--dpi-desync-fwmark=<int|0xHEX> ; бит fwmark для пометки десинхронизирующих пакетов, чтобы они повторно не падали в очередь. default = 0x40000000
--dpi-desync-ttl=<int> ; установить ttl для десинхронизирующих пакетов
--dpi-desync-ttl6=<int> ; установить ipv6 hop limit для десинхронизирующих пакетов. если не указано, используется значение ttl
--dpi-desync-fooling=<fooling> ; дополнительные методики как сделать, чтобы фейковый пакет не дошел до сервера. none md5sig badseq badsum hopbyhop hopbyhop2
--dpi-desync-retrans=0|1 ; (только для fake,rst,rstack) 0(default)=отправлять оригинал следом за фейком 1=дропать оригинал, заставляя ОС выполнять ретрансмиссию через 0.2 сек
--dpi-desync-repeats=<N> ; посылать каждый генерируемый в nfqws пакет N раз (не влияет на остальные пакеты)
--dpi-desync-skip-nosni=0| 1 ; 1(default)=не применять dpi desync для запросов без hostname в SNI, в частности для ESNI
--dpi-desync-split-pos=<1..1500> ; (только для split*, disorder*) разбивать пакет на указанной позиции
--dpi-desync-badseq-increment=<int|0xHEX> ; инкремент sequence number для badseq. по умолчанию -10000
--dpi-desync-badack-increment=<int|0xHEX> ; инкремент ack sequence number для badseq. по умолчанию -66000
--dpi-desync-any-protocol=0|1 ; 0(default)=работать только по http request и tls clienthello 1=по всем непустым пакетам данных
--dpi-desync-fake-http=<filename>|0xHEX ; файл, содержащий фейковый http запрос для dpi-desync=fake, на замену стандартному w3.org
--dpi-desync-fake-tls=<filename>|0xHEX ; файл, содержащий фейковый tls clienthello для dpi-desync=fake, на замену стандартному w3.org
--dpi-desync-fake-unknown=<filename>|0xHEX ; файл, содержащий фейковый пейлоад неизвестного протокола для dpi-desync=fake, на замену стандартным нулям 256 байт
Лучше делать так, потому что отсутствие дропа INVALID в FORWARD может привести к нежелательным утечкам пакетов из LAN.
Если не принять эти меры, отсылка SYN,ACK сегмента вызовет ошибку и операция будет прервана.
Остальные режимы тоже не сработают. Если поймете, что вам synack не нужен, обязательно верните правило дропа INVALID.
ВИРТУАЛЬНЫЕ МАШИНЫ
Изнутри VM от virtualbox и vmware в режиме NAT не работают многие техники пакетной магии nfqws.
Принудительно заменяется ttl, не проходят фейк пакеты. Необходимо настроить сеть в режиме bridge.
CONNTRACK
nfqws оснащен ограниченной реализацией слежения за состоянием tcp соединений (conntrack).
Он включается для реализации некоторых методов противодействия DPI.
На текущий момент это параметры --wssize и --dpi-desync-cutoff.
conntrack способен следить за фазой соединения : SYN,ESTABLISHED,FIN , количеством пакетов в каждую сторону,
sequence numbers. conntrack способен "кормиться" пакетами в обе или только в одну сторону.
Соединение попадает в таблицу при обнаружении пакетов с выставленными флагами SYN или SYN,ACK.
Поэтому если необходим conntrack, в правилах перенаправления iptables соединение должно идти на nfqws с самого первого
пакета, хотя затем может обрываться по фильтру connbytes.
Для UDP инициатором попадания в таблицу является первый UDP пакет. Он же и определяет направление потока.
Считается, что первый UDP пакет исходит от клиента к серверу. Далее все пакеты с совпадающими
src_ip,src_port,dst_ip,dst_port считаются принадлежащими этому потоку до истечения времени неактивности.
conntrack - простенький, он не писался с учетом всевозможных атак на соединение, он не проверяет
пакеты на валидность sequence numbers или чексумму. Его задача - лишь обслуживание нужд nfqws, он обычно
кормится только исходящим трафиком, потому нечувствителен к подменам со стороны внешней сети.
