mirror of
https://github.com/lcn2/calc.git
synced 2025-08-19 01:13:27 +03:00
Added notes to help/unexpected about: display() will limit the number of digits printed after decimal point %d will format after the decimal point for non-integer numeric values %x will format as fractions for non-integer numeric values fprintf(fd, "%d\n", huge_value) may need fflush(fd) to finish Fixed Makefile dependencies for the args.h rule. Fixed Makefile cases where echo with -n is used. On some systems, /bin/sh does not use -n, so we must call /bin/echo -n instead via the ${ECHON} Makefile variable. Add missing standard tools to sub-Makefiles to make them easier to invoke directly. Sort lists of standard tool Makefile variables and remove duplicates. Declare the SHELL at the top of Makefiles. Fixed the depend rule in the custom Makefile. Improved the messages produced by the depend in the Makefiles. Changed the UNUSED define in have_unused.h to be a macro with a parameter. Changed all use of UNUSED in *.c to be UNUSED(x). Removed need for HAVE_UNUSED in building the have_unused.h file. CCBAN is given to ${CC} in order to control if banned.h is in effect. The banned.h attempts to ban the use of certain dangerous functions that, if improperly used, could compromise the computational integrity if calculations. In the case of calc, we are motivated in part by the desire for calc to correctly calculate: even during extremely long calculations. If UNBAN is NOT defined, then calling certain functions will result in a call to a non-existent function (link error). While we do NOT encourage defining UNBAN, there may be a system / compiler environment where re-defining a function may lead to a fatal compiler complication. If that happens, consider compiling as: make clobber all chk CCBAN=-DUNBAN as see if this is a work-a-round. If YOU discover a need for the -DUNBAN work-a-round, PLEASE tell us! Please send us a bug report. See the file: BUGS or the URL: http://www.isthe.com/chongo/tech/comp/calc/calc-bugrept.html for how to send us such a bug report. Added the building of have_ban_pragma.h, which will determine if "#pragma GCC poison func_name" is supported. If it is not, or of HAVE_PRAGMA_GCC_POSION=-DHAVE_NO_PRAGMA_GCC_POSION, then banned.h will have no effect. Fixed building of the have_getpgid.h file. Fixed building of the have_getprid.h file. Fixed building of the have_getsid.h file. Fixed building of the have_gettime.h file. Fixed building of the have_strdup.h file. Fixed building of the have_ustat.h file. Fixed building of the have_rusage.h file. Added HAVE_NO_STRLCPY to control if we want to test if the system has a strlcpy() function. This in turn produces the have_strlcpy.h file wherein the symbol HAVE_STRLCPY will be defined, or not depending if the system comes with a strlcpy() function. If the system does not have a strlcpy() function, we compile our own strlcpy() function. See strl.c for details. Added HAVE_NO_STRLCAT to control if we want to test if the system has a strlcat() function. This in turn produces the have_strlcat.h file wherein the symbol HAVE_STRLCAT will be defined, or not depending if the system comes with a strlcat() function. If the system does not have a strlcat() function, we compile our own strlcat() function. See strl.c for details. Fixed places were <string.h>, using #ifdef HAVE_STRING_H for legacy systems that do not have that include file. Added ${H} Makefile symbol to control the announcement of forming and having formed hsrc related files. By default H=@ (announce hsrc file formation) vs. H=@: to silence hsrc related file formation. Explicitly turn off quiet mode (set Makefile variable ${Q} to be empty) when building rpms. Improved and fixed the hsrc build process. Forming rpms is performed in verbose mode to assist debugging to the rpm build process. Compile custom code, if needed, after main code is compiled.
1621 lines
34 KiB
C
1621 lines
34 KiB
C
/*
|
|
* zprime - rapid small prime routines
|
|
*
|
|
* Copyright (C) 1999-2007,2021 Landon Curt Noll
|
|
*
|
|
* Calc is open software; you can redistribute it and/or modify it under
|
|
* the terms of the version 2.1 of the GNU Lesser General Public License
|
|
* as published by the Free Software Foundation.
|
|
*
|
|
* Calc is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General
|
|
* Public License for more details.
|
|
*
|
|
* A copy of version 2.1 of the GNU Lesser General Public License is
|
|
* distributed with calc under the filename COPYING-LGPL. You should have
|
|
* received a copy with calc; if not, write to Free Software Foundation, Inc.
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*
|
|
* Under source code control: 1994/05/29 04:34:36
|
|
* File existed as early as: 1994
|
|
*
|
|
* chongo <was here> /\oo/\ http://www.isthe.com/chongo/
|
|
* Share and enjoy! :-) http://www.isthe.com/chongo/tech/comp/calc/
|
|
*/
|
|
|
|
|
|
#include "zmath.h"
|
|
#include "prime.h"
|
|
#include "jump.h"
|
|
#include "config.h"
|
|
#include "zrand.h"
|
|
#include "have_const.h"
|
|
|
|
|
|
#include "banned.h" /* include after system header <> includes */
|
|
|
|
|
|
/*
|
|
* When performing a probabilistic primality test, check to see
|
|
* if the number has a factor <= PTEST_PRECHECK.
|
|
*
|
|
* XXX - what should this value be? Perhaps this should be a function
|
|
* of the size of the text value and the number of tests?
|
|
*/
|
|
#define PTEST_PRECHECK ((FULL)101)
|
|
|
|
/*
|
|
* product of primes that fit into a long
|
|
*/
|
|
STATIC CONST FULL pfact_tbl[MAX_PFACT_VAL+1] = {
|
|
1, 1, 2, 6, 6, 30, 30, 210, 210, 210, 210, 2310, 2310, 30030, 30030,
|
|
30030, 30030, 510510, 510510, 9699690, 9699690, 9699690, 9699690,
|
|
223092870, 223092870, 223092870, 223092870, 223092870, 223092870
|
|
#if FULL_BITS == 64
|
|
, U(6469693230), U(6469693230), U(200560490130), U(200560490130),
|
|
U(200560490130), U(200560490130), U(200560490130), U(200560490130),
|
|
U(7420738134810), U(7420738134810), U(7420738134810), U(7420738134810),
|
|
U(304250263527210), U(304250263527210), U(13082761331670030),
|
|
U(13082761331670030), U(13082761331670030), U(13082761331670030),
|
|
U(614889782588491410), U(614889782588491410), U(614889782588491410),
|
|
U(614889782588491410), U(614889782588491410), U(614889782588491410)
|
|
#endif
|
|
};
|
|
|
|
/*
|
|
* determine the top 1 bit of a 8 bit value:
|
|
*
|
|
* topbit[0] == 0 by convention
|
|
* topbit[x] gives the highest 1 bit of x
|
|
*/
|
|
STATIC CONST unsigned char topbit[256] = {
|
|
0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3,
|
|
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
|
|
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
|
|
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
|
|
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
|
|
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
|
|
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
|
|
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
|
|
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
|
|
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
|
|
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
|
|
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
|
|
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
|
|
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
|
|
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
|
|
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
|
|
};
|
|
|
|
/*
|
|
* integer square roots of powers of 2
|
|
*
|
|
* isqrt_pow2[x] == (int)(sqrt(2 to the x power)) (for 0 <= x < 64)
|
|
*
|
|
* We have enough table entries for a FULL that is 64 bits long.
