mirror of
https://github.com/lcn2/calc.git
synced 2025-08-16 01:03:29 +03:00
Added notes to help/unexpected about: display() will limit the number of digits printed after decimal point %d will format after the decimal point for non-integer numeric values %x will format as fractions for non-integer numeric values fprintf(fd, "%d\n", huge_value) may need fflush(fd) to finish Fixed Makefile dependencies for the args.h rule. Fixed Makefile cases where echo with -n is used. On some systems, /bin/sh does not use -n, so we must call /bin/echo -n instead via the ${ECHON} Makefile variable. Add missing standard tools to sub-Makefiles to make them easier to invoke directly. Sort lists of standard tool Makefile variables and remove duplicates. Declare the SHELL at the top of Makefiles. Fixed the depend rule in the custom Makefile. Improved the messages produced by the depend in the Makefiles. Changed the UNUSED define in have_unused.h to be a macro with a parameter. Changed all use of UNUSED in *.c to be UNUSED(x). Removed need for HAVE_UNUSED in building the have_unused.h file. CCBAN is given to ${CC} in order to control if banned.h is in effect. The banned.h attempts to ban the use of certain dangerous functions that, if improperly used, could compromise the computational integrity if calculations. In the case of calc, we are motivated in part by the desire for calc to correctly calculate: even during extremely long calculations. If UNBAN is NOT defined, then calling certain functions will result in a call to a non-existent function (link error). While we do NOT encourage defining UNBAN, there may be a system / compiler environment where re-defining a function may lead to a fatal compiler complication. If that happens, consider compiling as: make clobber all chk CCBAN=-DUNBAN as see if this is a work-a-round. If YOU discover a need for the -DUNBAN work-a-round, PLEASE tell us! Please send us a bug report. See the file: BUGS or the URL: http://www.isthe.com/chongo/tech/comp/calc/calc-bugrept.html for how to send us such a bug report. Added the building of have_ban_pragma.h, which will determine if "#pragma GCC poison func_name" is supported. If it is not, or of HAVE_PRAGMA_GCC_POSION=-DHAVE_NO_PRAGMA_GCC_POSION, then banned.h will have no effect. Fixed building of the have_getpgid.h file. Fixed building of the have_getprid.h file. Fixed building of the have_getsid.h file. Fixed building of the have_gettime.h file. Fixed building of the have_strdup.h file. Fixed building of the have_ustat.h file. Fixed building of the have_rusage.h file. Added HAVE_NO_STRLCPY to control if we want to test if the system has a strlcpy() function. This in turn produces the have_strlcpy.h file wherein the symbol HAVE_STRLCPY will be defined, or not depending if the system comes with a strlcpy() function. If the system does not have a strlcpy() function, we compile our own strlcpy() function. See strl.c for details. Added HAVE_NO_STRLCAT to control if we want to test if the system has a strlcat() function. This in turn produces the have_strlcat.h file wherein the symbol HAVE_STRLCAT will be defined, or not depending if the system comes with a strlcat() function. If the system does not have a strlcat() function, we compile our own strlcat() function. See strl.c for details. Fixed places were <string.h>, using #ifdef HAVE_STRING_H for legacy systems that do not have that include file. Added ${H} Makefile symbol to control the announcement of forming and having formed hsrc related files. By default H=@ (announce hsrc file formation) vs. H=@: to silence hsrc related file formation. Explicitly turn off quiet mode (set Makefile variable ${Q} to be empty) when building rpms. Improved and fixed the hsrc build process. Forming rpms is performed in verbose mode to assist debugging to the rpm build process. Compile custom code, if needed, after main code is compiled.
795 lines
18 KiB
C
795 lines
18 KiB
C
/*
|
|
* zio - scanf and printf routines for arbitrary precision integers
|
|
*
|
|
* Copyright (C) 1999-2007,2021 David I. Bell
|
|
*
|
|
* Calc is open software; you can redistribute it and/or modify it under
|
|
* the terms of the version 2.1 of the GNU Lesser General Public License
|
|
* as published by the Free Software Foundation.
|
|
*
|
|
* Calc is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General
|
|
* Public License for more details.
|
|
*
|
|
* A copy of version 2.1 of the GNU Lesser General Public License is
|
|
* distributed with calc under the filename COPYING-LGPL. You should have
|
|
* received a copy with calc; if not, write to Free Software Foundation, Inc.