Соединение удаляется из таблицы, как только отпадает нужда в слежении за ним или по таймауту неактивности.
Существуют отдельные таймауты на каждую фазу соединения. Они могут быть изменены параметром --ctrack-timeouts.
--wssize позволяет изменить с клиента размер tcp window для сервера, чтобы он послал следующие ответы разбитыми на части.
Чтобы это подействовало на все серверные ОС, необходимо менять window size в каждом исходящем с клиента пакете до отсылки сообщения,
ответ на который должен быть разбит (например, TLS ClientHello). Именно поэтому и необходим conntrack, чтобы
знать когда надо остановиться. Если не остановиться и все время устанавливать низкий wssize, скорость упадет катастрофически.
В linux это может быть купировано через connbytes, но в BSD системах такой возможности нет.
В случае http(s) останавливаемся сразу после отсылки первого http запроса или TLS ClientHello.
Если вы имеете дело с не http(s), то вам потребуется параметр --wssize-cutoff. Он устанавливает предел, с которого действие
wssize прекращается. Префикс d перед номером означает учитывать только пакеты с data payload, префикс s - relative sequence number,
проще говоря количество переданных клиентом байтов + 1.
Если проскочит пакет с http request или TLS ClientHello, действие wssize прекращается сразу же, не дожидаясь wssize-cutoff.
Если ваш протокол склонен к долгому бездействию, следует увеличить таймаут фазы ESTABLISHED через параметр --ctrack-timeouts.
Таймаут по умолчанию низкий - всего 5 минут.
Не забывайте, что nfqws кормится приходящими на него пакетами. Если вы ограничили поступление пакетов через connbytes,
то в таблице могут остаться повисшие соединения в фазе ESTABLISHED, которые отвалятся только по таймауту.
Для диагностики состояния conntrack пошлите сигнал SIGUSR1 процессу nfqws : killall -SIGUSR1 nfqws.
Текущая таблица будет выведена nfqws в stdout.
Обычно в SYN пакете клиент отсылает кроме window size еще и TCP extension "scaling factor".
scaling factor представляет из себя степень двойки, на которую умножается window size : 0=>1, 1=>2, 2=>4, ..., 8=>256, ...
В параметре wssize scaling factor указывается через двоеточие.
Scaling factor может только снижаться, увеличение заблокировано, чтобы не допустить превышение размера окна со стороны сервера.
Для принуждения сервера к фрагментации ServerHello, чтобы избежать просекание имени сервера из сертификата сервера на DPI,
лучше всего использовать --wssize=1:6 . Основное правило - делать scale_factor как можно больше, чтобы после восстановления
window size итоговый размер окна стал максимально возможным. Если вы сделаете 64:0, будет очень медленно.
С другой стороны нельзя допустить, чтобы ответ сервера стал достаточно большим, чтобы DPI нашел там искомое.
На --wssize не влияет фильтр hostlist, поскольку он действует с самого начала соединения, когда еще нельзя
принять решение о попадании в лист.
--wssize может замедлять скорость и/или увеличивать время ответа сайтов, поэтому если есть другие работающие способы
обхода DPI, лучше применять их.
--dpi-desync-cutoff позволяет задать предел, при достижении которого прекращается применение dpi-desync.
Доступны префиксы n,d,s по аналогии с --wssize-cutoff.
Полезно совместно с --dpi-desync-any-protocol=1.
На склонных к бездействию соединениях следует изменить таймауты conntrack.
Если соединение выпало из conntrack и задана опция --dpi-desync-cutoff, dpi desync применяться не будет.
ПОДДЕРЖКА UDP
Атаки на udp более ограничены в возможностях. udp нельзя фрагментировать иначе, чем на уровне ip.
Для UDP действуют только режимы десинхронизации fake,hopbyhop,destopt,ipfrag1,ipfrag2,udplen,tamper.
Возможно сочетание fake,hopbyhop,destopt с ipfrag2, fake,fakeknown с udplen и tamper.
udplen увеличивает размер udp пакета на указанное в --dpi-desync-udplen-increment количество байтов.
Паддинг заполняется нулями по умолчанию, но можно задать свой паттерн.
Предназначено для обмана DPI, ориентирующегося на размеры пакетов.
