mirror of
https://github.com/lcn2/calc.git
synced 2025-08-19 01:13:27 +03:00
Added notes to help/unexpected about: display() will limit the number of digits printed after decimal point %d will format after the decimal point for non-integer numeric values %x will format as fractions for non-integer numeric values fprintf(fd, "%d\n", huge_value) may need fflush(fd) to finish Fixed Makefile dependencies for the args.h rule. Fixed Makefile cases where echo with -n is used. On some systems, /bin/sh does not use -n, so we must call /bin/echo -n instead via the ${ECHON} Makefile variable. Add missing standard tools to sub-Makefiles to make them easier to invoke directly. Sort lists of standard tool Makefile variables and remove duplicates. Declare the SHELL at the top of Makefiles. Fixed the depend rule in the custom Makefile. Improved the messages produced by the depend in the Makefiles. Changed the UNUSED define in have_unused.h to be a macro with a parameter. Changed all use of UNUSED in *.c to be UNUSED(x). Removed need for HAVE_UNUSED in building the have_unused.h file. CCBAN is given to ${CC} in order to control if banned.h is in effect. The banned.h attempts to ban the use of certain dangerous functions that, if improperly used, could compromise the computational integrity if calculations. In the case of calc, we are motivated in part by the desire for calc to correctly calculate: even during extremely long calculations. If UNBAN is NOT defined, then calling certain functions will result in a call to a non-existent function (link error). While we do NOT encourage defining UNBAN, there may be a system / compiler environment where re-defining a function may lead to a fatal compiler complication. If that happens, consider compiling as: make clobber all chk CCBAN=-DUNBAN as see if this is a work-a-round. If YOU discover a need for the -DUNBAN work-a-round, PLEASE tell us! Please send us a bug report. See the file: BUGS or the URL: http://www.isthe.com/chongo/tech/comp/calc/calc-bugrept.html for how to send us such a bug report. Added the building of have_ban_pragma.h, which will determine if "#pragma GCC poison func_name" is supported. If it is not, or of HAVE_PRAGMA_GCC_POSION=-DHAVE_NO_PRAGMA_GCC_POSION, then banned.h will have no effect. Fixed building of the have_getpgid.h file. Fixed building of the have_getprid.h file. Fixed building of the have_getsid.h file. Fixed building of the have_gettime.h file. Fixed building of the have_strdup.h file. Fixed building of the have_ustat.h file. Fixed building of the have_rusage.h file. Added HAVE_NO_STRLCPY to control if we want to test if the system has a strlcpy() function. This in turn produces the have_strlcpy.h file wherein the symbol HAVE_STRLCPY will be defined, or not depending if the system comes with a strlcpy() function. If the system does not have a strlcpy() function, we compile our own strlcpy() function. See strl.c for details. Added HAVE_NO_STRLCAT to control if we want to test if the system has a strlcat() function. This in turn produces the have_strlcat.h file wherein the symbol HAVE_STRLCAT will be defined, or not depending if the system comes with a strlcat() function. If the system does not have a strlcat() function, we compile our own strlcat() function. See strl.c for details. Fixed places were <string.h>, using #ifdef HAVE_STRING_H for legacy systems that do not have that include file. Added ${H} Makefile symbol to control the announcement of forming and having formed hsrc related files. By default H=@ (announce hsrc file formation) vs. H=@: to silence hsrc related file formation. Explicitly turn off quiet mode (set Makefile variable ${Q} to be empty) when building rpms. Improved and fixed the hsrc build process. Forming rpms is performed in verbose mode to assist debugging to the rpm build process. Compile custom code, if needed, after main code is compiled.
1253 lines
24 KiB
C
1253 lines
24 KiB
C
/*
|
|
* comfunc - extended precision complex arithmetic non-primitive routines
|
|
*
|
|
* Copyright (C) 1999-2007,2021 David I. Bell and Ernest Bowen
|
|
*
|
|
* Primary author: David I. Bell
|
|
*
|
|
* Calc is open software; you can redistribute it and/or modify it under
|
|
* the terms of the version 2.1 of the GNU Lesser General Public License
|
|
* as published by the Free Software Foundation.
|
|
*
|
|
* Calc is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General
|
|
* Public License for more details.
|
|
*
|
|
* A copy of version 2.1 of the GNU Lesser General Public License is
|
|
* distributed with calc under the filename COPYING-LGPL. You should have
|
|
* received a copy with calc; if not, write to Free Software Foundation, Inc.
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*
|
|
* Under source code control: 1990/02/15 01:48:13
|
|
* File existed as early as: before 1990
|
|
*
|
|
* Share and enjoy! :-) http://www.isthe.com/chongo/tech/comp/calc/
|
|
*/
|
|
|
|
|
|
#include "config.h"
|
|
#include "cmath.h"
|
|
|
|
|
|
#include "banned.h" /* include after system header <> includes */
|
|
|
|
|
|
/*
|
|
* cache the natural logarithm of 10
|
|
*/
|
|
STATIC COMPLEX *cln_10 = NULL;
|
|
STATIC NUMBER *cln_10_epsilon = NULL;
|
|
STATIC NUMBER _q10_ = { { _tenval_, 1, 0 }, { _oneval_, 1, 0 }, 1, NULL };
|
|
STATIC NUMBER _q0_ = { { _zeroval_, 1, 0 }, { _oneval_, 1, 0 }, 1, NULL };
|
|
COMPLEX _cten_ = { &_q10_, &_q0_, 1 };
|
|
|
|
|
|
/*
|
|
* Compute the result of raising a complex number to an integer power.
|
|
*
|
|
* given:
|
|
* c complex number to be raised
|
|
* q power to raise it to
|
|
*/
|
|
COMPLEX *
|
|
c_powi(COMPLEX *c, NUMBER *q)
|
|
{
|
|
COMPLEX *tmp, *res; /* temporary values */
|
|
long power; /* power to raise to */
|
|
FULL bit; /* current bit value */
|
|
int sign;
|
|
|
|
if (qisfrac(q)) {
|
|
math_error("Raising number to non-integral power");
|
|
/*NOTREACHED*/
|
|
}
|
|
if (zge31b(q->num)) {
|
|
math_error("Raising number to very large power");
|
|
/*NOTREACHED*/
|
|
}
|
|
power = ztolong(q->num);
|
|
if (ciszero(c) && (power == 0)) {
|
|
math_error("Raising zero to zeroth power");
|
|
/*NOTREACHED*/
|
|
}
|
|
sign = 1;
|
|
if (qisneg(q))
|
|
sign = -1;
|
|
/*
|
|
* Handle some low powers specially
|
|
*/
|
|
if (power <= 4) {
|
|
switch ((int) (power * sign)) {
|
|
case 0:
|
|
return clink(&_cone_);
|
|
case 1:
|
|
return clink(c);
|
|
case -1:
|
|
return c_inv(c);
|
|
case 2:
|
|
return c_square(c);
|
|
case -2:
|
|
tmp = c_square(c);
|
|
res = c_inv(tmp);
|
|
comfree(tmp);
|
|
return res;
|
|
case 3:
|
|
tmp = c_square(c);
|
|
res = c_mul(c, tmp);
|
|
comfree(tmp);
|
|
return res;
|
|
case 4:
|
|
tmp = c_square(c);
|
|
res = c_square(tmp);
|
|
comfree(tmp);
|
|
return res;
|
|
}
|
|
}
|
|
/*
|
|
* Compute the power by squaring and multiplying.
