Files
calc/help/unexpected
2017-05-21 15:38:49 -07:00

347 lines
8.6 KiB
Plaintext

Unexpected
While calc is C-like, users of C will find some unexpected
surprises in calc syntax and usage. Persons familiar with C should
review this file.
The Comma
=========
The comma is also used for continuation of obj and mat creation
expressions and for separation of expressions to be used for
arguments or values in function calls or initialization lists. The
precedence order of these different uses is: continuation,
separator, comma operator. For example, assuming the variables a,
b, c, d, e, and object type xx have been defined, the arguments
passed to f in:
f(a, b, c, obj xx d, e)
are a, b, c, and e, with e having the value of a newly created xx
object. In:
f((a, b), c, (obj xx d), e)
the arguments of f are b, c, d, e, with only d being a newly
created xx object.
In combination with other operators, the continuation use of the
comma has the same precedence as [] and ., the separator use the
same as the comma operator. For example, assuming xx.mul() has
been defined:
f(a = b, obj xx c, d = {1,2} * obj xx e = {3,4})
passes two arguments: a (with value b) and the product d * e of two
initialized xx objects.
^ is not xor
============
In C, ^ is the xor operator. Like the '**', '^' is the
exponentiation operator. The expression:
a^b
yields "a to the b power", NOT "a xor b".
Note that 'b' must be an integer. Also if 'a' == 0, 'b'
must be >= 0 as well.
To raise to a non-integer power, use the power() builtin function.
** is exponentiation
====================
As was suggested in the '^ is not xor' section, the expression:
a**b
yields "a to the b power", NOT "a xor b".
Note that 'b' must be an integer. Also if 'a' == 0, 'b'
must be >= 0 as well.
To raise to a non-integer power, use the power() builtin function.
op= operators associate left to right
=====================================
Operator-with-assignments:
+= -= *= /= %= //= &= |= <<= >>= ^= **=
associate from left to right instead of right to left as in C.
For example:
a += b *= c
has the effect of:
a = (a + b) * c
where only 'a' is required to be an lvalue. For the effect of:
b *= c; a += b
when both 'a' and 'b' are lvalues, use:
a += (b *= c)
|| yields values other than 0 or 1
==================================
In C:
a || b
will produce 0 or 1 depending on the logical evaluation
of the expression. In calc, this expression will produce
either 'a' or 'b' and is equivalent to the expression:
a ? a : b
In other words, if 'a' is true, then 'a' is returned, otherwise
'b' is returned.
&& yields values other than 0 or 1
==================================
In C:
a && b
will produce 0 or 1 depending on the logical evaluation
of the expression. In calc, this expression will produce
either 'a' or 'b' and is equivalent to the expression:
a ? b : a
In other words, if 'a' is true, then 'b' is returned, otherwise
'a' is returned.
/ is fractional divide, // is integral divide
=============================================
In C:
x/y
performs integer division when 'x' and 'y' are integer types.
In calc, this expression yields a rational number.
Calc uses:
x//y
to perform division with integer truncation and is the equivalent to:
int(x/y)
| and & have higher precedence than ==, +, -, *, / and %
========================================================
Is C:
a == b | c * d
is interpreted as:
(a == b) | (c * d)
and calc it is interpreted as:
a == ((b | c) * d)
calc always evaluates terms from left to right
==============================================
Calc has a definite order for evaluation of terms (addends in a
sum, factors in a product, arguments for a function or a matrix,
etc.). This order is always from left to right. but skipping of
terms may occur for ||, && and ? : .
Consider, for example:
A * B + C * D
In calc above expression is evaluated in the following order:
A
B
A * B
C
D
C * D
A * B + C * D
This order of evaluation is significant if evaluation of a
term changes a variable on which a later term depends. For example:
x++ * x++ + x++ * x++
in calc returns the value:
x * (x + 1) + (x + 2) * (x + 3)
and increments x as if by x += 4. Similarly, for functions f, g,
the expression:
f(x++, x++) + g(x++)
evaluates to:
f(x, x + 1) + g(x + 2)
and increments x three times.
&A[0] and A are different things in calc
========================================
In calc, value of &A[0] is the address of the first element, whereas
A is the entire array.
*X may be used to to return the value of X
==========================================
If the current value of a variable X is an octet, number or string,
*X may be used to to return the value of X; in effect X is an
address and *X is the value at X.
freeing a variable has the effect of assigning the null value to it
===================================================================
The freeglobals(), freestatics(), freeredc() and free() free
builtins to not "undefine" the variables, but have the effect of
assigning the null value to them, and so frees the memory used for
elements of a list, matrix or object.
Along the same lines:
undefine *
undefines all current user-defined functions. After executing
all the above freeing functions (and if necessary free(.) to free
the current "old value"), the only remaining numbers as displayed by
show numbers
should be those associated with epsilon(), and if it has been
called, qpi().
#! is also a comment
====================
In addition to the C style /* comment lines */, lines that begin with
#! are treated as comments.
A single # is an calc operator, not a comment. However two or more
##'s in a row is a comment. See "help pound" for more information.
#!/usr/local/src/cmd/calc/calc -q -f
/* a correct comment */
## another correct comment
### two or more together is also a comment
/*
* another correct comment
*/
print "2+2 =", 2+2; ## yet another comment
This next example is WRONG:
#!/usr/local/src/cmd/calc/calc -q -f
# This is not a calc calc comment because it has only a single #
# You must to start comments with ## or /*
print "This example has invalid comments"
See "help cscript" and "help usage" for more information.
The { must be on the same line as an if, for, while or do
=========================================================
When statement is of the form { ... }, the leading { MUST BE ON
THE SAME LINE as the if, for, while or do keyword.
This works as expected:
if (expr) {
...
}
However this WILL NOT WORK AS EXPECTED:
if (expr)
{
...
}
because calc will parse the if being terminated by
an empty statement followed by a
if (expr) ;
{
...
}
In the same way, use these forms:
for (optionalexpr ; optionalexpr ; optionalexpr) {
...
}
while (expr) {
...
}
do {
...
while (expr);
where the initial { is on the SAME LINE as the if, while,
for or do keyword.
NOTE: See "help statement", "help todo", and "help bugs".
## Copyright (C) 1999-2006 Landon Curt Noll
##
## Calc is open software; you can redistribute it and/or modify it under
## the terms of the version 2.1 of the GNU Lesser General Public License
## as published by the Free Software Foundation.
##
## Calc is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
## or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General
## Public License for more details.
##
## A copy of version 2.1 of the GNU Lesser General Public License is
## distributed with calc under the filename COPYING-LGPL. You should have
## received a copy with calc; if not, write to Free Software Foundation, Inc.
## 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
##
## @(#) $Revision: 29.4 $
## @(#) $Id: unexpected,v 29.4 2007/02/07 00:30:33 chongo Exp $
## @(#) $Source: /usr/local/src/cmd/calc/help/RCS/unexpected,v $
##
## Under source code control: 1997/03/21 13:15:18
## File existed as early as: 1997
##
## chongo <was here> /\oo/\ http://www.isthe.com/chongo/
## Share and enjoy! :-) http://www.isthe.com/chongo/tech/comp/calc/