Может сработать, если пользовательсткий протокол не привязан жестко к размеру udp пейлоада.
Режим tamper означает модификацию пакетов известных протоколов особенным для протокола образом.
На текущий момент работает только с DHT.
Поддерживается определение пакетов QUIC Initial с расшифровкой содержимого и имени хоста, то есть параметр
--hostlist будет работать.
Определяются пакеты wireguard handshake initiation и DHT (начинается с 'd1', кончается 'e').
Для десинхронизации других протоколов обязательно указывать --dpi-desync-any-protocol.
Реализован conntrack для udp. Можно пользоваться --dpi-desync-cutoff. Таймаут conntrack для udp
можно изменить 4-м параметром в --ctrack-timeouts.
Атака fake полезна только для stateful DPI, она бесполезна для анализа на уровне отдельных пакетов.
По умолчанию fake наполнение - 64 нуля. Можно указать файл в --dpi-desync-fake-unknown-udp.
IP ФРАГМЕНТАЦИЯ
В современной сети с этом все очень плохо. Фрагментированные пакеты застревают по пути, часто отбрасываются.
Иногда доходят. Иногда то доходят, то не доходят. Может зависеть от версии ipv4/ipv6.
Роутеры на базе linux могут самопроизвольно собирать или перефрагментировать пакеты.
Позиция фрагментации задается отдельно для tcp и udp. По умолчанию 24 и 8 соответственно, должна быть кратна 8.
Смещение считается с транспортного заголовка.
Существует ряд моментов вокруг работы с фрагментами на Linux, без понимания которых может ничего не получиться.
ipv4 : Linux дает отсылать ipv4 фрагменты, но стандартные настройки iptables в цепочке OUTPUT могут вызывать ошибки отправки.
ipv6 : Нет способа для приложения гарантированно отослать фрагменты без дефрагментации в conntrack.
На разных системах получается по-разному. Где-то нормально уходят, где-то пакеты дефрагментируются.
Для ядер <4.16 похоже, что нет иного способа решить эту проблему, кроме как выгрузить модуль nf_conntrack,
который подтягивает зависимость nf_defrag_ipv6. Он то как раз и выполняет дефрагментацию.
Для ядер 4.16+ ситуация чуть лучше. Из дефрагментации исключаются пакеты в состоянии NOTRACK.
Чтобы не загромождать описание, смотрите пример решения этой проблемы в blockcheck.sh.
Иногда требуется подгружать модуль ip6table_raw с параметром raw_before_defrag=1.
В openwrt параметры модулей указываются через пробел после их названий в файлах /etc/modules.d.
В традиционных системах посмотрите используется ли iptables-legacy или iptables-nft. Если legacy, то нужно создать файл
/etc/modprobe.d/ip6table_raw.conf с содержимым :
options ip6table_raw raw_before_defrag=1
В некоторых традиционных дистрибутивах можно изменить текущий ip6tables через : update-alternatives --config ip6tables
Если вы хотите оставаться на iptables-nft, вам придется пересобрать патченную версию. Патч совсем небольшой.
В nft.c найдите фрагмент :
{
.name = "PREROUTING",
.type = "filter",
.prio = -300, /* NF_IP_PRI_RAW */
.hook = NF_INET_PRE_ROUTING,
},
{
.name = "OUTPUT",
.type = "filter",
.prio = -300, /* NF_IP_PRI_RAW */
.hook = NF_INET_LOCAL_OUT,
},
и замените везде -300 на -450.
Это нужно сделать вручную, никакой автоматики в blockcheck.sh нет.
Либо можно раз и навсегда избавиться от этой проблемы, используя nftables. Там можно создать netfilter hook
с любым приоритетом. Используйте приоритет -401 и ниже.
При использовании iptables и NAT, похоже, что нет способа прицепить обработчик очереди после NAT.
MASQUERADE является финальным таргетом, после него NFQUEUE не срабатывает.
Пакет попадает в nfqws с source адресом внутренней сети, затем фрагментируется и уже не обрабатывается NAT.
Так и уходит во внешюю сеть с src ip 192.168.x.x. Следовательно, метод не срабатывает.