|
|
* This uses the left to right method of power raising.
|
|
*/
|
|
bit = TOPFULL;
|
|
while ((bit & power) == 0)
|
|
bit >>= 1L;
|
|
bit >>= 1L;
|
|
res = c_square(c);
|
|
if (bit & power) {
|
|
tmp = c_mul(res, c);
|
|
comfree(res);
|
|
res = tmp;
|
|
}
|
|
bit >>= 1L;
|
|
while (bit) {
|
|
tmp = c_square(res);
|
|
comfree(res);
|
|
res = tmp;
|
|
if (bit & power) {
|
|
tmp = c_mul(res, c);
|
|
comfree(res);
|
|
res = tmp;
|
|
}
|
|
bit >>= 1L;
|
|
}
|
|
if (sign < 0) {
|
|
tmp = c_inv(res);
|
|
comfree(res);
|
|
res = tmp;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
|
|
/*
|
|
* Calculate the square root of a complex number to specified accuracy.
|
|
* Type of rounding of each component specified by R as for qsqrt().
|
|
*/
|
|
COMPLEX *
|
|
c_sqrt(COMPLEX *c, NUMBER *epsilon, long R)
|
|
{
|
|
COMPLEX *r;
|
|
NUMBER *es, *aes, *bes, *u, *v, qtemp;
|
|
NUMBER *ntmp;
|
|
ZVALUE g, a, b, d, aa, cc;
|
|
ZVALUE tmp1, tmp2, tmp3, mul1, mul2;
|
|
long s1, s2, s3, up1, up2;
|
|
int imsign, sign;
|
|
|
|
if (ciszero(c))
|
|
return clink(c);
|
|
if (cisreal(c)) {
|
|
r = comalloc();
|
|
if (!qisneg(c->real)) {
|
|
qfree(r->real);
|
|
r->real = qsqrt(c->real, epsilon, R);
|
|
return r;
|
|
}
|
|
ntmp = qneg(c->real);
|
|
qfree(r->imag);
|
|
r->imag = qsqrt(ntmp, epsilon, R);
|
|
qfree(ntmp);
|
|
return r;
|
|
}
|
|
|
|
up1 = up2 = 0;
|
|
sign = (R & 64) != 0;
|
|
imsign = c->imag->num.sign;
|
|
es = qsquare(epsilon);
|
|
aes = qqdiv(c->real, es);
|
|
bes = qqdiv(c->imag, es);
|
|
qfree(es);
|
|
zgcd(aes->den, bes->den, &g);
|
|
zequo(bes->den, g, &tmp1);
|
|
zmul(aes->num, tmp1, &a);
|
|
zmul(aes->den, tmp1, &tmp2);
|
|
zshift(tmp2, 1, &d);
|
|
zfree(tmp1);
|
|
zfree(tmp2);
|
|
zequo(aes->den, g, &tmp1);
|
|
zmul(bes->num, tmp1, &b);
|
|
zfree(tmp1);
|
|
zfree(g);
|
|
qfree(aes);
|
|
qfree(bes);
|
|
zsquare(a, &tmp1);
|
|
zsquare(b, &tmp2);
|
|
zfree(b);
|
|
zadd(tmp1, tmp2, &tmp3);
|
|
zfree(tmp1);
|
|
zfree(tmp2);
|
|
if (R & 16) {
|
|
zshift(tmp3, 4, &tmp1);
|
|
zfree(tmp3);
|
|
zshift(a, 2, &aa);
|
|
zfree(a);
|
|
s1 = zsqrt(tmp1, &cc, 16);
|
|
zfree(tmp1);
|
|
zadd(cc, aa, &tmp1);
|
|
if (s1 == 0 && R & 32) {
|
|
zmul(tmp1, d, &tmp2);
|
|
zfree(tmp1);
|
|
s2 = zsqrt(tmp2, &tmp3, 16);
|
|
zfree(tmp2);
|
|
if (s2 == 0) {
|
|
aes = qalloc();
|
|
zshift(d, 1, &tmp1);
|
|
zreduce(tmp3, tmp1, &aes->num, &aes->den);
|
|
zfree(tmp1);
|
|
zfree(tmp3);
|
|
zfree(aa);
|
|
zfree(cc);
|
|
zfree(d);
|
|
r = comalloc();
|
|
qtemp = *aes;
|
|
qtemp.num.sign = sign;
|
|
qfree(r->real);
|
|
r->real = qmul(&qtemp, epsilon);
|
|
qfree(aes);
|
|
bes = qscale(r->real, 1);
|
|
qtemp = *bes;
|
|
qtemp.num.sign = sign ^ imsign;
|
|
qfree(r->imag);
|
|
r->imag = qqdiv(c->imag, &qtemp);
|
|
qfree(bes);
|
|
return r;
|
|
}
|
|
s3 = zquo(tmp3, d, &tmp1, s2 < 0);
|
|
} else {
|
|
s2 = zquo(tmp1, d, &tmp3, s1 ? (s1 < 0) : 16);
|
|
zfree(tmp1);
|
|
s3 = zsqrt(tmp3,&tmp1,(s1||s2) ? (s1<0 || s2<0) : 16);
|
|
}
|
|
zfree(tmp3);
|
|
zshift(tmp1, -1, &mul1);
|
|
if (*tmp1.v & 1)
|
|
up1 = s1 + s2 + s3;
|
|
else
|
|
up1 = -1;
|
|
zfree(tmp1);
|
|
zsub(cc, aa, &tmp1);
|
|
s2 = zquo(tmp1, d, &tmp2, s1 ? (s1 < 0) : 16);
|
|
zfree(tmp1);
|
|
s3 = zsqrt(tmp2, &tmp1, (s1 || s2) ? (s1 < 0 || s2 < 0) : 16);
|
|
zfree(tmp2);
|
|
zshift(tmp1, -1, &mul2);
|
|
if (*tmp1.v & 1)
|
|
up2 = s1 + s2 + s3;
|
|
else
|
|
up2 = -1;
|
|