|
|
*/
|
|
STATIC CONST FULL isqrt_pow2[64] = {
|
|
1, 1, 2, 2, 4, 5, 8, 11, /* 0 .. 7 */
|
|
16, 22, 32, 45, 64, 90, 128, 181, /* 8 .. 15 */
|
|
256, 362, 512, 724, 1024, 1448, 2048, 2896, /* 16 .. 23 */
|
|
4096, 5792, 8192, 11585, 16384, 23170, 32768, 46340, /* 24 .. 31 */
|
|
65536, 92681, 131072, 185363, /* 32 .. 35 */
|
|
262144, 370727, 524288, 741455, /* 36 .. 39 */
|
|
1048576, 1482910, 2097152, 2965820, /* 40 .. 43 */
|
|
4194304, 5931641, 8388608, 11863283, /* 44 .. 47 */
|
|
16777216, 23726566, 33554432, 47453132, /* 48 .. 51 */
|
|
67108864, 94906265, 134217728, 189812531, /* 52 .. 55 */
|
|
268435456, 379625062, 536870912, 759250124, /* 56 .. 59 */
|
|
1073741824, 1518500249, 0x80000000, 0xb504f333 /* 60 .. 63 */
|
|
};
|
|
|
|
/*
|
|
* static functions
|
|
*/
|
|
S_FUNC FULL fsqrt(FULL v); /* quick square root of v */
|
|
S_FUNC long pix(FULL x); /* pi of x */
|
|
S_FUNC FULL small_factor(ZVALUE n, FULL limit); /* factor or 0 */
|
|
|
|
|
|
/*
|
|
* Determine if a value is a small (32 bit) prime
|
|
*
|
|
* Returns:
|
|
* 1 z is a prime <= MAX_SM_VAL
|
|
* 0 z is not a prime <= MAX_SM_VAL
|
|
* -1 z > MAX_SM_VAL
|
|
*/
|
|
FLAG
|
|
zisprime(ZVALUE z)
|
|
{
|
|
FULL n; /* number to test */
|
|
FULL isqr; /* factor limit */
|
|
CONST unsigned short *tp; /* pointer to a prime factor */
|
|
|
|
z.sign = 0;
|
|
if (zisleone(z)) {
|
|
return 0;
|
|
}
|
|
|
|
/* even numbers > 2 are not prime */
|
|
if (ziseven(z)) {
|
|
/*
|
|
* "2 is the greatest odd prime because it is the least even!"
|
|
* - Dr. Dan Jurca 1978
|
|
*/
|
|
return zisabstwo(z);
|
|
}
|
|
|
|
/* ignore non-small values */
|
|
if (zge32b(z)) {
|
|
return -1;
|
|
}
|
|
|
|
/* we now know that we are dealing with a value 0 <= n < 2^32 */
|
|
n = ztofull(z);
|
|
|
|
/* lookup small cases in pr_map */
|
|
if (n <= MAX_MAP_VAL) {
|
|
return (pr_map_bit(n) ? 1 : 0);
|
|
}
|
|
|
|
/* ignore Saber-C warning #530 about empty for statement */
|
|
/* ok to ignore in proc zisprime */
|
|
/* a number >=2^16 and < 2^32 */
|
|
for (isqr=fsqrt(n), tp=prime; (*tp <= isqr) && (n % *tp); ++tp) {
|
|
}
|
|
return ((*tp <= isqr && *tp != 1) ? 0 : 1);
|
|
}
|
|
|
|
|
|
/*
|
|
* Determine the next small (32 bit) prime > a 32 bit value.
|
|
*
|
|
* given:
|
|
* z search point
|
|
*
|
|
* Returns:
|
|
* 0 next prime is 2^32+15
|
|
* 1 abs(z) >= 2^32
|
|
* smallest prime > abs(z) otherwise
|
|
*/
|
|
FULL
|
|
znprime(ZVALUE z)
|
|
{
|
|
FULL n; /* search point */
|
|
|
|
z.sign = 0;
|
|
|
|
/* ignore large values */
|
|
if (zge32b(z)) {
|
|
return (FULL)1;
|
|
}
|
|
|
|
/* deal a search point of 0 or 1 */
|
|
if (zisabsleone(z)) {
|
|
return (FULL)2;
|
|
}
|
|
|
|
/* deal with returning a value that is beyond our reach */
|
|
n = ztofull(z);
|
|
if (n >= MAX_SM_PRIME) {
|
|
return (FULL)0;
|
|
}
|
|
|
|
/* return the next prime */
|
|
return next_prime(n);
|
|
}
|
|
|
|
|
|
/*
|
|
* Compute the next prime beyond a small (32 bit) value.
|
|
*
|
|
* This function assumes that 2 <= n < 2^32-5.
|
|
*
|
|
* given:
|
|
* n search point
|
|
*/
|
|
FULL
|
|
next_prime(FULL n)
|
|
{
|
|
CONST unsigned short *tp; /* pointer to a prime factor */
|
|
CONST unsigned char *j; /* current jump increment */
|
|
int tmp;
|
|
|
|
/* find our search point */
|
|
n = ((n & 0x1) ? n+2 : n+1);
|
|
|
|
/* if we can just search the bit map, then search it */
|
|
if (n <= MAX_MAP_PRIME) {
|
|
|
|
/* search until we find a 1 bit */
|
|
while (pr_map_bit(n) == 0) {
|
|
n += (FULL)2;
|
|
}
|
|
|
|
/* too large for our table, find the next prime the hard way */
|
|
} else {
|
|
FULL isqr; /* factor limit */
|
|
|
|
/*
|
|
* Our search for a prime may cause us to increment n over
|
|
* a perfect square, but never two perfect squares. The largest
|
|
* prime gap <= 2614941711251 is 651. Shanks conjectures that
|
|
* the largest gap below P is about ln(P)^2.
|
|
*
|
|
* The value fsqrt(n)^2 will always be the perfect square
|
|
* that is <= n. Given the smallness of prime gaps we will
|
|
* deal with, we know that n could carry us across the next
|
|
* perfect square (fsqrt(n)+1)^2 but not the following
|
|
* perfect square (fsqrt(n)+2)^2.
|
|
*
|
|
* Now the factor search limit for values < (fsqrt(n)+2)^2
|
|
* is the same limit for (fsqrt(n)+1)^2; namely fsqrt(n)+1.
|
|
* Therefore setting our limit at fsqrt(n)+1 and never
|
|
* bothering with it after that is safe.
|
|
*/
|
|
isqr = fsqrt(n)+1;
|
|
|
|
/*
|
|
* If our factor limit is even, then we can reduce it to
|
|
* the next lowest odd value. We already tested if n
|
|
* was even and all of our remaining potential factors
|
|
* are odd.
|
|
*/
|
|
if ((isqr & 0x1) == 0) {
|
|
--isqr;
|
|
}
|
|
|
|
/*
|
|
* Skip to next value not divisible by a trivial prime.
|
|
*/
|
|
n = firstjmp(n, tmp);
|
|
j = jmp + jmpptr(n);
|
|
|
|
/*
|
|
* Look for tiny prime factors of increasing n until we
|
|
* find a prime.