Видимо единственный рабочий метод - отказаться от iptables и использовать nftables.
Хук должен быть с приоритетом 101 или выше.
tpws
-----
tpws - это transparent proxy.
--debug=0|1|2 ; Количество буковок в output : 0(default)=тихо, 1=подробно, 2=отладка
--daemon ; демонизировать прогу
--pidfile=<file> ; сохранить PID в файл
--user=<username> ; менять uid процесса
--uid=uid[:gid] ; менять uid процесса
--bind-addr ; на каком адресе слушать. может быть ipv4 или ipv6 адрес
; если указан ipv6 link local, то требуется указать с какого он интерфейса : fe80::1%br-lan
--bind-linklocal=no|unwanted|prefer|force
; no : биндаться только на global ipv6
; unwanted (default) : предпочтительно global, если нет - LL
; prefer : предпочительно LL, если нет - global
; force : биндаться только на LL
--bind-iface4=<iface> ; слушать на первом ipv4 интерфейса iface
--bind-iface6=<iface> ; слушать на первом ipv6 интерфейса iface
--bind-wait-ifup=<sec> ; ждать до N секунд появления и поднятия интерфейса
--bind-wait-ip=<sec> ; ждать до N секунд получения IP адреса (если задан --bind-wait-ifup - время идет после поднятия интерфейса)
--bind-wait-ip-linklocal=<sec>
; имеет смысл только при задании --bind-wait-ip
; --bind-linklocal=unwanted : согласиться на LL после N секунд
; --bind-linklocal=prefer : согласиться на global address после N секунд
--bind-wait-only ; подождать все бинды и выйти. результат 0 в случае успеха, иначе не 0.
--socks ; вместо прозрачного прокси реализовать socks4/5 proxy
--no-resolve ; запретить ресолвинг имен через socks5
--port=<port> ; на каком порту слушать
--maxconn=<max_connections> ; максимальное количество соединений от клиентов к прокси
--maxfiles=<max_open_files> ; макс количество файловых дескрипторов (setrlimit). мин требование (X*connections+16), где X=6 в tcp proxy mode, X=4 в режиме тамперинга.
; стоит сделать запас с коэффициентом как минимум 1.5. по умолчанию maxfiles (X*connections)*1.5+16
--max-orphan-time=<sec>; если вы запускаете через tpws торрент-клиент с множеством раздач, он пытается установить очень много исходящих соединений,
; большая часть из которых отваливается по таймату (юзера сидят за NAT, firewall, ...)
; установление соединения в linux может длиться очень долго. локальный конец отвалился, перед этим послав блок данных,
; tpws ждет подключения удаленного конца, чтобы отослать ему этот блок, и зависает надолго.
; настройка позволяет сбрасывать такие подключения через N секунд, теряя блок данных. по умолчанию 5 сек. 0 означает отключить функцию
; эта функция не действует на успешно подключенные ранее соединения
--local-rcvbuf=<bytes> ; SO_RCVBUF для соединений client-proxy
--local-sndbuf=<bytes> ; SO_SNDBUF для соединений client-proxy
--remote-rcvbuf=<bytes> ; SO_RCVBUF для соединений proxy-target
--remote-sndbuf=<bytes> ; SO_SNDBUF для соединений proxy-target
--skip-nodelay ; не устанавливать в исходящих соединения TCP_NODELAY. несовместимо со split.
--split-http-req=method|host ; способ разделения http запросов на сегменты : около метода (GET,POST) или около заголовка Host
--split-pos=<offset> ; делить все посылы на сегменты в указанной позиции. единственная опция, работающая на не-http. при указании split-http-req он имеет преимущество на http.
--split-any-protocol ; применять split-pos к любым пакетам. по умолчанию - только к http и TLS ClientHello
--disorder ; путем манипуляций с сокетом вынуждает отправлять первым второй сегмент разделенного запроса
--hostcase ; менять регистр заголовка "Host:". по умолчанию на "host:".
--hostspell=HoST ; точное написание заголовка Host (можно "HOST" или "HoSt"). автоматом включает --hostcase
--hostdot ; добавление точки после имени хоста : "Host: kinozal.tv."