zfree(tmp1);
|
|
zfree(aa);
|
|
} else {
|
|
s1 = zsqrt(tmp3, &cc, 0);
|
|
zfree(tmp3);
|
|
zadd(cc, a, &tmp1);
|
|
if (s1 == 0 && R & 32) {
|
|
zmul(tmp1, d, &tmp2);
|
|
zfree(tmp1);
|
|
s2 = zsqrt(tmp2, &tmp3, 0);
|
|
zfree(tmp2);
|
|
if (s2 == 0) {
|
|
aes = qalloc();
|
|
zreduce(tmp3, d, &aes->num, &aes->den);
|
|
zfree(tmp3);
|
|
zfree(a);
|
|
zfree(cc);
|
|
zfree(d);
|
|
r = comalloc();
|
|
qtemp = *aes;
|
|
qtemp.num.sign = sign;
|
|
qfree(r->real);
|
|
r->real = qmul(&qtemp, epsilon);
|
|
qfree(aes);
|
|
bes = qscale(r->real, 1);
|
|
qtemp = *bes;
|
|
qtemp.num.sign = sign ^ imsign;
|
|
qfree(r->imag);
|
|
r->imag = qqdiv(c->imag, &qtemp);
|
|
qfree(bes);
|
|
return r;
|
|
}
|
|
s3 = zquo(tmp3, d, &mul1, 0);
|
|
} else {
|
|
s2 = zquo(tmp1, d, &tmp3, 0);
|
|
zfree(tmp1);
|
|
s3 = zsqrt(tmp3, &mul1, 0);
|
|
}
|
|
up1 = (s1 + s2 + s3) ? 0 : -1;
|
|
zfree(tmp3);
|
|
zsub(cc, a, &tmp1);
|
|
s2 = zquo(tmp1, d, &tmp2, 0);
|
|
zfree(tmp1);
|
|
s3 = zsqrt(tmp2, &mul2, 0);
|
|
up2 = (s1 + s2 + s3) ? 0 : -1;
|
|
zfree(tmp2);
|
|
zfree(a);
|
|
}
|
|
zfree(cc); zfree(d);
|
|
if (up1 == 0) {
|
|
if (R & 8)
|
|
up1 = (long)((R ^ *mul1.v) & 1);
|
|
else
|
|
up1 = (R ^ epsilon->num.sign ^ sign) & 1;
|
|
if (R & 2)
|
|
up1 ^= epsilon->num.sign ^ sign;
|
|
if (R & 4)
|
|
up1 ^= epsilon->num.sign;
|
|
}
|
|
if (up2 == 0) {
|
|
if (R & 8)
|
|
up2 = (long)((R ^ *mul2.v) & 1);
|
|
else
|
|
up2 = (R ^ epsilon->num.sign ^ sign ^ imsign) & 1;
|
|
if (R & 2)
|
|
up2 ^= epsilon->num.sign ^ imsign ^ sign;
|
|
if (R & 4)
|
|
up2 ^= epsilon->num.sign;
|
|
}
|
|
if (up1 > 0) {
|
|
zadd(mul1, _one_, &tmp1);
|
|
zfree(mul1);
|
|
mul1 = tmp1;
|
|
}
|
|
if (up2 > 0) {
|
|
zadd(mul2, _one_, &tmp2);
|
|
zfree(mul2);
|
|
mul2 = tmp2;
|
|
}
|
|
if (ziszero(mul1)) {
|
|
u = qlink(&_qzero_);
|
|
} else {
|
|
mul1.sign = sign ^ epsilon->num.sign;
|
|
u = qalloc();
|
|
zreduce(mul1, epsilon->den, &tmp2, &u->den);
|
|
zmul(tmp2, epsilon->num, &u->num);
|
|
zfree(tmp2);
|
|
}
|
|
zfree(mul1);
|
|
if (ziszero(mul2)) {
|
|
v = qlink(&_qzero_);
|
|
} else {
|
|
mul2.sign = imsign ^ sign ^ epsilon->num.sign;
|
|
v = qalloc();
|
|
zreduce(mul2, epsilon->den, &tmp2, &v->den);
|
|
zmul(tmp2, epsilon->num, &v->num);
|
|
zfree(tmp2);
|
|
}
|
|
zfree(mul2);
|
|
if (qiszero(u) && qiszero(v)) {
|
|
qfree(u);
|
|
qfree(v);
|
|
return clink(&_czero_);
|
|
}
|
|
r = comalloc();
|
|
qfree(r->real);
|
|
qfree(r->imag);
|
|
r->real = u;
|
|
r->imag = v;
|
|
return r;
|
|
}
|
|
|
|
|
|
/*
|
|
* Take the Nth root of a complex number, where N is a positive integer.
|
|
* Each component of the result is within the specified error.
|
|
*/
|
|
COMPLEX *
|
|
c_root(COMPLEX *c, NUMBER *q, NUMBER *epsilon)
|
|
{
|
|
COMPLEX *r;
|
|
NUMBER *a2pb2, *root, *tmp1, *tmp2, *epsilon2;
|
|
long n, m;
|
|
|
|
if (qisneg(q) || qiszero(q) || qisfrac(q)) {
|
|
math_error("Taking bad root of complex number");
|
|
/*NOTREACHED*/
|
|
}
|
|
if (cisone(c) || qisone(q))
|
|
return clink(c);
|
|
if (qistwo(q))
|
|
return c_sqrt(c, epsilon, 24L);
|
|
if (cisreal(c) && !qisneg(c->real)) {
|
|
tmp1 = qroot(c->real, q, epsilon);
|
|
if (tmp1 == NULL)
|
|
return NULL;
|
|
r = comalloc();
|
|
qfree(r->real);
|
|
r->real = tmp1;
|
|
return r;
|
|
}
|
|
/*
|
|
* Calculate the root using the formula:
|
|
* c_root(a + bi, n) =
|
|
* c_polar(qroot(a^2 + b^2, 2 * n), qatan2(b, a) / n).