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*
|
|
* Under source code control: 1993/07/30 19:42:48
|
|
* File existed as early as: 1993
|
|
*
|
|
* Share and enjoy! :-) http://www.isthe.com/chongo/tech/comp/calc/
|
|
*/
|
|
|
|
|
|
#include <stdio.h>
|
|
#include "alloc.h"
|
|
#include "config.h"
|
|
#include "zmath.h"
|
|
#include "args.h"
|
|
|
|
|
|
#include "banned.h" /* include after system header <> includes */
|
|
|
|
|
|
#define OUTBUFSIZE 200 /* realloc size for output buffers */
|
|
|
|
#define PUTCHAR(ch) math_chr(ch)
|
|
#define PUTSTR(str) math_str(str)
|
|
#define PRINTF1(fmt, a1) math_fmt(fmt, a1)
|
|
#define PRINTF2(fmt, a1, a2) math_fmt(fmt, a1, a2)
|
|
#define PRINTF3(fmt, a1, a2, a3) math_fmt(fmt, a1, a2, a3)
|
|
#define PRINTF4(fmt, a1, a2, a3, a4) math_fmt(fmt, a1, a2, a3, a4)
|
|
|
|
|
|
/*
|
|
* Output state that has been saved when diversions are done.
|
|
*/
|
|
typedef struct iostate IOSTATE;
|
|
struct iostate {
|
|
IOSTATE *oldiostates; /* previous saved state */
|
|
long outdigits; /* digits for output */
|
|
int outmode; /* output mode */
|
|
int outmode2; /* secondary output mode */
|
|
FILE *outfp; /* file unit for output (if any) */
|
|
char *outbuf; /* output string buffer (if any) */
|
|
size_t outbufsize; /* current size of string buffer */
|
|
size_t outbufused; /* space used in string buffer */
|
|
BOOL outputisstring; /* TRUE if output is to string buffer */
|
|
};
|
|
|
|
|
|
STATIC IOSTATE *oldiostates = NULL; /* list of saved output states */
|
|
STATIC FILE *outfp = NULL; /* file unit for output */
|
|
STATIC char *outbuf = NULL; /* current diverted buffer */
|
|
STATIC BOOL outputisstring = FALSE;
|
|
STATIC size_t outbufsize;
|
|
STATIC size_t outbufused;
|
|
|
|
|
|
/*
|
|
* zio_init - perform needed initialization work
|
|
*
|
|
* On some systems, one cannot initialize a pointer to a FILE *.
|
|
* This routine, called once at startup is a work-a-round for
|
|
* systems with such bogons.
|
|
*/
|
|
void
|
|
zio_init(void)
|
|
{
|
|
STATIC int done = 0; /* 1 => routine already called */
|
|
|
|
if (!done) {
|
|
outfp = stdout;
|
|
done = 1;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Routine to output a character either to a FILE
|
|
* handle or into a string.
|
|
*/
|
|
void
|
|
math_chr(int ch)
|
|
{
|
|
char *cp;
|
|
|
|
if (!outputisstring) {
|
|
fputc(ch, outfp);
|
|
return;
|
|
}
|
|
if (outbufused >= outbufsize) {
|
|
cp = (char *)realloc(outbuf, outbufsize + OUTBUFSIZE + 1);
|
|
if (cp == NULL) {
|
|
math_error("Cannot realloc output string");
|
|
/*NOTREACHED*/
|
|
}
|
|
outbuf = cp;
|
|
outbufsize += OUTBUFSIZE;
|
|
}
|
|
outbuf[outbufused++] = (char)ch;
|
|
}
|
|
|
|
|
|
/*
|
|
* Routine to output a null-terminated string either
|
|
* to a FILE handle or into a string.