--hosttab ; добавление табуляции после имени хоста : "Host: kinozal.tv\t"
--hostnospace ; убрать пробел после "Host:"
--hostpad=<bytes> ; добавить паддинг-хедеров общей длиной <bytes> перед Host:
--domcase ; домен после Host: сделать таким : TeSt.cOm
--methodspace ; добавить пробел после метода : "GET /" => "GET /"
--methodeol ; добавить перевод строки перед методом : "GET /" => "\r\nGET /"
--unixeol ; конвертировать 0D0A в 0A и использовать везде 0A
--tlsrec=sni ; разбивка TLS ClientHello на 2 TLS records. режем между 1 и 2 символами hostname в SNI. Если SNI нет - отмена.
--tlsrec-pos=<pos> ; разбивка TLS ClientHello на 2 TLS records. режем на указанной позиции, если длина слишком мелкая - на позиции 1.
--hostlist=<filename> ; действовать только над доменами, входящими в список из filename. поддомены автоматически учитываются.
; в файле должен быть хост на каждой строке.
; список читается 1 раз при старте и хранится в памяти в виде иерархической структуры для быстрого поиска.
; по сигналу HUP список будет перечитан при следующем принятом соединении
; список может быть запакован в gzip. формат автоматически распознается и разжимается
; списков может быть множество, они обьединяются. пустой общий лист = его отсутствие
; хосты извлекаются из Host: хедера обычных http запросов и из SNI в TLS ClientHello.
--hostlist-exclude=<filename> ; не применять дурение к доменам из листа. может быть множество листов, они обьединяются
Параметры манипуляции могут сочетаться в любых комбинациях.
В случае http запроса split-http-req имеет преимущество над split-pos.
split-pos по умолчанию работает только на http и TLS ClientHello.
Чтобы он работал на любых пакетах, укажите --split-any-protocol.
На прикладном уровне в общем случае нет гарантированного средства заставить ядро выплюнуть
блок данных, порезанным в определенном месте. ОС держит буфер отсылки (SNDBUF) у каждого сокета.
Если у сокета включена опция TCP_NODELAY и буфер пуст, то каждый send приводит к отсылке
отдельного ip пакета или группы пакетов, если блок не вмещается в один ip пакет.
Однако, если в момент send уже имеется неотосланный буфер, то ОС присоединит данные к нему,
никакой отсылки отдельным пакетом не будет. Но в этом случае и так нет никакой гарантии,
что какой-то блок сообщения пойдет в начале пакета, на что собственно и заточены DPI.
Разбиение будет производится согласно MSS, который зависит от MTU исходящего интерфейса.
Таким образом DPI, смотрящие в начало поля данных TCP пакета, будут поломаны в любом случае.
Протокол http относится к запрос-ответным протоколам. Новое сообщение посылается только тогда,
когда сервер получил запрос и полностью вернул ответ. Значит запрос фактически был не только отослан,
но и принят другой стороной, а следовательно буфер отсылки пуст, и следующие 2 send приведут
к отсылке сегментов данных разными ip пакетами.
Резюме : tpws гарантирует сплит только за счет раздельных вызовов send, что на практике
вполне достаточно для протоколов http(s).
tpws может биндаться на множество интерфейсов и IP адресов (до 32 шт).
Порт всегда только один.
Параметры --bind-iface* и --bind-addr создают новый бинд.
Остальные параметры --bind-* относятся к последнему бинду.
Для бинда на все ipv4 укажите --bind-addr "0.0.0.0", на все ipv6 - "::". --bind-addr="" - биндаемся на все ipv4 и ipv6.
Выбор режима использования link local ipv6 адресов (fe80::/8) :
--bind-iface6 --bind-linklocal=no : сначала приватный адрес fc00::/7, затем глобальный адрес
--bind-iface6 --bind-linklocal=unwanted : сначала приватный адрес fc00::/7, затем глобальный адрес, затем link local.
--bind-iface6 --bind-linklocal=prefer : сначала link local, затем приватный адрес fc00::/7, затем глобальный адрес.
--bind-iface6 --bind-linklocal=force : только link local
Если не указано ни одного бинда, то создается бинд по умолчанию на все адреса всех интерфейсов.