|
|
*/
|
|
n = qilog2(epsilon);
|
|
epsilon2 = qbitvalue(n - 4);
|
|
tmp1 = qsquare(c->real);
|
|
tmp2 = qsquare(c->imag);
|
|
a2pb2 = qqadd(tmp1, tmp2);
|
|
qfree(tmp1);
|
|
qfree(tmp2);
|
|
tmp1 = qscale(q, 1L);
|
|
root = qroot(a2pb2, tmp1, epsilon2);
|
|
qfree(a2pb2);
|
|
qfree(tmp1);
|
|
qfree(epsilon2);
|
|
if (root == NULL)
|
|
return NULL;
|
|
m = qilog2(root);
|
|
if (m < n) {
|
|
qfree(root);
|
|
return clink(&_czero_);
|
|
}
|
|
epsilon2 = qbitvalue(n - m - 4);
|
|
tmp1 = qatan2(c->imag, c->real, epsilon2);
|
|
qfree(epsilon2);
|
|
tmp2 = qqdiv(tmp1, q);
|
|
qfree(tmp1);
|
|
r = c_polar(root, tmp2, epsilon);
|
|
qfree(root);
|
|
qfree(tmp2);
|
|
return r;
|
|
}
|
|
|
|
|
|
/*
|
|
* Calculate the complex exponential function to the desired accuracy.
|
|
* We use the formula:
|
|
* exp(a + bi) = exp(a) * (cos(b) + i * sin(b)).
|
|
*/
|
|
COMPLEX *
|
|
c_exp(COMPLEX *c, NUMBER *epsilon)
|
|
{
|
|
COMPLEX *r;
|
|
NUMBER *sin, *cos, *tmp1, *tmp2, *epsilon1;
|
|
long k, n;
|
|
|
|
if (qiszero(epsilon)) {
|
|
math_error("Zero epsilon for cexp");
|
|
/*NOTREACHED*/
|
|
}
|
|
if (cisreal(c)) {
|
|
tmp1 = qexp(c->real, epsilon);
|
|
if (tmp1 == NULL)
|
|
return NULL;
|
|
r = comalloc();
|
|
qfree(r->real);
|
|
r->real = qexp(c->real, epsilon);
|
|
return r;
|
|
}
|
|
n = qilog2(epsilon);
|
|
epsilon1 = qbitvalue(n - 2);
|
|
tmp1 = qexp(c->real, epsilon1);
|
|
qfree(epsilon1);
|
|
if (tmp1 == NULL)
|
|
return NULL;
|
|
if (qiszero(tmp1)) {
|
|
qfree(tmp1);
|
|
return clink(&_czero_);
|
|
}
|
|
k = qilog2(tmp1) + 1;
|
|
if (k < n) {
|
|
qfree(tmp1);
|
|
return clink(&_czero_);
|
|
}
|
|
qsincos(c->imag, k - n + 2, &sin, &cos);
|
|
tmp2 = qmul(tmp1, cos);
|
|
qfree(cos);
|
|
r = comalloc();
|
|
qfree(r->real);
|
|
r->real = qmappr(tmp2, epsilon, 24L);
|
|
qfree(tmp2);
|
|
tmp2 = qmul(tmp1, sin);
|
|
qfree(tmp1);
|
|
qfree(sin);
|
|
qfree(r->imag);
|
|
r->imag = qmappr(tmp2, epsilon, 24L);
|
|
qfree(tmp2);
|
|
return r;
|
|
}
|
|
|
|
|
|
/*
|
|
* Calculate the natural logarithm of a complex number within the specified
|
|
* error. We use the formula:
|
|
* ln(a + bi) = ln(a^2 + b^2) / 2 + i * atan2(b, a).
|
|
*/
|
|
COMPLEX *
|
|
c_ln(COMPLEX *c, NUMBER *epsilon)
|
|
{
|
|
COMPLEX *r;
|
|
NUMBER *a2b2, *tmp1, *tmp2, *epsilon1;
|
|
|
|
if (ciszero(c)) {
|
|
math_error("logarithm of zero");
|
|
/*NOTREACHED*/
|
|
}
|
|
if (cisone(c))
|
|
return clink(&_czero_);
|
|
r = comalloc();
|
|
if (cisreal(c) && !qisneg(c->real)) {
|
|
qfree(r->real);
|
|
r->real = qln(c->real, epsilon);
|
|
return r;
|
|
}
|
|
tmp1 = qsquare(c->real);
|
|
tmp2 = qsquare(c->imag);
|
|
a2b2 = qqadd(tmp1, tmp2);
|
|
qfree(tmp1);
|
|
qfree(tmp2);
|
|
epsilon1 = qscale(epsilon, 1L);
|
|
tmp1 = qln(a2b2, epsilon1);
|
|
qfree(a2b2);
|
|
qfree(epsilon1);
|
|
qfree(r->real);
|
|
r->real = qscale(tmp1, -1L);
|
|
qfree(tmp1);
|
|
qfree(r->imag);
|
|
r->imag = qatan2(c->imag, c->real, epsilon);
|
|
return r;
|
|
}
|
|
|
|
/*
|
|
* Calculate base 10 logarithm by:
|
|
*
|
|
* log(c) = ln(c) / ln(10)
|
|
*/
|
|
COMPLEX *
|
|
c_log(COMPLEX *c, NUMBER *epsilon)
|
|
{
|
|
int need_new_cln_10 = TRUE; /* FALSE => use cached cln_10 value */
|
|
COMPLEX *ln_c; /* ln(x) */
|
|
COMPLEX *ret; /* base 10 logarithm of x */
|
|
|
|
/*
|
|
* compute ln(c) first
|
|
*/
|
|
ln_c = c_ln(c, epsilon);
|
|
/* log(1) == 0 */
|
|
if (ciszero(ln_c)) {
|
|
return ln_c;
|
|
}
|
|
|
|
/*
|
|
* save epsilon for ln(10) if needed
|
|
*/
|
|
if (cln_10_epsilon == NULL) {
|
|
/* first time call */
|
|
cln_10_epsilon = qcopy(epsilon);
|
|
} else if (qcmp(cln_10_epsilon, epsilon) == TRUE) {
|
|
/* replaced cached value with epsilon arg */
|
|
qfree(cln_10_epsilon);
|
|
cln_10_epsilon = qcopy(epsilon);
|
|
} else if (cln_10 != NULL) {
|
|
/* the previously computed ln(2) is OK to use */
|
|
need_new_cln_10 = FALSE;
|
|
}
|
|
|
|
/*
|
|
* compute ln(10) if needed
|
|
*/
|
|
if (need_new_cln_10 == TRUE) {
|
|
if (cln_10 != NULL) {
|
|
comfree(cln_10);
|
|
}
|
|
cln_10 = c_ln(&_cten_, cln_10_epsilon);
|
|
}
|
|
|
|
/*
|
|
* return ln(c) / ln(10)
|
|
*/
|
|
ret = c_div(ln_c, cln_10);
|
|
comfree(ln_c);
|
|
return ret;
|
|
}
|
|
|
|
|
|
/*
|
|
* Calculate the complex cosine within the specified accuracy.