|
|
*/
|
|
void
|
|
math_str(char *str)
|
|
{
|
|
char *cp;
|
|
size_t len;
|
|
|
|
if (!outputisstring) {
|
|
fputs(str, outfp);
|
|
return;
|
|
}
|
|
len = strlen(str);
|
|
if ((outbufused + len) > outbufsize) {
|
|
cp = (char *)realloc(outbuf, outbufsize + len + OUTBUFSIZE + 1);
|
|
if (cp == NULL) {
|
|
math_error("Cannot realloc output string");
|
|
/*NOTREACHED*/
|
|
}
|
|
outbuf = cp;
|
|
outbufsize += (len + OUTBUFSIZE);
|
|
}
|
|
memcpy(&outbuf[outbufused], str, len);
|
|
outbufused += len;
|
|
}
|
|
|
|
|
|
/*
|
|
* Output a null-terminated string either to a FILE handle or into a string,
|
|
* padded with spaces as needed so as to fit within the specified width.
|
|
* If width is positive, the spaces are added at the front of the string.
|
|
* If width is negative, the spaces are added at the end of the string.
|
|
* The complete string is always output, even if this overflows the width.
|
|
* No characters within the string are handled specially.
|
|
*/
|
|
void
|
|
math_fill(char *str, long width)
|
|
{
|
|
if (width > 0) {
|
|
width -= (long)strlen(str);
|
|
while (width-- > 0)
|
|
PUTCHAR(' ');
|
|
PUTSTR(str);
|
|
} else {
|
|
width += (long)strlen(str);
|
|
PUTSTR(str);
|
|
while (width++ < 0)
|
|
PUTCHAR(' ');
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Routine to output a printf-style formatted string either
|
|
* to a FILE handle or into a string.
|
|
*/
|
|
void
|
|
math_fmt(char *fmt, ...)
|
|
{
|
|
va_list ap;
|
|
char buf[BUFSIZ+1];
|
|
|
|
va_start(ap, fmt);
|
|
vsnprintf(buf, BUFSIZ, fmt, ap);
|
|
va_end(ap);
|
|
buf[BUFSIZ] = '\0'; /* paranoia */
|
|
math_str(buf);
|
|
}
|
|
|
|
|
|
/*
|
|
* Flush the current output stream.
|
|
*/
|
|
void
|
|
math_flush(void)
|
|
{
|
|
if (!outputisstring)
|
|
fflush(outfp);
|
|
}
|
|
|
|
|
|
/*
|
|
* Divert further output so that it is saved into a string that will be
|
|
* returned later when the diversion is completed. The current state of
|
|
* output is remembered for later restoration. Diversions can be nested.
|
|
* Output diversion is only intended for saving output to "stdout".
|
|
*/
|
|
void
|
|
math_divertio(void)
|
|
{
|
|
register IOSTATE *sp;
|
|
|
|
sp = (IOSTATE *) malloc(sizeof(IOSTATE));
|
|
if (sp == NULL) {
|
|
math_error("No memory for diverting output");
|
|
/*NOTREACHED*/
|
|
}
|
|
sp->oldiostates = oldiostates;
|
|
sp->outdigits = conf->outdigits;
|
|
sp->outmode = conf->outmode;
|
|
sp->outmode2 = conf->outmode2;
|
|
sp->outfp = outfp;
|
|
sp->outbuf = outbuf;
|
|
sp->outbufsize = outbufsize;
|
|
sp->outbufused = outbufused;
|
|
sp->outputisstring = outputisstring;
|
|
|
|
outbufused = 0;
|
|
outbufsize = 0;
|
|
outbuf = (char *) malloc(OUTBUFSIZE + 1);
|
|
if (outbuf == NULL) {
|
|
math_error("Cannot allocate divert string");
|
|
/*NOTREACHED*/
|
|
}
|
|
outbufsize = OUTBUFSIZE;
|
|
outputisstring = TRUE;
|
|
oldiostates = sp;
|
|
}
|
|
|
|
|
|
/*
|
|
* Undivert output and return the saved output as a string. This also
|
|
* restores the output state to what it was before the diversion began.
|
|
* The string needs freeing by the caller when it is no longer needed.
