mirror of
https://github.com/lcn2/calc.git
synced 2025-08-16 01:03:29 +03:00
433 lines
10 KiB
C
433 lines
10 KiB
C
/*
|
|
* qmod - modular arithmetic routines for normal numbers and REDC numbers
|
|
*
|
|
* Copyright (C) 1999 David I. Bell and Ernest Bowen
|
|
*
|
|
* Primary author: David I. Bell
|
|
*
|
|
* Calc is open software; you can redistribute it and/or modify it under
|
|
* the terms of the version 2.1 of the GNU Lesser General Public License
|
|
* as published by the Free Software Foundation.
|
|
*
|
|
* Calc is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General
|
|
* Public License for more details.
|
|
*
|
|
* A copy of version 2.1 of the GNU Lesser General Public License is
|
|
* distributed with calc under the filename COPYING-LGPL. You should have
|
|
* received a copy with calc; if not, write to Free Software Foundation, Inc.
|
|
* 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
|
|
*
|
|
* @(#) $Revision: 29.1 $
|
|
* @(#) $Id: qmod.c,v 29.1 1999/12/14 09:16:14 chongo Exp $
|
|
* @(#) $Source: /usr/local/src/cmd/calc/RCS/qmod.c,v $
|
|
*
|
|
* Under source code control: 1991/05/22 23:15:07
|
|
* File existed as early as: 1991
|
|
*
|
|
* Share and enjoy! :-) http://reality.sgi.com/chongo/tech/comp/calc/
|
|
*/
|
|
|
|
|
|
#include <stdio.h>
|
|
#include "qmath.h"
|
|
#include "config.h"
|
|
|
|
|
|
/*
|
|
* Structure used for caching REDC information.
|
|
*/
|
|
typedef struct {
|
|
NUMBER *rnum; /* modulus being cached */
|
|
REDC *redc; /* REDC information for modulus */
|
|
long age; /* age counter for reallocation */
|
|
} REDC_CACHE;
|
|
|
|
|
|
static long redc_age; /* current age counter */
|
|
static REDC_CACHE redc_cache[MAXREDC]; /* cached REDC info */
|
|
|
|
|
|
static REDC *qfindredc(NUMBER *q);
|
|
|
|
|
|
/*
|
|
* qmod(q1, q2, rnd) returns zero if q1 is a multiple of q2; it
|
|
* q1 if q2 is zero. For other q1 and q2, it returns one of
|
|
* the two remainders with absolute value less than abs(q2)
|
|
* when q1 is divided by q2; which remainder is returned is
|
|
* determined by rnd and the signs and relative sizes of q1 and q2.
|
|
*/
|
|
NUMBER *
|
|
qmod(NUMBER *q1, NUMBER *q2, long rnd)
|
|
{
|
|
ZVALUE tmp, tmp1, tmp2;
|
|
NUMBER *q;
|
|
|
|
if (qiszero(q2)) return qlink(q1);
|
|
if (qiszero(q1)) return qlink(&_qzero_);
|
|
if (qisint(q1) && qisint(q2)) { /* easy case */
|
|
zmod(q1->num, q2->num, &tmp, rnd);
|
|
if (ziszero(tmp)) {
|
|
zfree(tmp);
|
|
return qlink(&_qzero_);
|
|
}
|
|
if(zisone(tmp)) {
|
|
zfree(tmp);
|
|
return qlink(&_qone_);
|
|
}
|
|
q = qalloc();
|
|
q->num = tmp;
|
|
return q;
|
|
}
|
|
zmul(q1->num, q2->den, &tmp1);
|
|
zmul(q2->num, q1->den, &tmp2);
|
|
zmod(tmp1, tmp2, &tmp, rnd);
|
|
zfree(tmp1);
|
|
zfree(tmp2);
|
|
if (ziszero(tmp)) {
|
|
zfree(tmp);
|
|
return qlink(&_qzero_);
|
|
}
|
|
zmul(q1->den, q2->den, &tmp1);
|
|
q = qalloc();
|
|
zreduce(tmp, tmp1, &q->num, &q->den);
|
|
zfree(tmp1);
|
|
zfree(tmp);
|
|
return q;
|
|
}
|
|
|
|
|
|
/*
|
|
* Given two numbers q1, q2, qquomod(q1, q2, retqdiv, retqmod)
|
|
* calculates an integral quotient and numerical remainder such that
|
|
* q1 = q2 * quotient + remainder. The remainder is zero if
|
|
* q1 is a multiple of q2; the quotient is zero if q2 is zero.