|
|
*/
|
|
do {
|
|
/* ignore Saber-C warning #530 - empty for statement */
|
|
/* ok to ignore in proc next_prime */
|
|
/* XXX - speed up test for large n by using gcds */
|
|
/* find a factor, or give up if not found */
|
|
for (tp=JPRIME; (*tp <= isqr) && (n % *tp); ++tp) {
|
|
}
|
|
} while (*tp <= isqr && *tp != 1 && (n += nxtjmp(j)));
|
|
}
|
|
|
|
/* return the prime that we found */
|
|
return n;
|
|
}
|
|
|
|
|
|
/*
|
|
* Determine the previous small (32 bit) prime < a 32 bit value
|
|
*
|
|
* given:
|
|
* z search point
|
|
*
|
|
* Returns:
|
|
* 1 abs(z) >= 2^32
|
|
* 0 abs(z) <= 2
|
|
* greatest prime < abs(z) otherwise
|
|
*/
|
|
FULL
|
|
zpprime(ZVALUE z)
|
|
{
|
|
CONST unsigned short *tp; /* pointer to a prime factor */
|
|
FULL isqr; /* isqrt(z) */
|
|
FULL n; /* search point */
|
|
CONST unsigned char *j; /* current jump increment */
|
|
int tmp;
|
|
|
|
z.sign = 0;
|
|
|
|
/* ignore large values */
|
|
if (zge32b(z)) {
|
|
return (FULL)1;
|
|
}
|
|
|
|
/* deal with special case small values */
|
|
n = ztofull(z);
|
|
switch ((int)n) {
|
|
case 0:
|
|
case 1:
|
|
case 2:
|
|
/* ignore values <= 2 */
|
|
return (FULL)0;
|
|
case 3:
|
|
/* 3 returns the only even prime */
|
|
return (FULL)2;
|
|
}
|
|
|
|
/* deal with values above the bit map */
|
|
if (n > NXT_MAP_PRIME) {
|
|
|
|
/* find our search point */
|
|
n = ((n & 0x1) ? n-2 : n-1);
|
|
|
|
/* our factor limit - see next_prime for why this works */
|
|
isqr = fsqrt(n)+1;
|
|
if ((isqr & 0x1) == 0) {
|
|
--isqr;
|
|
}
|
|
|
|
/*
|
|
* Skip to previous value not divisible by a trivial prime.
|
|
*/
|
|
tmp = jmpindxval(n);
|
|
if (tmp >= 0) {
|
|
|
|
/* find next value not divisible by a trivial prime */
|
|
n += tmp;
|
|
|
|
/* find the previous jump index */
|
|
j = jmp + jmpptr(n);
|
|
|
|
/* jump back */
|
|
n -= prevjmp(j);
|
|
|
|
/* already not divisible by a trivial prime */
|
|
} else {
|
|
/* find the current jump index */
|
|
j = jmp + jmpptr(n);
|
|
}
|
|
|
|
/* factor values until we find a prime */
|
|
do {
|
|
/* ignore Saber-C warning #530 - empty for statement */
|
|
/* ok to ignore in proc zpprime */
|
|
/* XXX - speed up test for large n by using gcds */
|
|
/* find a factor, or give up if not found */
|
|
for (tp=prime; (*tp <= isqr) && (n % *tp); ++tp) {
|
|
}
|
|
} while (*tp <= isqr && *tp != 1 && (n -= prevjmp(j)));
|
|
|
|
/* deal with values within the bit map */
|
|
} else if (n <= MAX_MAP_PRIME) {
|
|
|
|
/* find our search point */
|
|
n = ((n & 0x1) ? n-2 : n-1);
|
|
|
|
/* search until we find a 1 bit */
|
|
while (pr_map_bit(n) == 0) {
|
|
n -= (FULL)2;
|
|
}
|
|
|
|
/* deal with values that could cross into the bit map */
|
|
} else {
|
|
/* MAX_MAP_PRIME < n <= NXT_MAP_PRIME returns MAX_MAP_PRIME */
|
|
return MAX_MAP_PRIME;
|
|
}
|
|
|
|
/* return what we found */
|
|
return n;
|
|
}
|
|
|
|
|
|
/*
|
|
* Compute the number of primes <= a ZVALUE that can fit into a FULL
|
|
*
|
|
* given:
|
|
* z compute primes <= z
|
|
*
|
|
* Returns:
|
|
* -1 error
|
|
* >=0 number of primes <= x
|
|
*/
|
|
long
|
|
zpix(ZVALUE z)
|
|
{
|
|
/* pi(<0) is always 0 */
|
|
if (zisneg(z)) {
|
|
return (long)0;
|
|
}
|
|
|
|
/* firewall */
|
|
if (zge32b(z)) {
|
|
return (long)-1;
|
|
}
|
|
return pix(ztofull(z));
|
|
}
|
|
|
|
|
|
/*
|
|
* Compute the number of primes <= a ZVALUE
|
|
*
|
|
* given:
|
|
* x value of z
|
|
*
|
|
* Returns:
|
|
* -1 error
|
|
* >=0 number of primes <= x
|
|
*/
|
|
S_FUNC long
|
|
pix(FULL x)
|
|
{
|
|
long count; /* pi(x) */
|
|
FULL top; /* top of the range to test */
|
|
CONST unsigned short *tp; /* pointer to a tiny prime */
|
|
FULL i;
|
|
|
|
/* compute pi(x) using the 2^8 step table */
|
|
if (x <= MAX_PI10B) {
|
|
|
|
/* x within the prime table, so use it */
|
|
if (x < MAX_MAP_PRIME) {
|
|
/* firewall - pix(x) ==0 for x < 2 */
|
|
if (x < 2) {
|
|
count = 0;
|
|
|
|
} else {
|
|
/* determine how and where we will count */
|
|
if (x < 1024) {
|
|
count = 1;
|
|
tp = prime;
|
|
} else {
|
|
count = pi10b[x>>10];
|
|
tp = prime+count-1;
|
|
}
|
|
/* count primes in the table */
|
|
while (*tp++ <= x) {
|
|
++count;
|
|
}
|
|
}
|
|
|
|
/* x is larger than the prime table, so count the hard way */
|
|
} else {
|
|
|
|
/* case: count down from pi18b entry to x */
|
|
if (x & 0x200) {
|
|
top = (x | 0x3ff);
|
|
count = pi10b[(top+1)>>10];
|
|
for (i=next_prime(x); i <= top;
|
|
i=next_prime(i)) {
|
|
--count;
|
|
}
|
|
|
|
/* case: count up from pi10b entry to x */
|
|
} else {
|
|
count = pi10b[x>>10];
|
|
for (i=next_prime(x&(~0x3ff));
|
|
i <= x; i = next_prime(i)) {
|
|
++count;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* compute pi(x) using the 2^18 interval table */
|
|
} else {
|
|
|
|
/* compute sum of intervals up to our interval */
|
|
for (count=0, i=0; i < (x>>18); ++i) {
|
|
count += pi18b[i];
|
|
}
|
|
|
|
/* case: count down from pi18b entry to x */
|
|
if (x & 0x20000) {
|
|
top = (x | 0x3ffff);
|
|
count += pi18b[i];
|
|
if (top > MAX_SM_PRIME) {
|
|
if (x < MAX_SM_PRIME) {
|
|
for (i=next_prime(x); i < MAX_SM_PRIME;
|
|
i=next_prime(i)) {
|
|
--count;
|
|
}
|
|
--count;
|
|
}
|
|
} else {
|
|
for (i=next_prime(x); i<=top; i=next_prime(i)) {
|
|
--count;
|
|
}
|
|
}
|
|
|
|
/* case: count up from pi18b entry to x */
|
|
} else {
|
|
for (i=next_prime(x&(~0x3ffff));
|
|
i <= x; i = next_prime(i)) {
|
|
++count;
|
|
}
|
|
}
|
|
}
|
|
return count;
|
|
}
|
|
|
|
|
|
/*
|
|
* Compute the smallest prime factor < limit
|
|
*
|
|
* given:
|
|
* n number to factor
|
|
* zlimit ending search point
|
|
* res factor, if found, or NULL
|
|
*
|
|
* Returns:
|
|
* -1 error, limit >= 2^32
|
|
* 0 no factor found, res is not changed
|
|
* 1 factor found, res (if non-NULL) is smallest prime factor
|
|
*
|
|
* NOTE: This routine will not return a factor == the test value
|
|
* except when the test value is 1 or -1.