|
|
*/
|
|
char *
|
|
math_getdivertedio(void)
|
|
{
|
|
register IOSTATE *sp;
|
|
char *cp;
|
|
|
|
sp = oldiostates;
|
|
if (sp == NULL) {
|
|
math_error("No diverted state to restore");
|
|
/*NOTREACHED*/
|
|
}
|
|
cp = outbuf;
|
|
cp[outbufused] = '\0';
|
|
oldiostates = sp->oldiostates;
|
|
conf->outdigits = sp->outdigits;
|
|
conf->outmode = sp->outmode;
|
|
conf->outmode2 = sp->outmode2;
|
|
outfp = sp->outfp;
|
|
outbuf = sp->outbuf;
|
|
outbufsize = sp->outbufsize;
|
|
outbufused = sp->outbufused;
|
|
outbuf = sp->outbuf;
|
|
outputisstring = sp->outputisstring;
|
|
free(sp);
|
|
return cp;
|
|
}
|
|
|
|
|
|
/*
|
|
* Clear all diversions and set output back to the original destination.
|
|
* This is called when resetting the global state of the program.
|
|
*/
|
|
void
|
|
math_cleardiversions(void)
|
|
{
|
|
while (oldiostates)
|
|
free(math_getdivertedio());
|
|
}
|
|
|
|
|
|
/*
|
|
* Set the output routines to output to the specified FILE stream.
|
|
* This interacts with output diversion in the following manner.
|
|
* STDOUT diversion action
|
|
* ---- --------- ------
|
|
* yes yes set output to diversion string again.
|
|
* yes no set output to stdout.
|
|
* no yes set output to specified file.
|
|
* no no set output to specified file.
|
|
*/
|
|
void
|
|
math_setfp(FILE *newfp)
|
|
{
|
|
outfp = newfp;
|
|
outputisstring = (oldiostates && (newfp == stdout));
|
|
}
|
|
|
|
|
|
/*
|
|
* Set the output mode for numeric output.
|
|
* This also returns the previous mode.
|
|
*/
|
|
int
|
|
math_setmode(int newmode)
|
|
{
|
|
int oldmode;
|
|
|
|
if ((newmode <= MODE_DEFAULT) || (newmode > MODE_MAX)) {
|
|
math_error("Setting illegal output mode");
|
|
/*NOTREACHED*/
|
|
}
|
|
oldmode = conf->outmode;
|
|
conf->outmode = newmode;
|
|
return oldmode;
|
|
}
|
|
|
|
|
|
/*
|
|
* Set the secondary output mode for numeric output.
|
|
* This also returns the previous mode.
|
|
*/
|
|
int
|
|
math_setmode2(int newmode)
|
|
{
|
|
int oldmode;
|
|
|
|
if (newmode != MODE2_OFF && ((newmode <= MODE_DEFAULT) ||
|
|
(newmode > MODE_MAX))) {
|
|
math_error("Setting illegal secondary output mode");
|
|
/*NOTREACHED*/
|
|
}
|
|
oldmode = conf->outmode2;
|
|
conf->outmode2 = newmode;
|
|
return oldmode;
|
|
}
|
|
|
|
|
|
/*
|
|
* Set the number of digits for float or exponential output.
|
|
* This also returns the previous number of digits.
|
|
*/
|
|
LEN
|
|
math_setdigits(LEN newdigits)
|
|
{
|
|
LEN olddigits;
|
|
|
|
if (newdigits < 0) {
|
|
math_error("Setting illegal number of digits");
|
|
/*NOTREACHED*/
|
|
}
|
|
olddigits = conf->outdigits;
|
|
conf->outdigits = newdigits;
|
|
return olddigits;
|
|
}
|
|
|
|
|
|
/*
|
|
* Print an integer value as a hex number.
|
|
* Width is the number of columns to print the number in, including the
|
|
* sign if required. If zero, no extra output is done. If positive,
|
|
* leading spaces are typed if necessary. If negative, trailing spaces are
|
|
* typed if necessary. The special characters 0x appear to indicate the
|
|
* number is hex.