|
|
* In other cases, the remainder always has absolute value less than
|
|
* abs(q2). Which of the two possible quotient-remainder pairs is returned
|
|
* is determined by the conf->quomod configuration parameter.
|
|
* If the quomod parameter is zero, the remainder has the sign of q2
|
|
* and the qotient is rounded towards zero.
|
|
* The results are returned indirectly through pointers.
|
|
* The function returns FALSE or
|
|
* TRUE according as the remainder is or is not zero. For
|
|
* example, if conf->quomod = 0,
|
|
* qquomod(11, 4, &x, &y) sets x to 2, y to 3, and returns TRUE.
|
|
* qquomod(-7, -3, &x, &y) sets x to 2, y to -1, and returns TRUE.
|
|
*
|
|
* given:
|
|
* q1 numbers to do quotient with
|
|
* q2 numbers to do quotient with
|
|
* retqdiv returned quotient
|
|
* retqmod returned modulo
|
|
*/
|
|
BOOL
|
|
qquomod(NUMBER *q1, NUMBER *q2, NUMBER **retqdiv, NUMBER **retqmod)
|
|
{
|
|
NUMBER *qq, *qm;
|
|
ZVALUE tmp1, tmp2, tmp3, tmp4;
|
|
|
|
if (qiszero(q2)) { /* zero modulus case */
|
|
qq = qlink(&_qzero_);
|
|
qm = qlink(q1);
|
|
} else if (qisint(q1) && qisint(q2)) { /* integer case */
|
|
zdiv(q1->num, q2->num, &tmp1, &tmp2, conf->quomod);
|
|
if (ziszero(tmp1)) {
|
|
zfree(tmp1);
|
|
zfree(tmp2);
|
|
qq = qlink(&_qzero_);
|
|
qm = qlink(q1);
|
|
} else {
|
|
qq = qalloc();
|
|
qq->num = tmp1;
|
|
if (ziszero(tmp2)) {
|
|
zfree(tmp2);
|
|
qm = qlink(&_qzero_);
|
|
} else {
|
|
qm = qalloc();
|
|
qm->num = tmp2;
|
|
}
|
|
}
|
|
} else { /* fractional case */
|
|
zmul(q1->num, q2->den, &tmp1);
|
|
zmul(q2->num, q1->den, &tmp2);
|
|
zdiv(tmp1, tmp2, &tmp3, &tmp4, conf->quomod);
|
|
zfree(tmp1);
|
|
zfree(tmp2);
|
|
if (ziszero(tmp3)) {
|
|
zfree(tmp3);
|
|
zfree(tmp4);
|
|
qq = qlink(&_qzero_);
|
|
qm = qlink(q1);
|
|
} else {
|
|
qq = qalloc();
|
|
qq->num = tmp3;
|
|
if (ziszero(tmp4)) {
|
|
zfree(tmp4);
|
|
qm = qlink(&_qzero_);
|
|
} else {
|
|
qm = qalloc();
|
|
zmul(q1->den, q2->den, &tmp1);
|
|
zreduce(tmp4, tmp1, &qm->num, &qm->den);
|
|
zfree(tmp1);
|
|
zfree(tmp4);
|
|
}
|
|
}
|
|
}
|
|
*retqdiv = qq;
|
|
*retqmod = qm;
|
|
return !qiszero(qm);
|
|
}
|
|
|
|
|
|
/*
|
|
* Return whether or not two integers are congruent modulo a third integer.
|
|
* Returns TRUE if the numbers are not congruent, and FALSE if they are.