|
|
*/
|
|
FLAG
|
|
zfactor(ZVALUE n, ZVALUE zlimit, ZVALUE *res)
|
|
{
|
|
FULL f; /* factor found, or 0 */
|
|
|
|
/*
|
|
* determine the limit
|
|
*/
|
|
if (zge32b(zlimit)) {
|
|
/* limit is too large to be reasonable */
|
|
return -1;
|
|
}
|
|
n.sign = 0; /* ignore sign of n */
|
|
|
|
/*
|
|
* find the smallest factor <= limit, if possible
|
|
*/
|
|
f = small_factor(n, ztofull(zlimit));
|
|
|
|
/*
|
|
* report the results
|
|
*/
|
|
if (f > 0) {
|
|
/* return factor if requested */
|
|
if (res) {
|
|
utoz(f, res);
|
|
}
|
|
/* report a factor was found */
|
|
return 1;
|
|
}
|
|
/* no factor was found */
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* Find a smallest prime factor <= some small (32 bit) limit of a value
|
|
*
|
|
* given:
|
|
* z number to factor
|
|
* limit largest factor we will test
|
|
*
|
|
* Returns:
|
|
* 0 no prime <= the limit was found
|
|
* != 0 the smallest prime factor
|
|
*/
|
|
S_FUNC FULL
|
|
small_factor(ZVALUE z, FULL limit)
|
|
{
|
|
FULL top; /* current max factor level */
|
|
CONST unsigned short *tp; /* pointer to a tiny prime */
|
|
FULL factlim; /* highest factor to test */
|
|
CONST unsigned short *p; /* test factor */
|
|
FULL factor; /* test factor */
|
|
HALF tlim; /* limit on prime table use */
|
|
HALF divval[2]; /* divisor value */
|
|
ZVALUE div; /* test factor/divisor */
|
|
ZVALUE tmp;
|
|
CONST unsigned char *j;
|
|
|
|
/*
|
|
* catch impossible ranges
|
|
*/
|
|
if (limit < 2) {
|
|
/* range is too small */
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* perform the even test
|
|
*/
|
|
if (ziseven(z)) {
|
|
if (zistwo(z)) {
|
|
/* z is 2, so don't return 2 as a factor */
|
|
return 0;
|
|
}
|
|
return 2;
|
|
|
|
/*
|
|
* value is odd
|
|
*/
|
|
} else if (limit == 2) {
|
|
/* limit is 2, value is odd, no factors will ever be found */
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* force the factor limit to be odd
|
|
*/
|
|
if ((limit & 0x1) == 0) {
|
|
--limit;
|
|
}
|
|
|
|
/*
|
|
* case: number to factor fits into a FULL
|
|
*/
|
|
if (!zgtmaxufull(z)) {
|
|
FULL val = ztofull(z); /* find the smallest factor of val */
|
|
FULL isqr; /* sqrt of val */
|
|
|
|
/*
|
|
* special case: val is a prime <= MAX_MAP_PRIME
|
|
*/
|
|
if (val <= MAX_MAP_PRIME && pr_map_bit(val)) {
|
|
/* z is prime, so no factors will be found */
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* we need not search above the sqrt of val
|
|
*/
|
|
isqr = fsqrt(val);
|
|
if (limit > isqr) {
|
|
/* limit is largest odd value <= sqrt of val */
|
|
limit = ((isqr & 0x1) ? isqr : isqr-1);
|
|
}
|
|
|
|
/*
|
|
* search for a small prime factor
|
|
*/
|
|
top = ((limit < MAX_MAP_VAL) ? limit : MAX_MAP_VAL);
|
|
for (tp = prime; *tp <= top && *tp != 1; ++tp) {
|
|
if (val%(*tp) == 0) {
|
|
return ((FULL)*tp);
|
|
}
|
|
}
|
|
|
|
#if FULL_BITS == 64
|
|
/*
|
|
* Our search will carry us beyond the prime table. We will
|
|
* continue to values until we reach our limit or until a
|
|
* factor is found.
|
|
*
|
|
* It is faster to simply test odd values and ignore non-prime
|
|
* factors because the work needed to find the next prime is
|
|
* more than the work one saves in not factor with non-prime
|
|
* values.
|
|
*
|
|
* We can improve on this method by skipping odd values that
|
|
* are a multiple of 3, 5, 7 and 11. We use a table of
|
|
* bytes that indicate the offsets between odd values that
|
|
* are not a multiple of 3,4,5,7 & 11.
|
|
*/
|
|
/* XXX - speed up test for large z by using gcds */
|
|
j = jmp + jmpptr(NXT_MAP_PRIME);
|
|
for (top=NXT_MAP_PRIME; top <= limit; top += nxtjmp(j)) {
|
|
if ((val % top) == 0) {
|
|
return top;
|
|
}
|
|
}
|
|
#endif /* FULL_BITS == 64 */
|
|
|
|
/* no prime factors found */
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Find a factor of a value that is too large to fit into a FULL.