|
|
*/
|
|
/*ARGSUSED*/
|
|
void
|
|
zprintx(ZVALUE z, long width)
|
|
{
|
|
register HALF *hp; /* current word to print */
|
|
int len; /* number of halfwords to type */
|
|
char *str;
|
|
|
|
if (width) {
|
|
math_divertio();
|
|
zprintx(z, 0L);
|
|
str = math_getdivertedio();
|
|
math_fill(str, width);
|
|
free(str);
|
|
return;
|
|
}
|
|
len = z.len - 1;
|
|
if (zisneg(z))
|
|
PUTCHAR('-');
|
|
if ((len == 0) && (*z.v <= (HALF) 9)) {
|
|
len = '0' + (int)(*z.v);
|
|
PUTCHAR(len & 0xff);
|
|
return;
|
|
}
|
|
hp = z.v + len;
|
|
#if BASEB == 32
|
|
PRINTF1("0x%lx", (PRINT) *hp--);
|
|
while (--len >= 0) {
|
|
PRINTF1("%08lx", (PRINT) *hp--);
|
|
}
|
|
#else /* BASEB == 32 */
|
|
PRINTF1("0x%lx", (FULL) *hp--);
|
|
while (--len >= 0) {
|
|
PRINTF1("%04lx", (FULL) *hp--);
|
|
}
|
|
#endif /* BASEB == 32 */
|
|
}
|
|
|
|
|
|
/*
|
|
* Print an integer value as a binary number.
|
|
* The special characters 0b appear to indicate the number is binary.
|
|
*/
|
|
/*ARGSUSED*/
|
|
void
|
|
zprintb(ZVALUE z, long width)
|
|
{
|
|
register HALF *hp; /* current word to print */
|
|
int len; /* number of halfwords to type */
|
|
HALF val; /* current value */
|
|
HALF mask; /* current mask */
|
|
int didprint; /* nonzero if printed some digits */
|
|
int ch; /* current char */
|
|
char *str;
|
|
|
|
if (width) {
|
|
math_divertio();
|
|
zprintb(z, 0L);
|
|
str = math_getdivertedio();
|
|
math_fill(str, width);
|
|
free(str);
|
|
return;
|
|
}
|
|
len = z.len - 1;
|
|
if (zisneg(z))
|
|
PUTCHAR('-');
|
|
if ((len == 0) && (*z.v <= (FULL) 1)) {
|
|
len = '0' + (int)(*z.v);
|
|
PUTCHAR(len & 0xff);
|
|
return;
|
|
}
|
|
hp = z.v + len;
|
|
didprint = 0;
|
|
PUTSTR("0b");
|
|
while (len-- >= 0) {
|
|
val = ((len >= 0) ? *hp-- : *hp);
|
|
mask = ((HALF)1 << (BASEB - 1));
|
|
while (mask) {
|
|
ch = '0' + ((mask & val) != 0);
|
|
if (didprint || (ch != '0')) {
|
|
PUTCHAR(ch & 0xff);
|
|
didprint = 1;
|
|
}
|
|
mask >>= 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Print an integer value as an octal number.
|
|
* The number begins with a leading 0 to indicate that it is octal.