|
|
* This uses the formula:
|
|
* cos(x) = (exp(1i * x) + exp(-1i * x))/2;
|
|
*/
|
|
COMPLEX *
|
|
c_cos(COMPLEX *c, NUMBER *epsilon)
|
|
{
|
|
COMPLEX *r, *ctmp1, *ctmp2, *ctmp3;
|
|
NUMBER *epsilon1;
|
|
long n;
|
|
BOOL neg;
|
|
|
|
if (qiszero(epsilon)) {
|
|
math_error("Zero epsilon for ccos");
|
|
/*NOTREACHED*/
|
|
}
|
|
n = qilog2(epsilon);
|
|
ctmp1 = comalloc();
|
|
qfree(ctmp1->real);
|
|
qfree(ctmp1->imag);
|
|
neg = qisneg(c->imag);
|
|
ctmp1->real = neg ? qneg(c->imag) : qlink(c->imag);
|
|
ctmp1->imag = neg ? qlink(c->real) : qneg(c->real);
|
|
epsilon1 = qbitvalue(n - 2);
|
|
ctmp2 = c_exp(ctmp1, epsilon1);
|
|
comfree(ctmp1);
|
|
qfree(epsilon1);
|
|
if (ctmp2 == NULL)
|
|
return NULL;
|
|
if (ciszero(ctmp2)) {
|
|
comfree(ctmp2);
|
|
return clink(&_czero_);
|
|
}
|
|
ctmp1 = c_inv(ctmp2);
|
|
ctmp3 = c_add(ctmp2, ctmp1);
|
|
comfree(ctmp1);
|
|
comfree(ctmp2);
|
|
ctmp1 = c_scale(ctmp3, -1);
|
|
comfree(ctmp3);
|
|
r = comalloc();
|
|
qfree(r->real);
|
|
r->real = qmappr(ctmp1->real, epsilon, 24L);
|
|
qfree(r->imag);
|
|
r->imag = qmappr(ctmp1->imag, epsilon, 24L);
|
|
comfree(ctmp1);
|
|
return r;
|
|
}
|
|
|
|
|
|
/*
|
|
* Calculate the complex sine within the specified accuracy.
|
|
* This uses the formula:
|
|
* sin(x) = (exp(1i * x) - exp(-i1*x))/(2i).
|
|
*/
|
|
COMPLEX *
|
|
c_sin(COMPLEX *c, NUMBER *epsilon)
|
|
{
|
|
COMPLEX *r, *ctmp1, *ctmp2, *ctmp3;
|
|
NUMBER *qtmp, *epsilon1;
|
|
long n;
|
|
BOOL neg;
|
|
|
|
if (qiszero(epsilon)) {
|
|
math_error("Zero epsilon for csin");
|
|
/*NOTREACHED*/
|
|
}
|
|
if (ciszero(c))
|
|
return clink(&_czero_);
|
|
n = qilog2(epsilon);
|
|
ctmp1 = comalloc();
|
|
neg = qisneg(c->imag);
|
|
qfree(ctmp1->real);
|
|
qfree(ctmp1->imag);
|
|
ctmp1->real = neg ? qneg(c->imag) : qlink(c->imag);
|
|
ctmp1->imag = neg ? qlink(c->real) : qneg(c->real);
|
|
epsilon1 = qbitvalue(n - 2);
|
|
ctmp2 = c_exp(ctmp1, epsilon1);
|
|
comfree(ctmp1);
|
|
qfree(epsilon1);
|
|
if (ctmp2 == NULL)
|
|
return NULL;
|
|
if (ciszero(ctmp2)) {
|
|
comfree(ctmp2);
|
|
return clink(&_czero_);
|
|
}
|
|
ctmp1 = c_inv(ctmp2);
|
|
ctmp3 = c_sub(ctmp2, ctmp1);
|
|
comfree(ctmp1);
|
|
comfree(ctmp2);
|
|
ctmp1 = c_scale(ctmp3, -1);
|
|
comfree(ctmp3);
|
|
r = comalloc();
|
|
qtmp = neg ? qlink(ctmp1->imag) : qneg(ctmp1->imag);
|
|
qfree(r->real);
|
|
r->real = qmappr(qtmp, epsilon, 24L);
|
|
qfree(qtmp);
|
|
qtmp = neg ? qneg(ctmp1->real) : qlink(ctmp1->real);
|
|
qfree(r->imag);
|
|
r->imag = qmappr(qtmp, epsilon, 24L);
|
|
qfree(qtmp);
|
|
comfree(ctmp1);
|
|
return r;
|
|
}
|
|
|
|
|
|
COMPLEX *
|
|
c_cosh(COMPLEX *c, NUMBER *epsilon)
|
|
{
|
|
COMPLEX *tmp1, *tmp2, *tmp3;
|
|
|
|
tmp1 = c_exp(c, epsilon);
|
|
if (tmp1 == NULL)
|
|
return NULL;
|
|
tmp2 = c_neg(c);
|
|
tmp3 = c_exp(tmp2, epsilon);
|
|
comfree(tmp2);
|
|
if (tmp3 == NULL)
|
|
return NULL;
|
|
tmp2 = c_add(tmp1, tmp3);
|
|
comfree(tmp1);
|
|
comfree(tmp3);
|
|
tmp1 = c_scale(tmp2, -1);
|
|
comfree(tmp2);
|
|
return tmp1;
|
|
}
|
|
|
|
|
|
COMPLEX *
|
|
c_sinh(COMPLEX *c, NUMBER *epsilon)
|
|
{
|
|
COMPLEX *tmp1, *tmp2, *tmp3;
|
|
|
|
tmp1 = c_exp(c, epsilon);
|
|
if (tmp1 == NULL)
|
|
return NULL;
|
|
tmp2 = c_neg(c);
|
|
tmp3 = c_exp(tmp2, epsilon);
|
|
comfree(tmp2);
|
|
if (tmp3 == NULL)
|
|
return NULL;
|
|
tmp2 = c_sub(tmp1, tmp3);
|
|
comfree(tmp1);
|
|
comfree(tmp3);
|
|
tmp1 = c_scale(tmp2, -1);
|
|