|
|
*
|
|
* determine if/what our sqrt factor limit will be
|
|
*/
|
|
if (zge64b(z)) {
|
|
/* we have no factor limit, avoid highest factor */
|
|
factlim = MAX_SM_PRIME-1;
|
|
} else if (zge32b(z)) {
|
|
/* determine if limit is too small to matter */
|
|
if (limit < BASE) {
|
|
factlim = limit;
|
|
} else {
|
|
/* find the isqrt(z) */
|
|
if (!zsqrt(z, &tmp, 0)) {
|
|
/* sqrt is exact */
|
|
factlim = ztofull(tmp);
|
|
} else {
|
|
/* sqrt is inexact */
|
|
factlim = ztofull(tmp)+1;
|
|
}
|
|
zfree(tmp);
|
|
|
|
/* avoid highest factor */
|
|
if (factlim >= MAX_SM_PRIME) {
|
|
factlim = MAX_SM_PRIME-1;
|
|
}
|
|
}
|
|
} else {
|
|
/* determine our factor limit */
|
|
factlim = fsqrt(ztofull(z));
|
|
if (factlim >= MAX_SM_PRIME) {
|
|
factlim = MAX_SM_PRIME-1;
|
|
}
|
|
}
|
|
if (factlim > limit) {
|
|
factlim = limit;
|
|
}
|
|
|
|
/*
|
|
* walk the prime table looking for factors
|
|
*
|
|
* XXX - consider using gcd of products of primes to speed this
|
|
* section up
|
|
*/
|
|
tlim = (HALF)((factlim >= MAX_MAP_PRIME) ? MAX_MAP_PRIME-1 : factlim);
|
|
div.sign = 0;
|
|
div.v = divval;
|
|
div.len = 1;
|
|
for (p=prime; (HALF)*p <= tlim; ++p) {
|
|
|
|
/* setup factor */
|
|
div.v[0] = (HALF)(*p);
|
|
|
|
if (zdivides(z, div))
|
|
return (FULL)(*p);
|
|
}
|
|
if ((FULL)*p > factlim) {
|
|
/* no factor found */
|
|
return (FULL)0;
|
|
}
|
|
|
|
/*
|
|
* test the highest factor possible
|
|
*/
|
|
div.v[0] = MAX_MAP_PRIME;
|
|
|
|
if (zdivides(z, div))
|
|
return (FULL)MAX_MAP_PRIME;
|
|
|
|
/*
|
|
* generate higher test factors as needed
|
|
*
|
|
* XXX - consider using gcd of products of primes to speed this
|
|
* section up
|
|
*/
|
|
#if BASEB == 16
|
|
div.len = 2;
|
|
#endif
|
|
factor = NXT_MAP_PRIME;
|
|
j = jmp + jmpptr(factor);
|
|
for(; factor <= factlim; factor += nxtjmp(j)) {
|
|
|
|
/* setup factor */
|
|
#if BASEB == 32
|
|
div.v[0] = (HALF)factor;
|
|
#else
|
|
div.v[0] = (HALF)(factor & BASE1);
|
|
div.v[1] = (HALF)(factor >> BASEB);
|
|
#endif
|
|
|
|
if (zdivides(z, div))
|
|
return (FULL)(factor);
|
|
}
|
|
if (factor >= factlim) {
|
|
/* no factor found */
|
|
return (FULL)0;
|
|
}
|
|
|
|
/*
|
|
* test the highest factor possible
|
|
*/
|
|
#if BASEB == 32
|
|
div.v[0] = MAX_SM_PRIME;
|
|
#else
|
|
div.v[0] = (MAX_SM_PRIME & BASE1);
|
|
div.v[1] = (MAX_SM_PRIME >> BASEB);
|
|
#endif
|
|
if (zdivides(z, div))
|
|
return (FULL)MAX_SM_PRIME;
|
|
|
|
/*
|
|
* no factor found
|
|
*/
|
|
return (FULL)0;
|
|
}
|
|
|
|
|
|
/*
|
|
* Compute the product of the primes up to the specified number.
|
|
*/
|
|
void
|
|
zpfact(ZVALUE z, ZVALUE *dest)
|
|
{
|
|
long n; /* limiting number to multiply by */
|
|
long p; /* current prime */
|
|
CONST unsigned short *tp; /* pointer to a tiny prime */
|
|
CONST unsigned char *j; /* current jump increment */
|
|
ZVALUE res, temp;
|
|
|
|
/* firewall */
|
|
if (zisneg(z)) {
|
|
math_error("Negative argument for factorial");
|
|
/*NOTREACHED*/
|
|
}
|
|
if (zge24b(z)) {
|
|
math_error("Very large factorial");
|
|
/*NOTREACHED*/
|
|
}
|
|
n = ztolong(z);
|
|
|
|
/*
|
|
* Deal with table lookup pfact values
|
|
*/
|
|
if (n <= MAX_PFACT_VAL) {
|
|
utoz(pfact_tbl[n], dest);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Multiply by the primes in the static table
|
|
*/
|
|
utoz(pfact_tbl[MAX_PFACT_VAL], &res);
|
|
for (tp=(&prime[NXT_PFACT_VAL]); *tp != 1 && (long)(*tp) <= n; ++tp) {
|
|
zmuli(res, *tp, &temp);
|
|
zfree(res);
|
|
res = temp;
|
|
}
|
|
|
|
/*
|
|
* if needed, multiply by primes beyond the static table
|
|
*/
|
|
j = jmp + jmpptr(NXT_MAP_PRIME);
|
|
for (p = NXT_MAP_PRIME; p <= n; p += nxtjmp(j)) {
|
|
FULL isqr; /* isqrt(p) */
|
|
|
|
/* our factor limit - see next_prime for why this works */
|
|
isqr = fsqrt(p)+1;
|
|
if ((isqr & 0x1) == 0) {
|
|
--isqr;
|
|
}
|
|
|
|
/* ignore Saber-C warning #530 about empty for statement */
|
|
/* ok to ignore in proc zpfact */
|
|
/* find the next prime */
|
|
for (tp=prime; (*tp <= isqr) && (p % (long)(*tp)); ++tp) {
|
|
}
|
|
if (*tp <= isqr && *tp != 1) {
|
|
continue;
|
|
}
|
|
|
|
/* multiply by the next prime */
|
|
zmuli(res, p, &temp);
|
|
zfree(res);
|
|
res = temp;
|
|
}
|
|
*dest = res;
|
|
}
|
|
|
|
|
|
/*
|
|
* Perform a probabilistic primality test (algorithm P in Knuth vol2, 4.5.4).
|
|
* Returns FALSE if definitely not prime, or TRUE if probably prime.
|
|
* Count determines how many times to check for primality.
|
|
* The chance of a non-prime passing this test is less than (1/4)^count.
|
|
* For example, a count of 100 fails for only 1 in 10^60 numbers.
|
|
*
|
|
* It is interesting to note that ptest(a,1,x) (for any x >= 0) of this
|
|
* test will always return TRUE for a prime, and rarely return TRUE for
|
|
* a non-prime. The 1/4 is appears in practice to be a poor upper
|
|
* bound. Even so the only result that is EXACT and TRUE is when
|
|
* this test returns FALSE for a non-prime. When ptest returns TRUE,
|
|
* one cannot determine if the value in question is prime, or the value
|
|
* is one of those rare non-primes that produces a false positive.
|
|
*
|
|
* The absolute value of count determines how many times to check
|
|
* for primality. If count < 0, then the trivial factor check is
|
|
* omitted.
|
|
* skip = 0 uses random bases
|
|
* skip = 1 uses prime bases 2, 3, 5, ...
|
|
* skip > 1 or < 0 uses bases skip, skip + 1, ...
|
|
*/
|
|
BOOL
|
|
zprimetest(ZVALUE z, long count, ZVALUE skip)
|
|
{
|
|
long limit = 0; /* test odd values from skip up to limit */
|
|
ZVALUE zbase; /* base as a ZVALUE */
|
|
long i, ij, ik;
|
|
ZVALUE zm1, z1, z2, z3;
|
|
int type; /* random, prime or consecutive integers */
|
|
CONST unsigned short *pr; /* pointer to small prime */
|
|
|
|
/*
|
|
* firewall - ignore sign of z, values 0 and 1 are not prime
|
|
*/
|
|
z.sign = 0;
|
|
if (zisleone(z)) {
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* firewall - All even values, except 2, are not prime
|
|
*/
|
|
if (ziseven(z))
|
|
return zistwo(z);
|
|
|
|
if (z.len == 1 && *z.v == 3)
|
|
return 1; /* 3 is prime */
|
|
|
|
/*
|
|
* we know that z is an odd value > 1
|
|
*/
|
|
|
|
/*
|
|
* Perform trivial checks if count is not negative
|
|
*/
|
|
if (count >= 0) {
|
|
|
|
/*
|
|
* If the number is a small (32 bit) value, do a direct test
|
|
*/
|
|
if (!zge32b(z)) {
|
|
return zisprime(z);
|
|
}
|
|
|
|
/*
|
|
* See if the number has a tiny factor.