|
|
*/
|
|
BOOL
|
|
qcmpmod(NUMBER *q1, NUMBER *q2, NUMBER *q3)
|
|
{
|
|
if (qisneg(q3) || qiszero(q3))
|
|
math_error("Non-positive modulus");
|
|
if (qisfrac(q1) || qisfrac(q2) || qisfrac(q3))
|
|
math_error("Non-integers for qcmpmod");
|
|
if (q1 == q2)
|
|
return FALSE;
|
|
return zcmpmod(q1->num, q2->num, q3->num);
|
|
}
|
|
|
|
|
|
/*
|
|
* Convert an integer into REDC format for use in faster modular arithmetic.
|
|
* The number can be negative or out of modulus range.
|
|
*
|
|
* given:
|
|
* q1 number to convert into REDC format
|
|
* q2 modulus
|
|
*/
|
|
NUMBER *
|
|
qredcin(NUMBER *q1, NUMBER *q2)
|
|
{
|
|
REDC *rp; /* REDC information */
|
|
NUMBER *r; /* result */
|
|
|
|
if (qisfrac(q1))
|
|
math_error("Non-integer for qredcin");
|
|
rp = qfindredc(q2);
|
|
r = qalloc();
|
|
zredcencode(rp, q1->num, &r->num);
|
|
if (qiszero(r)) {
|
|
qfree(r);
|
|
return qlink(&_qzero_);
|
|
}
|
|
return r;
|
|
}
|
|
|
|
|
|
/*
|
|
* Convert a REDC format number back into a normal integer.
|
|
* The resulting number is in the range 0 to the modulus - 1.
|
|
*
|
|
* given:
|
|
* q1 number to convert into REDC format
|
|
* q2 modulus
|
|
*/
|
|
NUMBER *
|
|
qredcout(NUMBER *q1, NUMBER *q2)
|
|
{
|
|
REDC *rp; /* REDC information */
|
|
NUMBER *r; /* result */
|
|
|
|
if (qisfrac(q1))
|
|
math_error("Non-integer argument for rcout");
|
|
rp = qfindredc(q2);
|
|
if (qiszero(q1) || qisunit(q2))
|
|
return qlink(&_qzero_);
|
|
r = qalloc();
|
|
zredcdecode(rp, q1->num, &r->num);
|
|
if (zisunit(r->num)) {
|
|
qfree(r);
|
|
r = qlink(&_qone_);
|
|
}
|
|
return r;
|
|
}
|
|
|
|
|
|
/*
|
|
* Multiply two REDC format numbers together producing a REDC format result.
|
|
* This multiplication is done modulo the specified modulus.
|
|
*
|
|
* given:
|
|
* q1 REDC numbers to be multiplied
|
|
* q2 REDC numbers to be multiplied
|
|
* q3 modulus
|
|
*/
|
|
NUMBER *
|
|
qredcmul(NUMBER *q1, NUMBER *q2, NUMBER *q3)
|
|
{
|
|
REDC *rp; /* REDC information */
|
|
NUMBER *r; /* result */
|
|
|
|
if (qisfrac(q1) || qisfrac(q2))
|
|
math_error("Non-integer argument for rcmul");
|
|
rp = qfindredc(q3);
|
|
if (qiszero(q1) || qiszero(q2) || qisunit(q3))
|
|
return qlink(&_qzero_);
|
|
r = qalloc();
|
|
zredcmul(rp, q1->num, q2->num, &r->num);
|
|
return r;
|
|
}
|
|
|
|
|
|
/*
|
|
* Square a REDC format number to produce a REDC format result.
|
|
* This squaring is done modulo the specified modulus.
|
|
*
|
|
* given:
|
|
* q1 REDC numbers to be squared
|
|
* q2 modulus
|
|
*/
|
|
NUMBER *
|
|
qredcsquare(NUMBER *q1, NUMBER *q2)
|
|
{
|
|
REDC *rp; /* REDC information */
|
|
NUMBER *r; /* result */
|
|
|
|
if (qisfrac(q1))
|
|
math_error("Non-integer argument for rcsq");
|
|
rp = qfindredc(q2);
|
|
if (qiszero(q1) || qisunit(q2))
|
|
return qlink(&_qzero_);
|
|
r = qalloc();
|
|
zredcsquare(rp, q1->num, &r->num);
|
|
return r;
|
|
}
|
|
|
|
|
|
/*
|
|
* Raise a REDC format number to the indicated power producing a REDC
|
|
* format result. This is done modulo the specified modulus. The
|
|
* power to be raised to is a normal number.