Для бинда на конкретный link-local address делаем так : --bind-iface6=fe80::aaaa:bbbb:cccc:dddd%iface-name
Параметры --bind-wait* могут помочь в ситуациях, когда нужно взять IP с интерфейса, но его еще нет, он не поднят
или не сконфигурирован.
В разных системах события ifup ловятся по-разному и не гарантируют, что интерфейс уже получил IP адрес определенного типа.
В общем случае не существует единого механизма повеситься на событие типа "на интерфейсе X появился link local address".
Для бинда на известный ip, когда еще интерфейс не сконфигурирован, нужно делать так : --bind-addr=192.168.5.3 --bind-wait-ip=20
В режиме transparent бинд возможен на любой несуществующий адрес, в режиме socks - только на существующий.
Параметры rcvbuf и sndbuf позволяют установить setsockopt SO_RCVBUF SO_SNDBUF для локального и удаленного соединения.
Если не указан ни один из параметров модификации содержимого, tpws работает в режиме "tcp proxy mode".
Он отличается тем, что в оба конца применяется splice для переброски данных из одного сокета в другой
без копирования в память процесса. Практически - это то же самое, но может быть чуть побыстрее.
TCP проксирование может быть полезно для обхода блокировок, когда DPI спотыкается на экзотических
хедерах IP или TCP. Вы вряд ли сможете поправить хедеры, исходящие от айфончиков и гаджетиков,
но на linux сможете влиять на них в какой-то степени через sysctl.
Когда соединение проходит через tpws, фактически прокси-сервер сам устанавливает подключение к удаленному
узлу от своего имени, и на это распространяются настройки системы, на которой работает прокси.
tpws можно использовать на мобильном устройстве, раздающем интернет на тарифе сотового оператора,
где раздача запрещена, в socks режиме даже без рута. Соединения от tpws неотличимы от соединений
с самого раздающего устройства. Отличить можно только по содержанию (типа обновлений windows).
Заодно можно и обойти блокировки. 2 зайца одним выстрелом.
Более подробную информацию по вопросу обхода ограничений операторов гуглите на 4pda.ru.
Режим "--socks" не требует повышенных привилегий (кроме бинда на привилегированные порты 1..1023).
Поддерживаются версии socks 4 и 5 без авторизации. Версия протокола распознается автоматически.
Подключения к IP того же устройства, на котором работает tpws, включая localhost, запрещены.
tpws поддерживает эту возможность, однако используется блокирующий ресолвинг. Пока система
ресолвит хост (это может занять секунды), вся активность останавливается.
tpws полностью работает на асинхронных сокетах, но ресолвинг может попортить эту модель.
С ним возможны атаки DoS на tpws. Если tpws обслуживает множество клиентов, то из-за частого
ресолвинга качество обслуживания может существенно ухудшиться.
Если удаленный ресолвинг создает проблемы, настройте клиенты на локальный ресолвинг, включите опцию
--no-resolve на стороне tpws.
Параметр --hostpad=<bytes> добавляет паддинг-хедеров перед Host: на указанное количество байтов.
Если размер <bytes> слишком большой, то идет разбивка на разные хедеры по 2K.
Общий буфер приема http запроса - 64K, больший паддинг не поддерживается, да и http сервера
такое уже не принимают.
Полезно против DPI, выполняющих реассемблинг TCP с ограниченным буфером.
Если техника работает, то после некоторого количества bytes http запрос начнет проходить до сайта.
Если при этом критический размер padding около MTU, значит скорее всего DPI не выполняет реассемблинг пакетов, и лучше будет использовать обычные опции --split-…
Если все же реассемблинг выполняется, то критический размер будет около размера буфера DPI. Он может быть 4K или 8K, возможны и другие значения.
--disorder - это попытка симулировать режим disorder2 nfqws , используя особенности ОС по реализации stream сокетов.
Однако, в отличие от nfqws, здесь не требуются повышенные привилегии.
Реализовано это следующим образом. У сокета есть возможность выставить TTL. Все пакеты будут отправляться с ним.
Перед отправкой первого сегмента ставим TTL=1. Пакет будет дропнут на первом же роутере, он не дойдет ни до DPI, ни до сервера.