comfree(tmp2);
|
|
return tmp1;
|
|
}
|
|
|
|
|
|
COMPLEX *
|
|
c_asin(COMPLEX *c, NUMBER *epsilon)
|
|
{
|
|
COMPLEX *tmp1, *tmp2;
|
|
|
|
tmp1 = c_mul(&_conei_, c);
|
|
tmp2 = c_asinh(tmp1, epsilon);
|
|
comfree(tmp1);
|
|
tmp1 = c_div(tmp2, &_conei_);
|
|
comfree(tmp2);
|
|
return tmp1;
|
|
}
|
|
|
|
|
|
COMPLEX *
|
|
c_acos(COMPLEX *c, NUMBER *epsilon)
|
|
{
|
|
COMPLEX *tmp1, *tmp2;
|
|
|
|
tmp1 = c_square(c);
|
|
tmp2 = c_sub(&_cone_, tmp1);
|
|
comfree(tmp1);
|
|
tmp1 = c_sqrt(tmp2, epsilon, 24);
|
|
comfree(tmp2);
|
|
tmp2 = c_mul(&_conei_, tmp1);
|
|
comfree(tmp1);
|
|
tmp1 = c_add(c, tmp2);
|
|
comfree(tmp2);
|
|
tmp2 = c_ln(tmp1, epsilon);
|
|
comfree(tmp1);
|
|
tmp1 = c_div(tmp2, &_conei_);
|
|
comfree(tmp2);
|
|
return tmp1;
|
|
}
|
|
|
|
|
|
COMPLEX *
|
|
c_asinh(COMPLEX *c, NUMBER *epsilon)
|
|
{
|
|
COMPLEX *tmp1, *tmp2, *tmp3;
|
|
BOOL neg;
|
|
|
|
neg = qisneg(c->real);
|
|
tmp1 = neg ? c_neg(c) : clink(c);
|
|
tmp2 = c_square(tmp1);
|
|
tmp3 = c_add(&_cone_, tmp2);
|
|
comfree(tmp2);
|
|
tmp2 = c_sqrt(tmp3, epsilon, 24);
|
|
comfree(tmp3);
|
|
tmp3 = c_add(tmp2, tmp1);
|
|
comfree(tmp1);
|
|
comfree(tmp2);
|
|
tmp1 = c_ln(tmp3, epsilon);
|
|
comfree(tmp3);
|
|
if (neg) {
|
|
tmp2 = c_neg(tmp1);
|
|
comfree(tmp1);
|
|
return tmp2;
|
|
}
|
|
return tmp1;
|
|
}
|
|
|
|
|
|
COMPLEX *
|
|
c_acosh(COMPLEX *c, NUMBER *epsilon)
|
|
{
|
|
COMPLEX *tmp1, *tmp2;
|
|
|
|
tmp1 = c_square(c);
|
|
tmp2 = c_sub(tmp1, &_cone_);
|
|
comfree(tmp1);
|
|
tmp1 = c_sqrt(tmp2, epsilon, 24);
|
|
comfree(tmp2);
|
|
tmp2 = c_add(c, tmp1);
|
|
comfree(tmp1);
|
|
tmp1 = c_ln(tmp2, epsilon);
|
|
comfree(tmp2);
|
|
return tmp1;
|
|
}
|
|
|
|
|
|
COMPLEX *
|
|
c_atan(COMPLEX *c, NUMBER *epsilon)
|
|
{
|
|
COMPLEX *tmp1, *tmp2, *tmp3;
|
|
|
|
if (qiszero(c->real) && qisunit(c->imag))
|
|
return NULL;
|
|
tmp1 = c_sub(&_conei_, c);
|
|
tmp2 = c_add(&_conei_, c);
|
|
tmp3 = c_div(tmp1, tmp2);
|
|
comfree(tmp1);
|
|
comfree(tmp2);
|
|
tmp1 = c_ln(tmp3, epsilon);
|
|
comfree(tmp3);
|
|
tmp2 = c_scale(tmp1, -1);
|
|
comfree(tmp1);
|
|
tmp1 = c_div(tmp2, &_conei_);
|
|
comfree(tmp2);
|
|
return tmp1;
|
|
}
|
|
|
|
|
|
COMPLEX *
|
|
c_acot(COMPLEX *c, NUMBER *epsilon)
|
|
{
|
|
COMPLEX *tmp1, *tmp2, *tmp3;
|
|
|
|
if (qiszero(c->real) && qisunit(c->imag))
|
|
return NULL;
|
|
tmp1 = c_add(c, &_conei_);
|
|
tmp2 = c_sub(c, &_conei_);
|
|
tmp3 = c_div(tmp1, tmp2);
|
|
comfree(tmp1);
|
|
comfree(tmp2);
|
|
tmp1 = c_ln(tmp3, epsilon);
|
|
comfree(tmp3);
|
|
tmp2 = c_scale(tmp1, -1);
|
|
comfree(tmp1);
|
|
tmp1 = c_div(tmp2, &_conei_);
|
|
comfree(tmp2);
|
|
return tmp1;
|
|
}
|
|
|
|
COMPLEX *
|
|
c_asec(COMPLEX *c, NUMBER *epsilon)
|
|
{
|
|
COMPLEX *tmp1, *tmp2;
|
|
|
|
tmp1 = c_inv(c);
|
|
tmp2 = c_acos(tmp1, epsilon);
|
|
comfree(tmp1);
|
|
return tmp2;
|
|
}
|
|
|
|
COMPLEX *
|
|
c_acsc(COMPLEX *c, NUMBER *epsilon)
|
|
{
|
|
COMPLEX *tmp1, *tmp2;
|
|
|
|
tmp1 = c_inv(c);
|
|
tmp2 = c_asin(tmp1, epsilon);
|
|
comfree(tmp1);
|
|
return tmp2;
|
|
}
|
|
|
|
|
|
COMPLEX *
|
|
c_atanh(COMPLEX *c, NUMBER *epsilon)
|
|
{
|
|
COMPLEX *tmp1, *tmp2, *tmp3;
|
|
|
|
if (qiszero(c->imag) && qisunit(c->real))
|
|
return NULL;
|
|
tmp1 = c_add(&_cone_, c);
|
|
tmp2 = c_sub(&_cone_, c);
|
|
tmp3 = c_div(tmp1, tmp2);
|
|
comfree(tmp1);
|
|
comfree(tmp2);
|
|
tmp1 = c_ln(tmp3, epsilon);
|
|
comfree(tmp3);
|
|
tmp2 = c_scale(tmp1, -1);
|
|
comfree(tmp1);
|
