
||||||
|
|
||||||
4. The larger of the two sub-partitions is always pushed onto the
|
|
||||||
stack first, with the algorithm then concentrating on the
|
|
||||||
smaller partition. This *guarantees* no more than log (total_elems)
|
|
||||||
stack size is needed (actually O(1) in this case)! */
|
|
||||||
|
|
||||||
void
|
|
||||||
gnu_quicksort (void *const pbase, size_t total_elems, size_t size,
|
|
||||||
__gnu_compar_d_fn_t cmp, void *arg)
|
|
||||||
{
|
|
||||||
char *base_ptr = (char *) pbase;
|
|
||||||
|
|
||||||
const size_t max_thresh = MAX_THRESH * size;
|
|
||||||
|
|
||||||
if (total_elems == 0)
|
|
||||||
/* Avoid lossage with unsigned arithmetic below. */
|
|
||||||
return;
|
|
||||||
|
|
||||||
if (total_elems > MAX_THRESH)
|
|
||||||
{
|
|
||||||
char *lo = base_ptr;
|
|
||||||
char *hi = &lo[size * (total_elems - 1)];
|
|
||||||
stack_node stack[STACK_SIZE];
|
|
||||||
stack_node *top = stack;
|
|
||||||
|
|
||||||
PUSH (NULL, NULL);
|
|
||||||
|
|
||||||
while (STACK_NOT_EMPTY)
|
|
||||||
{
|
|
||||||
char *left_ptr;
|
|
||||||
char *right_ptr;
|
|
||||||
|
|
||||||
/* Select median value from among LO, MID, and HI. Rearrange
|
|
||||||
LO and HI so the three values are sorted. This lowers the
|
|
||||||
probability of picking a pathological pivot value and
|
|
||||||
skips a comparison for both the LEFT_PTR and RIGHT_PTR in
|
|
||||||
the while loops. */
|
|
||||||
|
|
||||||
char *mid = lo + size * ((hi - lo) / size >> 1);
|
|
||||||
|
|
||||||
if ((*cmp) ((void *) mid, (void *) lo, arg) < 0)
|
|
||||||
SWAP (mid, lo, size);
|
|
||||||
if ((*cmp) ((void *) hi, (void *) mid, arg) < 0)
|
|
||||||
SWAP (mid, hi, size);
|
|
||||||
else
|
|
||||||
goto jump_over;
|
|
||||||
if ((*cmp) ((void *) mid, (void *) lo, arg) < 0)
|
|
||||||
SWAP (mid, lo, size);
|
|
||||||
jump_over:;
|
|
||||||
|
|
||||||
left_ptr = lo + size;
|
|
||||||
right_ptr = hi - size;
|
|
||||||
|
|
||||||
/* Here's the famous ``collapse the walls'' section of quicksort.
|
|
||||||
Gotta like those tight inner loops! They are the main reason
|
|
||||||
that this algorithm runs much faster than others. */
|
|
||||||
do
|
|
||||||
{
|
|
||||||
while ((*cmp) ((void *) left_ptr, (void *) mid, arg) < 0)
|
|
||||||
left_ptr += size;
|
|
||||||
|
|
||||||
while ((*cmp) ((void *) mid, (void *) right_ptr, arg) < 0)
|
|
||||||
right_ptr -= size;
|
|
||||||
|
|
||||||
if (left_ptr < right_ptr)
|
|
||||||
{
|
|
||||||
SWAP (left_ptr, right_ptr, size);
|
|
||||||
if (mid == left_ptr)
|
|
||||||
mid = right_ptr;
|
|
||||||
else if (mid == right_ptr)
|
|
||||||
mid = left_ptr;
|
|
||||||
left_ptr += size;
|
|
||||||
right_ptr -= size;
|
|
||||||
}
|
|
||||||
else if (left_ptr == right_ptr)
|
|
||||||
{
|
|
||||||
left_ptr += size;
|
|
||||||
right_ptr -= size;
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
while (left_ptr <= right_ptr);
|
|
||||||
|
|
||||||
/* Set up pointers for next iteration. First determine whether
|
|
||||||