Затем возвращаем TTL в значение по умолчанию. ОС отсылает второй сегмент, и он уже доходит до сервера.
Сервер возвращает SACK, потому что не получил первый кусок, и ОСего отправляет повторно, но здесь уже мы ничего не делаем.
Этот режим работает как ожидается на Linux и MacOS. Однако, на FreeBSD и OpenBSD он работает не так хорошо.
Ядро этих ОС отсылает ретрансмиссию в виде полного пакета. Потому выходит, что до сервера идет сначала второй кусок,
а потом полный запрос без сплита. На него может отреагировать DPI штатным образом.
--disorder является дополнительным флагом к любому сплиту. Сам по себе он не делает ничего.
--tlsrec и --tlsrec-pos позволяют внутри одного tcp сегмента разрезать TLS ClientHello на 2 TLS records.
Если какая-то из переменных NFQWS_OPT_DESYNC_HTTP/NFQWS_OPT_DESYNC_HTTPS не определена,
берется значение NFQWS_OPT_DESYNC.
Если какая-то из переменных NFQWS_OPT_DESYNC_HTTP6/NFQWS_OPT_DESYNC_HTTPS6 не определена,
берется значение NFQWS_OPT_DESYNC_HTTP/NFQWS_OPT_DESYNC_HTTPS.
Опции дурения для QUIC :
NFQWS_OPT_DESYNC_QUIC="--dpi-desync=fake"
NFQWS_OPT_DESYNC_QUIC6="--dpi-desync=hopbyhop"
Если NFQWS_OPT_DESYNC_QUIC6 не задано, то берется NFQWS_OPT_DESYNC_QUIC.
Настройка системы управления выборочным traffic offload (только если поддерживается)
donttouch : выборочное управление отключено, используется системная настройка, простой инсталятор выключает системную настройку, если она не совместима с выбранным режимом
none : выборочное управление отключено, простой инсталятор выключает системную настройку
software : выборочное управление включено в режиме software, простой инсталятор выключает системную настройку
hardware : выборочное управление включено в режиме hardware, простой инсталятор выключает системную настройку
FLOWOFFLOAD=donttouch
Параметр GETLIST указывает инсталятору install_easy.sh какой скрипт дергать
для обновления списка заблокированных ip или хостов.
Он же вызывается через get_config.sh из запланированных заданий (crontab или systemd timer).
Поместите сюда название скрипта, который будете использовать для обновления листов.
Если не нужно, то параметр следует закомментировать.
Можно индивидуально отключить ipv4 или ipv6. Если параметр закомментирован или не равен "1",
использование протокола разрешено.
#DISABLE_IPV4=1
DISABLE_IPV6=1
Количество потоков для многопоточного DNS ресолвера mdig (1..100).
Чем их больше, тем быстрее, но не обидится ли на долбежку ваш DNS сервер ?
MDIG_THREADS=30
Место для хранения временных файлов. При скачивании огромных реестров в /tmp места может не хватить.
Если файловая система на нормальном носителе (не встроенная память роутера), то можно
указать место на флэшке или диске.
TMPDIR=/opt/zapret/tmp
Опции для создания ipset-ов и nfset-ов
SET_MAXELEM=262144
IPSET_OPT="hashsize 262144 maxelem 2097152"
Хук, позволяющий внести ip адреса динамически. $1 = имя таблицы
Адреса выводятся в stdout. В случае nfset автоматически решается проблема возможного пересечения интервалов.
IPSET_HOOK="/etc/zapret.ipset.hook"
ПРО РУГАНЬ в dmesg по поводу нехватки памяти.
Может так случиться, что памяти в системе достаточно, но при попытке заполнить огромный ipset
ядро начинает громко ругаться, ipset заполняется не полностью.
Вероятная причина в том, что превышается hashsize, заданный при создании ipset (create_ipset.sh).
Происходит переаллокация списка, не находится непрерывных фрагментов памяти нужной длины.
Это лечится увеличением hashsize. Но чем больше hashsize, тем больше занимает ipset в памяти.
Задавать слишком большой hashsize для недостаточно больших списков нецелесообразно.
Опции для вызова ip2net. Отдельно для листов ipv4 и ipv6.