|
|
*/
|
|
/*ARGSUSED*/
|
|
void
|
|
zprinto(ZVALUE z, long width)
|
|
{
|
|
register HALF *hp; /* current word to print */
|
|
int len; /* number of halfwords to type */
|
|
#if BASEB == 32 /* Yes, the larger base needs a smaller type! */
|
|
HALF num1='0'; /* numbers to type */
|
|
HALF num2=(HALF)0; /* numbers to type */
|
|
HALF num3; /* numbers to type */
|
|
HALF num4; /* numbers to type */
|
|
#else
|
|
FULL num1='0'; /* numbers to type */
|
|
FULL num2=(FULL)0; /* numbers to type */
|
|
#endif
|
|
int rem; /* remainder number of halfwords */
|
|
char *str;
|
|
|
|
if (width) {
|
|
math_divertio();
|
|
zprinto(z, 0L);
|
|
str = math_getdivertedio();
|
|
math_fill(str, width);
|
|
free(str);
|
|
return;
|
|
}
|
|
if (zisneg(z))
|
|
PUTCHAR('-');
|
|
len = z.len;
|
|
if ((len == 1) && (*z.v <= (FULL) 7)) {
|
|
num1 = '0' + (int)(*z.v);
|
|
PUTCHAR((int)(num1 & 0xff));
|
|
return;
|
|
}
|
|
hp = z.v + len - 1;
|
|
rem = len % 3;
|
|
#if BASEB == 32
|
|
switch (rem) { /* handle odd amounts first */
|
|
case 0:
|
|
num1 = ((hp[0]) >> 8);
|
|
num2 = (((hp[0] & 0xff) << 16) + (hp[-1] >> 16));
|
|
num3 = (((hp[-1] & 0xffff) << 8) + (hp[-2] >> 24));
|
|
num4 = (hp[-2] & 0xffffff);
|
|
if (num1) {
|
|
PRINTF4("0%lo%08lo%08lo%08lo",
|
|
(PRINT) num1, (PRINT) num2,
|
|
(PRINT) num3, (PRINT) num4);
|
|
} else {
|
|
PRINTF3("0%lo%08lo%08lo",
|
|
(PRINT) num2, (PRINT) num3, (PRINT) num4);
|
|
}
|
|
rem = 3;
|
|
break;
|
|
case 1:
|
|
PRINTF1("0%lo", (PRINT) hp[0]);
|
|
break;
|
|
case 2:
|
|
num1 = ((hp[0]) >> 16);
|
|
num2 = (((hp[0] & 0xffff) << 8) + (hp[-1] >> 24));
|
|
num3 = (hp[-1] & 0xffffff);
|
|
if (num1) {
|
|
PRINTF3("0%lo%08lo%08lo",
|
|
(PRINT) num1, (PRINT) num2, (PRINT) num3);
|
|
} else {
|
|
PRINTF2("0%lo%08lo", (PRINT) num2, (PRINT) num3);
|
|
}
|
|
break;
|
|
}
|
|
len -= rem;
|
|
if (len > 0) {
|
|
hp -= rem;
|
|
while (len > 0) { /* finish in groups of 3 words */
|
|
PRINTF4("%08lo%08lo%08lo%08lo",
|
|
(PRINT) ((hp[0]) >> 8),
|
|
(PRINT) (((hp[0] & 0xff) << 16) + (hp[-1] >> 16)),
|
|
(PRINT) (((hp[-1] & 0xffff) << 8) + (hp[-2] >> 24)),
|
|
(PRINT) (hp[-2] & 0xffffff));
|
|
hp -= 3;
|
|
len -= 3;
|
|
}
|
|
}
|
|
#else
|
|
switch (rem) { /* handle odd amounts first */
|
|
case 0:
|
|
num1 = ((((FULL) hp[0]) << 8) + (((FULL) hp[-1]) >> 8));
|
|
num2 = ((((FULL) (hp[-1] & 0xff)) << 16) + ((FULL) hp[-2]));
|
|
rem = 3;
|
|
break;
|
|
case 1:
|
|
num1 = 0;
|
|
num2 = (FULL) hp[0];
|
|
break;
|
|
case 2:
|
|
num1 = (((FULL) hp[0]) >> 8);
|
|
num2 = ((((FULL) (hp[0] & 0xff)) << 16) + ((FULL) hp[-1]));
|
|
break;
|
|
}
|
|
if (num1) {
|
|
PRINTF2("0%lo%08lo", num1, num2);
|
|
} else {
|
|
PRINTF1("0%lo", num2);
|
|
}
|
|
len -= rem;
|
|
if (len > 0) {
|
|
hp -= rem;
|
|
while (len > 0) { /* finish in groups of 3 halfwords */
|
|
PRINTF2("%08lo%08lo",
|
|
((((FULL) hp[0]) << 8) + (((FULL) hp[-1]) >> 8)),
|
|
((((FULL) (hp[-1] & 0xff))<<16) + ((FULL) hp[-2])));
|
|
hp -= 3;
|
|
len -= 3;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
/*
|
|
* Print a decimal integer to the terminal.