|
return tmp2;
|
|
}
|
|
|
|
|
|
COMPLEX *
|
|
c_acoth(COMPLEX *c, NUMBER *epsilon)
|
|
{
|
|
COMPLEX *tmp1, *tmp2, *tmp3;
|
|
|
|
if (qiszero(c->imag) && qisunit(c->real))
|
|
return NULL;
|
|
tmp1 = c_add(c, &_cone_);
|
|
tmp2 = c_sub(c, &_cone_);
|
|
tmp3 = c_div(tmp1, tmp2);
|
|
comfree(tmp1);
|
|
comfree(tmp2);
|
|
tmp1 = c_ln(tmp3, epsilon);
|
|
comfree(tmp3);
|
|
tmp2 = c_scale(tmp1, -1);
|
|
comfree(tmp1);
|
|
return tmp2;
|
|
}
|
|
|
|
COMPLEX *
|
|
c_asech(COMPLEX *c, NUMBER *epsilon)
|
|
{
|
|
COMPLEX *tmp1, *tmp2;
|
|
|
|
tmp1 = c_inv(c);
|
|
tmp2 = c_acosh(tmp1, epsilon);
|
|
comfree(tmp1);
|
|
return tmp2;
|
|
}
|
|
|
|
COMPLEX *
|
|
c_acsch(COMPLEX *c, NUMBER *epsilon)
|
|
{
|
|
COMPLEX *tmp1, *tmp2;
|
|
|
|
tmp1 = c_inv(c);
|
|
tmp2 = c_asinh(tmp1, epsilon);
|
|
comfree(tmp1);
|
|
return tmp2;
|
|
}
|
|
|
|
|
|
COMPLEX *
|
|
c_gd(COMPLEX *c, NUMBER *epsilon)
|
|
{
|
|
COMPLEX *tmp1, *tmp2, *tmp3;
|
|
NUMBER *q1, *q2;
|
|
NUMBER *sin, *cos;
|
|
NUMBER *eps;
|
|
int n, n1;
|
|
BOOL neg;
|
|
|
|
if (cisreal(c)) {
|
|
q1 = qscale(c->real, -1);
|
|
eps = qscale(epsilon, -1);
|
|
q2 = qtanh(q1, eps);
|
|
qfree(q1);
|
|
q1 = qatan(q2, eps);
|
|
qfree(eps);
|
|
qfree(q2);
|
|
tmp1 = comalloc();
|
|
qfree(tmp1->real);
|
|
tmp1->real = qscale(q1, 1);
|
|
qfree(q1);
|
|
return tmp1;
|
|
}
|
|
if (qiszero(c->real)) {
|
|
n = - qilog2(epsilon);
|
|
qsincos(c->imag, n + 8, &sin, &cos);
|
|
if (qiszero(cos) || (n1 = -qilog2(cos)) > n) {
|
|
qfree(sin);
|
|
qfree(cos);
|
|
return NULL;
|
|
}
|
|
neg = qisneg(sin);
|
|
q1 = neg ? qsub(&_qone_, sin) : qqadd(&_qone_, sin);
|
|
qfree(sin);
|
|
if (n1 > 8) {
|
|
qfree(q1);
|
|
qfree(cos);
|
|
qsincos(c->imag, n + n1, &sin, &cos);
|
|
q1 = neg ? qsub(&_qone_, sin) : qqadd(&_qone_, sin);
|
|
qfree(sin);
|
|
}
|
|
q2 = qqdiv(q1, cos);
|
|
qfree(q1);
|
|
q1 = qln(q2, epsilon);
|
|
qfree(q2);
|
|
if (neg) {
|
|
q2 = qneg(q1);
|
|
qfree(q1);
|
|
q1 = q2;
|
|
}
|
|
tmp1 = comalloc();
|
|
qfree(tmp1->imag);
|
|
tmp1->imag = q1;
|
|
if (qisneg(cos)) {
|
|
qfree(tmp1->real);
|
|
q1 = qpi(epsilon);
|
|
if (qisneg(c->imag)) {
|
|
q2 = qneg(q1);
|
|
qfree(q1);
|
|
q1 = q2;
|
|
}
|
|
tmp1->real = q1;
|
|
}
|
|
qfree(cos);
|
|
return tmp1;
|
|
}
|
|
neg = qisneg(c->real);
|
|
tmp1 = neg ? c_neg(c) : clink(c);
|
|
tmp2 = c_exp(tmp1, epsilon);
|
|
comfree(tmp1);
|
|
if (tmp2 == NULL)
|
|
return NULL;
|
|
tmp1 = c_mul(&_conei_, tmp2);
|
|
tmp3 = c_add(&_conei_, tmp2);
|
|
comfree(tmp2);
|
|
tmp2 = c_add(tmp1, &_cone_);
|
|
comfree(tmp1);
|
|
if (ciszero(tmp2) || ciszero(tmp3)) {
|
|
comfree(tmp2);
|
|
comfree(tmp3);
|
|
return NULL;
|
|
}
|
|
tmp1 = c_div(tmp2, tmp3);
|
|
comfree(tmp2);
|
|
comfree(tmp3);
|
|
tmp2 = c_ln(tmp1, epsilon);
|
|
comfree(tmp1);
|
|
tmp1 = c_div(tmp2, &_conei_);
|
|
comfree(tmp2);
|
|
if (neg) {
|
|
tmp2 = c_neg(tmp1);
|
|
comfree(tmp1);
|
|
return tmp2;
|
|
}
|
|
return tmp1;
|
|
}
|
|
|
|
|
|
COMPLEX *
|
|
c_agd(COMPLEX *c, NUMBER *epsilon)
|
|
{
|
|
COMPLEX *tmp1, *tmp2;
|
|
|
|
tmp1 = c_mul(&_conei_, c);
|
|
tmp2 = c_gd(tmp1, epsilon);
|
|
comfree(tmp1);
|
|
if (tmp2 == NULL)
|
|
return NULL;
|
|
tmp1 = c_div(tmp2, &_conei_);
|
|
comfree(tmp2);
|
|
return tmp1;
|
|
}
|
|
|
|
|
|
/*
|
|
* Convert a number from polar coordinates to normal complex number form
|
|
* within the specified accuracy. This produces the value:
|
|
* q1 * cos(q2) + q1 * sin(q2) * i.