|
|
*
|
|
* given:
|
|
* q1 REDC number to be raised
|
|
* q2 power to be raised to
|
|
* q3 modulus
|
|
*/
|
|
NUMBER *
|
|
qredcpower(NUMBER *q1, NUMBER *q2, NUMBER *q3)
|
|
{
|
|
REDC *rp; /* REDC information */
|
|
NUMBER *r; /* result */
|
|
|
|
if (qisfrac(q1) || qisfrac(q2) || qisfrac(q2))
|
|
math_error("Non-integer argument for rcpow");
|
|
if (qisneg(q2))
|
|
math_error("Negative exponent argument for rcpow");
|
|
rp = qfindredc(q3);
|
|
r = qalloc();
|
|
zredcpower(rp, q1->num, q2->num, &r->num);
|
|
return r;
|
|
}
|
|
|
|
|
|
/*
|
|
* Search for and return the REDC information for the specified number.
|
|
* The information is cached into a local table so that future calls
|
|
* for this information will be quick. If the table fills up, then
|
|
* the oldest cached entry is reused.
|
|
*
|
|
* given:
|
|
* q modulus to find REDC information of
|
|
*/
|
|
static REDC *
|
|
qfindredc(NUMBER *q)
|
|
{
|
|
register REDC_CACHE *rcp;
|
|
REDC_CACHE *bestrcp;
|
|
|
|
/*
|
|
* First try for an exact pointer match in the table.
|
|
*/
|
|
for (rcp = redc_cache; rcp <= &redc_cache[MAXREDC-1]; rcp++) {
|
|
if (q == rcp->rnum) {
|
|
rcp->age = ++redc_age;
|
|
return rcp->redc;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Search the table again looking for a value which matches.
|
|
*/
|
|
for (rcp = redc_cache; rcp <= &redc_cache[MAXREDC-1]; rcp++) {
|
|
if (rcp->age && (qcmp(q, rcp->rnum) == 0)) {
|
|
rcp->age = ++redc_age;
|
|
return rcp->redc;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Must invalidate an existing entry in the table.
|
|
* Find the oldest (or first unused) entry.
|
|
* But first make sure the modulus will be reasonable.
|
|
*/
|
|
if (qisfrac(q) || qisneg(q)) {
|
|
math_error("REDC modulus must be positive odd integer");
|
|
/*NOTREACHED*/
|
|
}
|
|
|
|
bestrcp = NULL;
|
|
for (rcp = redc_cache; rcp <= &redc_cache[MAXREDC-1]; rcp++) {
|
|
if ((bestrcp == NULL) || (rcp->age < bestrcp->age))
|
|
bestrcp = rcp;
|
|
}
|
|
|
|
/*
|
|
* Found the best entry.
|
|
* Free the old information for the entry if necessary,
|
|
* then initialize it.
|
|
*/
|
|
rcp = bestrcp;
|
|
if (rcp->age) {
|
|
rcp->age = 0;
|
|
qfree(rcp->rnum);
|
|
zredcfree(rcp->redc);
|
|
}
|
|
|
|
rcp->redc = zredcalloc(q->num);
|
|
rcp->rnum = qlink(q);
|
|
rcp->age = ++redc_age;
|
|
return rcp->redc;
|
|
}
|
|
|
|
void
|
|
showredcdata(void)
|
|
{
|
|
REDC_CACHE *rcp;
|
|
long i;
|
|
|
|
for (i = 0, rcp = redc_cache; i < MAXREDC; i++, rcp++) {
|
|
if (rcp->age > 0) {
|
|
printf("%-8ld%-8ld", i, rcp->age);
|
|
qprintnum(rcp->rnum, 0);
|
|
printf("\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
freeredcdata(void)
|
|
{
|
|
REDC_CACHE *rcp;
|
|
long i;
|
|
|
|
for (i = 0, rcp = redc_cache; i < MAXREDC; i++, rcp++) {
|
|
if (rcp->age > 0) {
|
|
rcp->age = 0;
|
|
qfree(rcp->rnum);
|
|
zredcfree(rcp->redc);
|
|
}
|
|
}
|
|
}
|