|
|
* This works by dividing the number by 10^2^N for some N, and
|
|
* then doing this recursively on the quotient and remainder.
|
|
* Decimals supplies number of decimal places to print, with a decimal
|
|
* point at the right location, with zero meaning no decimal point.
|
|
* Width is the number of columns to print the number in, including the
|
|
* decimal point and sign if required. If zero, no extra output is done.
|
|
* If positive, leading spaces are typed if necessary. If negative, trailing
|
|
* spaces are typed if necessary. As examples of the effects of these values,
|
|
* (345,0,0) = "345", (345,2,0) = "3.45", (345,5,8) = " .00345".
|
|
*
|
|
* given:
|
|
* z number to be printed
|
|
* decimals number of decimal places
|
|
* width number of columns to print in
|
|
*/
|
|
void
|
|
zprintval(ZVALUE z, long decimals, long width)
|
|
{
|
|
int depth; /* maximum depth */
|
|
int n; /* current index into array */
|
|
long i; /* number to print */
|
|
long leadspaces; /* number of leading spaces to print */
|
|
long putpoint; /* digits until print decimal point */
|
|
long digits; /* number of digits of raw number */
|
|
BOOL output; /* TRUE if have output something */
|
|
BOOL neg; /* TRUE if negative */
|
|
ZVALUE quo, rem; /* quotient and remainder */
|
|
ZVALUE leftnums[32]; /* left parts of the number */
|
|
ZVALUE rightnums[32]; /* right parts of the number */
|
|
|
|
if (decimals < 0)
|
|
decimals = 0;
|
|
if (width < 0)
|
|
width = 0;
|
|
neg = (z.sign != 0);
|
|
|
|
leadspaces = width - neg - (decimals > 0);
|
|
z.sign = 0;
|
|
/*
|
|
* Find the 2^N power of ten which is greater than or equal
|
|
* to the number, calculating it the first time if necessary.
|
|
*/
|
|
_tenpowers_[0] = _ten_;
|
|
depth = 0;
|
|
while ((_tenpowers_[depth].len < z.len) ||
|
|
(zrel(_tenpowers_[depth], z) <= 0)) {
|
|
depth++;
|
|
if (_tenpowers_[depth].len == 0) {
|
|
if (depth <= TEN_MAX) {
|
|
zsquare(_tenpowers_[depth-1],
|
|
&_tenpowers_[depth]);
|
|
} else {
|
|
math_error("cannot compute 10^2^(TEN_MAX+1)");
|
|
/*NOTREACHED*/
|
|
}
|
|
}
|
|
}
|
|
/*
|
|
* Divide by smaller 2^N powers of ten until the parts are small
|
|
* enough to output. This algorithm walks through a binary tree
|
|
* where each node is a piece of the number to print, and such that
|
|
* we visit left nodes first. We do the needed recursion in line.
|
|
*/
|
|
digits = 1;
|
|
output = FALSE;
|
|
n = 0;
|
|
putpoint = 0;
|
|
rightnums[0].len = 0;
|
|
leftnums[0] = z;
|
|
for (;;) {
|
|
while (n < depth) {
|
|
i = depth - n - 1;
|
|
zdiv(leftnums[n], _tenpowers_[i], &quo, &rem, 0);
|
|
if (!ziszero(quo))
|
|
digits += (1L << i);
|
|
n++;
|
|
leftnums[n] = quo;
|
|
rightnums[n] = rem;
|
|
}
|
|
i = (long)(leftnums[n].v[0]);
|
|
if (output || i || (n == 0)) {
|
|
if (!output) {
|
|
output = TRUE;
|
|
if (decimals < digits)
|
|
leadspaces -= digits;
|
|
else
|
|
leadspaces -= decimals+conf->leadzero;
|
|
while (--leadspaces >= 0)
|
|
PUTCHAR(' ');
|
|
if (neg)
|
|
PUTCHAR('-');
|
|
if (decimals) {
|
|
putpoint = (digits - decimals);
|
|
if (putpoint <= 0) {
|
|
if (conf->leadzero)
|
|
PUTCHAR('0');
|
|
PUTCHAR('.');
|
|
while (++putpoint <= 0)
|
|
PUTCHAR('0');
|
|
putpoint = 0;
|
|
}
|
|
}
|
|
}
|
|
i += '0';
|
|
PUTCHAR((int)(i & 0xff));
|
|
if (--putpoint == 0)
|
|
PUTCHAR('.');
|
|
}
|
|
while (rightnums[n].len == 0) {
|
|
if (n <= 0)
|
|
return;
|
|
if (leftnums[n].len)
|
|
zfree(leftnums[n]);
|
|
n--;
|
|
}
|
|
zfree(leftnums[n]);
|
|
leftnums[n] = rightnums[n];
|
|
rightnums[n].len = 0;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Read an integer value in decimal, hex, octal, or binary.