|
|
*/
|
|
if (small_factor(z, PTEST_PRECHECK) != 0) {
|
|
/* a tiny factor was found */
|
|
return FALSE;
|
|
}
|
|
|
|
/*
|
|
* If our count is zero, do nothing more
|
|
*/
|
|
if (count == 0) {
|
|
/* no test was done, so no test failed! */
|
|
return TRUE;
|
|
}
|
|
|
|
} else {
|
|
/* use the absolute value of count */
|
|
count = -count;
|
|
}
|
|
if (z.len < conf->redc2) {
|
|
return zredcprimetest(z, count, skip);
|
|
}
|
|
|
|
if (ziszero(skip)) {
|
|
type = 0;
|
|
zbase = _zero_;
|
|
} else if (zisone(skip)) {
|
|
type = 1;
|
|
itoz(2, &zbase);
|
|
limit = 1 << 16;
|
|
if (!zge16b(z))
|
|
limit = ztolong(z);
|
|
} else {
|
|
type = 2;
|
|
if (zrel(skip, z) >= 0 || zisneg(skip))
|
|
zmod(skip, z, &zbase, 0);
|
|
else
|
|
zcopy(skip, &zbase);
|
|
}
|
|
/*
|
|
* Loop over various bases, testing each one.
|
|
*/
|
|
zsub(z, _one_, &zm1);
|
|
ik = zlowbit(zm1);
|
|
zshift(zm1, -ik, &z1);
|
|
pr = prime;
|
|
for (i = 0; i < count; i++) {
|
|
switch (type) {
|
|
case 0:
|
|
zfree(zbase);
|
|
zrandrange(_two_, zm1, &zbase);
|
|
break;
|
|
case 1:
|
|
if (i == 0)
|
|
break;
|
|
zfree(zbase);
|
|
if (*pr == 1 || (long)*pr >= limit) {
|
|
zfree(z1);
|
|
zfree(zm1);
|
|
return TRUE;
|
|
}
|
|
itoz((long) *pr++, &zbase);
|
|
break;
|
|
default:
|
|
if (i == 0)
|
|
break;
|
|
zadd(zbase, _one_, &z3);
|
|
zfree(zbase);
|
|
zbase = z3;
|
|
}
|
|
|
|
ij = 0;
|
|
zpowermod(zbase, z1, z, &z3);
|
|
for (;;) {
|
|
if (zisone(z3)) {
|
|
if (ij) {
|
|
/* number is definitely not prime */
|
|
zfree(z3);
|
|
zfree(zm1);
|
|
zfree(z1);
|
|
zfree(zbase);
|
|
return FALSE;
|
|
}
|
|
break;
|
|
}
|
|
if (!zcmp(z3, zm1))
|
|
break;
|
|
if (++ij >= ik) {
|
|
/* number is definitely not prime */
|
|
zfree(z3);
|
|
zfree(zm1);
|
|
zfree(z1);
|
|
zfree(zbase);
|
|
return FALSE;
|
|
}
|
|
zsquare(z3, &z2);
|
|
zfree(z3);
|
|
zmod(z2, z, &z3, 0);
|
|
zfree(z2);
|
|
}
|
|
zfree(z3);
|
|
}
|
|
zfree(zm1);
|
|
zfree(z1);
|
|
zfree(zbase);
|
|
|
|
/* number might be prime */
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/*
|
|
* Called by zprimetest when simple cases have been eliminated
|
|
* and z.len < conf->redc2. Here count > 0, z is odd and > 3.
|
|
*/
|
|
BOOL
|
|
zredcprimetest(ZVALUE z, long count, ZVALUE skip)
|
|
{
|
|
long limit = 0; /* test odd values from skip up to limit */
|
|
ZVALUE zbase; /* base as a ZVALUE */
|
|
REDC *rp;
|
|
long i, ij, ik;
|
|
ZVALUE zm1, z1, z2, z3;
|
|
ZVALUE zredcm1;
|
|
int type; /* random, prime or consecutive integers */
|
|
CONST unsigned short *pr; /* pointer to small prime */
|
|
|
|
|
|
rp = zredcalloc(z);
|
|
zsub(z, rp->one, &zredcm1);
|
|
if (ziszero(skip)) {
|
|
zbase = _zero_;
|
|
type = 0;
|
|
} else if (zisone(skip)) {
|
|
itoz(2, &zbase);
|
|
type = 1;
|
|
limit = 1 << 16;
|
|
if (!zge16b(z))
|
|
limit = ztolong(z);
|
|
} else {
|
|
zredcencode(rp, skip, &zbase);
|
|
type = 2;
|
|
}
|
|
/*
|
|
* Loop over various "random" numbers, testing each one.
|
|
*/
|
|
zsub(z, _one_, &zm1);
|
|
ik = zlowbit(zm1);
|
|
zshift(zm1, -ik, &z1);
|
|
pr = prime;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
switch (type) {
|
|
case 0:
|
|
do {
|
|
zfree(zbase);
|
|
zrandrange(_one_, z, &zbase);
|
|
}
|
|
while (!zcmp(zbase, rp->one) ||
|
|
!zcmp(zbase, zredcm1));
|
|
break;
|
|
case 1:
|
|
if (i == 0) {
|
|
break;
|
|
}
|
|
zfree(zbase);
|
|
if (*pr == 1 || (long)*pr >= limit) {
|
|
zfree(z1);
|
|
zfree(zm1);
|
|
if (z.len < conf->redc2) {
|
|
zredcfree(rp);
|
|
zfree(zredcm1);
|
|
}
|
|
return TRUE;
|
|
}
|
|
itoz((long) *pr++, &z3);
|
|
zredcencode(rp, z3, &zbase);
|
|
zfree(z3);
|
|
break;
|
|
default:
|
|
if (i == 0)
|
|
break;
|
|
zadd(zbase, rp->one, &z3);
|
|
zfree(zbase);
|
|
zbase = z3;
|
|
if (zrel(zbase, z) >= 0) {
|
|
zsub(zbase, z, &z3);
|
|
zfree(zbase);
|
|
zbase = z3;
|
|
}
|
|
}
|
|
|
|
ij = 0;
|
|
zredcpower(rp, zbase, z1, &z3);
|
|
for (;;) {
|
|
if (!zcmp(z3, rp->one)) {
|
|
if (ij) {
|
|
/* number is definitely not prime */
|
|
zfree(z3);
|
|
zfree(zm1);
|
|
zfree(z1);
|
|
zfree(zbase);
|
|
zredcfree(rp);
|
|
zfree(zredcm1);
|
|
return FALSE;
|
|
}
|
|
break;
|
|
}
|
|
if (!zcmp(z3, zredcm1))
|
|
break;
|
|
if (++ij >= ik) {
|
|
/* number is definitely not prime */
|
|
zfree(z3);
|
|
zfree(zm1);
|
|
zfree(z1);
|
|
zfree(zbase);
|
|
zredcfree(rp);
|
|
zfree(zredcm1);
|
|
return FALSE;
|
|
}
|
|
zredcsquare(rp, z3, &z2);
|
|
zfree(z3);
|
|
z3 = z2;
|
|
}
|
|
zfree(z3);
|
|
}
|
|
zfree(zbase);
|
|
zredcfree(rp);
|
|
zfree(zredcm1);
|
|
zfree(zm1);
|
|
zfree(z1);
|
|
|
|
/* number might be prime */
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/*
|
|
* znextcand - find the next integer that passes ptest().
|
|
* The signs of z and mod are ignored. Result is the least integer
|
|
* greater than abs(z) congruent to res modulo abs(mod), or if there
|
|
* is no such integer, zero.