|
|
*/
|
|
COMPLEX *
|
|
c_polar(NUMBER *q1, NUMBER *q2, NUMBER *epsilon)
|
|
{
|
|
COMPLEX *r;
|
|
NUMBER *tmp, *cos, *sin;
|
|
long m, n;
|
|
|
|
if (qiszero(epsilon)) {
|
|
math_error("Zero epsilon for cpolar");
|
|
/*NOTREACHED*/
|
|
}
|
|
if (qiszero(q1))
|
|
return clink(&_czero_);
|
|
m = qilog2(q1) + 1;
|
|
n = qilog2(epsilon);
|
|
if (m < n)
|
|
return clink(&_czero_);
|
|
r = comalloc();
|
|
if (qiszero(q2)) {
|
|
qfree(r->real);
|
|
r->real = qlink(q1);
|
|
return r;
|
|
}
|
|
qsincos(q2, m - n + 2, &sin, &cos);
|
|
tmp = qmul(q1, cos);
|
|
qfree(cos);
|
|
qfree(r->real);
|
|
r->real = qmappr(tmp, epsilon, 24L);
|
|
qfree(tmp);
|
|
tmp = qmul(q1, sin);
|
|
qfree(sin);
|
|
qfree(r->imag);
|
|
r->imag = qmappr(tmp, epsilon, 24L);
|
|
qfree(tmp);
|
|
return r;
|
|
}
|
|
|
|
|
|
/*
|
|
* Raise one complex number to the power of another one to within the
|
|
* specified error.
|
|
*/
|
|
COMPLEX *
|
|
c_power(COMPLEX *c1, COMPLEX *c2, NUMBER *epsilon)
|
|
{
|
|
COMPLEX *ctmp1, *ctmp2;
|
|
long k1, k2, k, m1, m2, m, n;
|
|
NUMBER *a2b2, *qtmp1, *qtmp2, *epsilon1;
|
|
|
|
if (qiszero(epsilon)) {
|
|
math_error("Zero epsilon for cpower");
|
|
/*NOTREACHED*/
|
|
}
|
|
if (ciszero(c1)) {
|
|
if (cisreal(c2) && qisneg(c2->real)) {
|
|
math_error ("Non-positive real exponent of zero");
|
|
/*NOTREACHED*/
|
|
}
|
|
return clink(&_czero_);
|
|
}
|
|
n = qilog2(epsilon);
|
|
m1 = m2 = -1000000;
|
|
k1 = k2 = 0;
|
|
if (!qiszero(c2->real)) {
|
|
qtmp1 = qsquare(c1->real);
|
|
qtmp2 = qsquare(c1->imag);
|
|
a2b2 = qqadd(qtmp1, qtmp2);
|
|
qfree(qtmp1);
|
|
qfree(qtmp2);
|
|
m1 = qilog2(c2->real);
|
|
epsilon1 = qbitvalue(-m1 - 1);
|
|
qtmp1 = qln(a2b2, epsilon1);
|
|
qfree(epsilon1);
|
|
qfree(a2b2);
|
|
qtmp2 = qmul(qtmp1, c2->real);
|
|
qfree(qtmp1);
|
|
qtmp1 = qmul(qtmp2, &_qlge_);
|
|
qfree(qtmp2);
|
|
k1 = qtoi(qtmp1);
|
|
qfree(qtmp1);
|
|
}
|
|
if (!qiszero(c2->imag)) {
|
|
m2 = qilog2(c2->imag);
|
|
epsilon1 = qbitvalue(-m2 - 1);
|
|
qtmp1 = qatan2(c1->imag, c1->real, epsilon1);
|
|
qfree(epsilon1);
|
|
qtmp2 = qmul(qtmp1, c2->imag);
|
|
qfree(qtmp1);
|
|
qtmp1 = qscale(qtmp2, -1);
|
|
qfree(qtmp2);
|
|
qtmp2 = qmul(qtmp1, &_qlge_);
|
|
qfree(qtmp1);
|
|
k2 = qtoi(qtmp2);
|
|
qfree(qtmp2);
|
|
}
|
|
m = (m2 > m1) ? m2 : m1;
|
|
k = k1 - k2 + 1;
|
|
if (k < n)
|
|
return clink(&_czero_);
|
|
epsilon1 = qbitvalue(n - k - m - 2);
|
|
ctmp1 = c_ln(c1, epsilon1);
|
|
qfree(epsilon1);
|
|
ctmp2 = c_mul(ctmp1, c2);
|
|
comfree(ctmp1);
|
|
ctmp1 = c_exp(ctmp2, epsilon);
|
|
comfree(ctmp2);
|
|
return ctmp1;
|
|
}
|
|
|
|
|
|
/*
|
|
* Print a complex number in the current output mode.
|
|
*/
|
|
void
|
|
comprint(COMPLEX *c)
|
|
{
|
|
NUMBER qtmp;
|
|
|
|
if (conf->outmode == MODE_FRAC) {
|
|
cprintfr(c);
|
|
return;
|
|
}
|
|
if (!qiszero(c->real) || qiszero(c->imag))
|
|
qprintnum(c->real, MODE_DEFAULT, conf->outdigits);
|
|
qtmp = c->imag[0];
|
|
if (qiszero(&qtmp))
|
|
return;
|
|
if (!qiszero(c->real) && !qisneg(&qtmp))
|
|
math_chr('+');
|
|
if (qisneg(&qtmp)) {
|
|
math_chr('-');
|
|
qtmp.num.sign = 0;
|
|
}
|
|
qprintnum(&qtmp, MODE_DEFAULT, conf->outdigits);
|
|
math_chr('i');
|
|
}
|
|
|
|
|
|
/*
|
|
* Print a complex number in rational representation.
|
|
* Example: 2/3-4i/5
|
|
*/
|
|
void
|
|
cprintfr(COMPLEX *c)
|
|
{
|
|
NUMBER *r;
|
|
NUMBER *i;
|
|
|
|
r = c->real;
|
|
i = c->imag;
|
|
if (!qiszero(r) || qiszero(i))
|
|
qprintfr(r, 0L, FALSE);
|
|
if (qiszero(i))
|
|
return;
|
|
if (!qiszero(r) && !qisneg(i))
|
|
math_chr('+');
|
|
zprintval(i->num, 0L, 0L);
|
|
math_chr('i');
|
|
if (qisfrac(i)) {
|
|
math_chr('/');
|
|
zprintval(i->den, 0L, 0L);
|
|
}
|
|
}
|
|
|
|
|
|
NUMBER *
|
|
c_ilog(COMPLEX *c, ZVALUE base)
|
|
{
|
|
NUMBER *qr, *qi;
|
|
|
|
qr = qilog(c->real, base);
|
|
qi = qilog(c->imag, base);
|
|
|
|
if (qr == NULL) {
|
|
if (qi == NULL)
|
|
return NULL;
|
|
return qi;
|
|
}
|
|
if (qi == NULL)
|
|
return qr;
|
|
if (qrel(qr, qi) >= 0) {
|
|
qfree(qi);
|
|
return qr;
|
|
}
|
|
qfree(qr);
|
|
return qi;
|
|
}
|