|
|
* Hex numbers are indicated by a leading "0x", binary with a leading "0b",
|
|
* and octal by a leading "0". Periods are skipped over, but any other
|
|
* extraneous character stops the scan.
|
|
*/
|
|
void
|
|
str2z(char *s, ZVALUE *res)
|
|
{
|
|
ZVALUE z, ztmp, digit;
|
|
HALF digval;
|
|
BOOL minus;
|
|
long shift;
|
|
|
|
minus = FALSE;
|
|
shift = 0;
|
|
if (*s == '+')
|
|
s++;
|
|
else if (*s == '-') {
|
|
minus = TRUE;
|
|
s++;
|
|
}
|
|
if (*s == '0') { /* possibly hex, octal, or binary */
|
|
s++;
|
|
if ((*s >= '0') && (*s <= '7')) {
|
|
shift = 3;
|
|
} else if ((*s == 'x') || (*s == 'X')) {
|
|
shift = 4;
|
|
s++;
|
|
} else if ((*s == 'b') || (*s == 'B')) {
|
|
shift = 1;
|
|
s++;
|
|
}
|
|
}
|
|
digit.v = &digval;
|
|
digit.len = 1;
|
|
digit.sign = 0;
|
|
z = _zero_;
|
|
while (*s) {
|
|
digval = *s++;
|
|
if ((digval >= '0') && (digval <= '9'))
|
|
digval -= '0';
|
|
else if ((digval >= 'a') && (digval <= 'f') && shift)
|
|
digval -= ('a' - 10);
|
|
else if ((digval >= 'A') && (digval <= 'F') && shift)
|
|
digval -= ('A' - 10);
|
|
else if (digval == '.')
|
|
continue;
|
|
else
|
|
break;
|
|
if (shift)
|
|
zshift(z, shift, &ztmp);
|
|
else
|
|
zmuli(z, 10L, &ztmp);
|
|
zfree(z);
|
|
zadd(ztmp, digit, &z);
|
|
zfree(ztmp);
|
|
}
|
|
ztrim(&z);
|
|
if (minus && !ziszero(z))
|
|
z.sign = 1;
|
|
*res = z;
|
|
}
|
|
|
|
|
|
void
|
|
fitzprint(ZVALUE z, long digits, long show)
|
|
{
|
|
ZVALUE ztmp1, ztmp2;
|
|
long i;
|
|
|
|
if (digits <= show) {
|
|
zprintval(z, 0, 0);
|
|
return;
|
|
}
|
|
show /= 2;
|
|
ztenpow(digits - show, &ztmp1);
|
|
(void) zquo(z, ztmp1, &ztmp2, 1);
|
|
zprintval(ztmp2, 0, 0);
|
|
zfree(ztmp1);
|
|
zfree(ztmp2);
|
|
printf("...");
|
|
ztenpow(show, &ztmp1);
|
|
(void) zmod(z, ztmp1, &ztmp2, 0);
|
|
i = zdigits(ztmp2);
|
|
while (i++ < show)
|
|
printf("0");
|
|
zprintval(ztmp2, 0, 0);
|
|
zfree(ztmp1);
|
|
zfree(ztmp2);
|
|
}
|
|
|
|
/* END CODE */
|