|
|
*
|
|
* given:
|
|
* z search point > 2
|
|
* count ptests to perform per candidate
|
|
* skip ptests to skip
|
|
* res return congruent to res modulo abs(mod)
|
|
* mod congruent to res modulo abs(mod)
|
|
* cand candidate found
|
|
*/
|
|
BOOL
|
|
znextcand(ZVALUE z, long count, ZVALUE skip, ZVALUE res, ZVALUE mod,
|
|
ZVALUE *cand)
|
|
{
|
|
ZVALUE tmp1;
|
|
ZVALUE tmp2;
|
|
|
|
z.sign = 0;
|
|
mod.sign = 0;
|
|
if (ziszero(mod)) {
|
|
if (zrel(res, z) > 0 && zprimetest(res, count, skip)) {
|
|
zcopy(res, cand);
|
|
return TRUE;
|
|
}
|
|
return FALSE;
|
|
}
|
|
if (ziszero(z) && zisone(mod)) {
|
|
zcopy(_two_, cand);
|
|
return TRUE;
|
|
}
|
|
zsub(res, z, &tmp1);
|
|
if (zmod(tmp1, mod, &tmp2, 0))
|
|
zadd(z, tmp2, cand);
|
|
else
|
|
zadd(z, mod, cand);
|
|
|
|
/*
|
|
* Now *cand is least integer greater than abs(z) and congruent
|
|
* to res modulo mod.
|
|
*/
|
|
zfree(tmp1);
|
|
zfree(tmp2);
|
|
if (zprimetest(*cand, count, skip))
|
|
return TRUE;
|
|
zgcd(*cand, mod, &tmp1);
|
|
if (!zisone(tmp1)) {
|
|
zfree(tmp1);
|
|
zfree(*cand);
|
|
return FALSE;
|
|
}
|
|
zfree(tmp1);
|
|
if (ziseven(*cand)) {
|
|
zadd(*cand, mod, &tmp1);
|
|
zfree(*cand);
|
|
*cand = tmp1;
|
|
if (zprimetest(*cand, count, skip))
|
|
return TRUE;
|
|
}
|
|
/*
|
|
* *cand is now least odd integer > abs(z) and congruent to
|
|
* res modulo mod.
|
|
*/
|
|
if (zisodd(mod))
|
|
zshift(mod, 1, &tmp1);
|
|
else
|
|
zcopy(mod, &tmp1);
|
|
do {
|
|
zadd(*cand, tmp1, &tmp2);
|
|
zfree(*cand);
|
|
*cand = tmp2;
|
|
} while (!zprimetest(*cand, count, skip));
|
|
zfree(tmp1);
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/*
|
|
* zprevcand - find the nearest previous integer that passes ptest().
|
|
* The signs of z and mod are ignored. Result is greatest positive integer
|
|
* less than abs(z) congruent to res modulo abs(mod), or if there
|
|
* is no such integer, zero.
|
|
*
|
|
* given:
|
|
* z search point > 2
|
|
* count ptests to perform per candidate
|
|
* skip ptests to skip
|
|
* res return congruent to res modulo abs(mod)
|
|
* mod congruent to res modulo abs(mod)
|
|
* cand candidate found
|
|
*/
|
|
BOOL
|
|
zprevcand(ZVALUE z, long count, ZVALUE skip, ZVALUE res, ZVALUE mod,
|
|
ZVALUE *cand)
|
|
{
|
|
ZVALUE tmp1;
|
|
ZVALUE tmp2;
|
|
|
|
z.sign = 0;
|
|
mod.sign = 0;
|
|
if (ziszero(mod)) {
|
|
if (zispos(res)&&zrel(res, z)<0 && zprimetest(res,count,skip)) {
|
|
zcopy(res, cand);
|
|
return TRUE;
|
|
}
|
|
return FALSE;
|
|
}
|
|
zsub(z, res, &tmp1);
|
|
if (zmod(tmp1, mod, &tmp2, 0))
|
|
zsub(z, tmp2, cand);
|
|
else
|
|
zsub(z, mod, cand);
|
|
/*
|
|
* *cand is now the greatest integer < z that is congruent to res
|
|
* modulo mod.
|
|
*/
|
|
zfree(tmp1);
|
|
zfree(tmp2);
|
|
if (zisneg(*cand)) {
|
|
zfree(*cand);
|
|
return FALSE;
|
|
}
|
|
if (zprimetest(*cand, count, skip))
|
|
return TRUE;
|
|
zgcd(*cand, mod, &tmp1);
|
|
if (!zisone(tmp1)) {
|
|
zfree(tmp1);
|
|
zmod(*cand, mod, &tmp1, 0);
|
|
zfree(*cand);
|
|
if (zprimetest(tmp1, count, skip)) {
|
|
*cand = tmp1;
|
|
return TRUE;
|
|
}
|
|
if (ziszero(tmp1)) {
|
|
zfree(tmp1);
|
|
if (zprimetest(mod, count, skip)) {
|
|
zcopy(mod, cand);
|
|
return TRUE;
|
|
}
|
|
return FALSE;
|
|
}
|
|
zfree(tmp1);
|
|
return FALSE;
|
|
}
|
|
zfree(tmp1);
|
|
if (ziseven(*cand)) {
|
|
zsub(*cand, mod, &tmp1);
|
|
zfree(*cand);
|
|
if (zisneg(tmp1)) {
|
|
zfree(tmp1);
|
|
return FALSE;
|
|
}
|
|
*cand = tmp1;
|
|
if (zprimetest(*cand, count, skip))
|
|
return TRUE;
|
|
}
|
|
/*
|
|
* *cand is now the greatest odd integer < z that is congruent to
|
|
* res modulo mod.
|
|
*/
|
|
if (zisodd(mod))
|
|
zshift(mod, 1, &tmp1);
|
|
else
|
|
zcopy(mod, &tmp1);
|
|
|
|
do {
|
|
zsub(*cand, tmp1, &tmp2);
|
|
zfree(*cand);
|
|
*cand = tmp2;
|
|
} while (!zprimetest(*cand, count, skip) && !zisneg(*cand));
|
|
zfree(tmp1);
|
|
if (zisneg(*cand)) {
|
|
zadd(*cand, mod, &tmp1);
|
|
zfree(*cand);
|
|
*cand = tmp1;
|
|
if (zistwo(*cand))
|
|
return TRUE;
|
|
zfree(*cand);
|
|
return FALSE;
|
|
}
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/*
|
|
* Find the lowest prime factor of a number if one can be found.
|
|
* Search is conducted for the first count primes.