left and right partitions are below the threshold size. If so,
|
|
||||||
ignore one or both. Otherwise, push the larger partition's
|
|
||||||
bounds on the stack and continue sorting the smaller one. */
|
|
||||||
|
|
||||||
if ((size_t) (right_ptr - lo) <= max_thresh)
|
|
||||||
{
|
|
||||||
if ((size_t) (hi - left_ptr) <= max_thresh)
|
|
||||||
/* Ignore both small partitions. */
|
|
||||||
POP (lo, hi);
|
|
||||||
else
|
|
||||||
/* Ignore small left partition. */
|
|
||||||
lo = left_ptr;
|
|
||||||
}
|
|
||||||
else if ((size_t) (hi - left_ptr) <= max_thresh)
|
|
||||||
/* Ignore small right partition. */
|
|
||||||
hi = right_ptr;
|
|
||||||
else if ((right_ptr - lo) > (hi - left_ptr))
|
|
||||||
{
|
|
||||||
/* Push larger left partition indices. */
|
|
||||||
PUSH (lo, right_ptr);
|
|
||||||
lo = left_ptr;
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
/* Push larger right partition indices. */
|
|
||||||
PUSH (left_ptr, hi);
|
|
||||||
hi = right_ptr;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/* Once the BASE_PTR array is partially sorted by quicksort the rest
|
|
||||||
is completely sorted using insertion sort, since this is efficient
|
|
||||||
for partitions below MAX_THRESH size. BASE_PTR points to the beginning
|
|
||||||
of the array to sort, and END_PTR points at the very last element in
|
|
||||||
the array (*not* one beyond it!). */
|
|
||||||
|
|
||||||
#define min(x, y) ((x) < (y) ? (x) : (y))
|
|
||||||
|
|
||||||
{
|
|
||||||
char *const end_ptr = &base_ptr[size * (total_elems - 1)];
|
|
||||||
char *tmp_ptr = base_ptr;
|
|
||||||
char *thresh = min(end_ptr, base_ptr + max_thresh);
|
|
||||||
char *run_ptr;
|
|
||||||
|
|
||||||
/* Find smallest element in first threshold and place it at the
|
|
||||||
array's beginning. This is the smallest array element,
|
|
||||||
and the operation speeds up insertion sort's inner loop. */
|
|
||||||
|
|
||||||
for (run_ptr = tmp_ptr + size; run_ptr <= thresh; run_ptr += size)
|
|
||||||
if ((*cmp) ((void *) run_ptr, (void *) tmp_ptr, arg) < 0)
|
|
||||||
tmp_ptr = run_ptr;
|
|
||||||
|
|
||||||
if (tmp_ptr != base_ptr)
|
|
||||||
SWAP (tmp_ptr, base_ptr, size);
|
|
||||||
|
|
||||||
/* Insertion sort, running from left-hand-side up to right-hand-side. */
|
|
||||||
|
|
||||||
run_ptr = base_ptr + size;
|
|
||||||
while ((run_ptr += size) <= end_ptr)
|
|
||||||
{
|
|
||||||
tmp_ptr = run_ptr - size;
|
|
||||||
while ((*cmp) ((void *) run_ptr, (void *) tmp_ptr, arg) < 0)
|
|
||||||
tmp_ptr -= size;
|
|
||||||
|
|
||||||
tmp_ptr += size;
|
|
||||||
if (tmp_ptr != run_ptr)
|
|
||||||
{
|
|
||||||
char *trav;
|
|
||||||
|
|
||||||
trav = run_ptr + size;
|
|
||||||
while (--trav >= run_ptr)
|
|
||||||
{
|
|
||||||
char c = *trav;
|
|
||||||
char *hi, *lo;
|
|
||||||
|
|
||||||
for (hi = lo = trav; (lo -= size) >= tmp_ptr; hi = lo)
|
|
||||||
*hi = *lo;
|
|
||||||
*hi = c;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
Loading…
Reference in New Issue
Block a user