|
|
*
|
|
* Returns:
|
|
* 1 no factor found or z < 3
|
|
* >1 factor found
|
|
*/
|
|
FULL
|
|
zlowfactor(ZVALUE z, long count)
|
|
{
|
|
FULL factlim; /* highest factor to test */
|
|
CONST unsigned short *p; /* test factor */
|
|
FULL factor; /* test factor */
|
|
HALF tlim; /* limit on prime table use */
|
|
HALF divval[2]; /* divisor value */
|
|
ZVALUE div; /* test factor/divisor */
|
|
ZVALUE tmp;
|
|
|
|
z.sign = 0;
|
|
|
|
/*
|
|
* firewall
|
|
*/
|
|
if (count <= 0 || zisleone(z) || zistwo(z)) {
|
|
/* number is < 3 or count is <= 0 */
|
|
return (FULL)1;
|
|
}
|
|
|
|
/*
|
|
* test for the first factor
|
|
*/
|
|
if (ziseven(z)) {
|
|
return (FULL)2;
|
|
}
|
|
if (count <= 1) {
|
|
/* count was 1, tested the one and only factor */
|
|
return (FULL)1;
|
|
}
|
|
|
|
/*
|
|
* determine if/what our sqrt factor limit will be
|
|
*/
|
|
if (zge64b(z)) {
|
|
/* we have no factor limit, avoid highest factor */
|
|
factlim = MAX_SM_PRIME-1;
|
|
} else if (zge32b(z)) {
|
|
/* find the isqrt(z) */
|
|
if (!zsqrt(z, &tmp, 0)) {
|
|
/* sqrt is exact */
|
|
factlim = ztofull(tmp);
|
|
} else {
|
|
/* sqrt is inexact */
|
|
factlim = ztofull(tmp)+1;
|
|
}
|
|
zfree(tmp);
|
|
|
|
/* avoid highest factor */
|
|
if (factlim >= MAX_SM_PRIME) {
|
|
factlim = MAX_SM_PRIME-1;
|
|
}
|
|
} else {
|
|
/* determine our factor limit */
|
|
factlim = fsqrt(ztofull(z));
|
|
}
|
|
if (factlim >= MAX_SM_PRIME) {
|
|
factlim = MAX_SM_PRIME-1;
|
|
}
|
|
|
|
/*
|
|
* walk the prime table looking for factors
|
|
*/
|
|
tlim = (HALF)((factlim >= MAX_MAP_PRIME) ? MAX_MAP_PRIME-1 : factlim);
|
|
div.sign = 0;
|
|
div.v = divval;
|
|
div.len = 1;
|
|
for (p=prime, --count; count > 0 && (HALF)*p <= tlim; ++p, --count) {
|
|
|
|
/* setup factor */
|
|
div.v[0] = (HALF)(*p);
|
|
|
|
if (zdivides(z, div))
|
|
return (FULL)(*p);
|
|
}
|
|
if (count <= 0 || (FULL)*p > factlim) {
|
|
/* no factor found */
|
|
return (FULL)1;
|
|
}
|
|
|
|
/*
|
|
* test the highest factor possible
|
|
*/
|
|
div.v[0] = MAX_MAP_PRIME;
|
|
if (zdivides(z, div))
|
|
return (FULL)MAX_MAP_PRIME;
|
|
|
|
/*
|
|
* generate higher test factors as needed
|
|
*/
|
|
#if BASEB == 16
|
|
div.len = 2;
|
|
#endif
|
|
for(factor = NXT_MAP_PRIME;
|
|
count > 0 && factor <= factlim;
|
|
factor = next_prime(factor), --count) {
|
|
|
|
/* setup factor */
|
|
#if BASEB == 32
|
|
div.v[0] = (HALF)factor;
|
|
#else
|
|
div.v[0] = (HALF)(factor & BASE1);
|
|
div.v[1] = (HALF)(factor >> BASEB);
|
|
#endif
|
|
|
|
if (zdivides(z, div))
|
|
return (FULL)(factor);
|
|
}
|
|
if (count <= 0 || factor >= factlim) {
|
|
/* no factor found */
|
|
return (FULL)1;
|
|
}
|
|
|
|
/*
|
|
* test the highest factor possible
|
|
*/
|
|
#if BASEB == 32
|
|
div.v[0] = MAX_SM_PRIME;
|
|
#else
|
|
div.v[0] = (MAX_SM_PRIME & BASE1);
|
|
div.v[1] = (MAX_SM_PRIME >> BASEB);
|
|
#endif
|
|
if (zdivides(z, div))
|
|
return (FULL)MAX_SM_PRIME;
|
|
|
|
/*
|
|
* no factor found
|
|
*/
|
|
return (FULL)1;
|
|
}
|
|
|
|
|
|
/*
|
|
* Compute the least common multiple of all the numbers up to the
|
|
* specified number.
|
|
*/
|
|
void
|
|
zlcmfact(ZVALUE z, ZVALUE *dest)
|
|
{
|
|
long n; /* limiting number to multiply by */
|
|
long p; /* current prime */
|
|
long pp = 0; /* power of prime */
|
|
long i; /* test value */
|
|
CONST unsigned short *pr; /* pointer to a small prime */
|
|
ZVALUE res, temp;
|
|
|
|
if (zisneg(z) || ziszero(z)) {
|
|
math_error("Non-positive argument for lcmfact");
|
|
/*NOTREACHED*/
|
|
}
|
|
if (zge24b(z)) {
|
|
math_error("Very large lcmfact");
|
|
/*NOTREACHED*/
|
|
}
|
|
n = ztolong(z);
|
|
/*
|
|
* Multiply by powers of the necessary odd primes in order.
|
|
* The power for each prime is the highest one which is not
|
|
* more than the specified number.
|
|
*/
|
|
res = _one_;
|
|
for (pr=prime; (long)(*pr) <= n && *pr > 1; ++pr) {
|
|
i = p = *pr;
|
|
while (i <= n) {
|
|
pp = i;
|
|
i *= p;
|
|
}
|
|
zmuli(res, pp, &temp);
|
|
zfree(res);
|
|
res = temp;
|
|
}
|
|
for (p = NXT_MAP_PRIME; p <= n; p = (long)next_prime(p)) {
|
|
i = p;
|
|
while (i <= n) {
|
|
pp = i;
|
|
i *= p;
|
|
}
|
|
zmuli(res, pp, &temp);
|
|
zfree(res);
|
|
res = temp;
|
|
}
|
|
/*
|
|
* Finish by scaling by the necessary power of two.
|
|
*/
|
|
zshift(res, zhighbit(z), dest);
|
|
zfree(res);
|
|
}
|
|
|
|
|
|
/*
|
|
* fsqrt - fast square root of a FULL value
|
|
*
|
|
* We will determine the square root of a given value.
|
|
* Starting with the integer square root of the largest power of
|
|
* two <= the value, we will perform 3 Newton iterations to
|
|
* arrive at our guess.
|
|
*
|
|
* We have verified that fsqrt(x) == (FULL)sqrt((double)x), or
|
|
* fsqrt(x)-1 == (FULL)sqrt((double)x) for all 0 <= x < 2^32.
|
|
*
|
|
* given:
|
|
* x compute the integer square root of x
|
|
*/
|
|
S_FUNC FULL
|
|
fsqrt(FULL x)
|
|
{
|
|
FULL y; /* (FULL)temporary value */
|
|
int i;
|
|
|
|
/* firewall - deal with 0 */
|
|
if (x == 0) {
|
|
return 0;
|
|
}
|
|
|
|
/* ignore Saber-C warning #530 about empty for statement */
|
|
/* ok to ignore in proc fsqrt */
|
|
/* determine our initial guess */
|
|
for (i=0, y=x; y >= (FULL)256; i+=8, y>>=8) {
|
|
}
|
|
y = isqrt_pow2[i + topbit[y]];
|
|
|
|
/* perform 3 Newton interactions */
|
|
y = (y+x/y)>>1;
|
|
y = (y+x/y)>>1;
|
|
y = (y+x/y)>>1;
|
|
#if FULL_BITS == 64
|
|
y = (y+x/y)>>1;
|
|
#endif
|
|
|
|
/* return the result */
|
|
return y;
|
|
}
|