Files
calc/zrand.c
Landon Curt Noll ff90bc0e3a add E_STRING to error, errno, strerror, change multiple E_STRING's
While help/errstr has been added, the errstr builtin function is
not yet written.  In anticipation of the new errstr builtin the
rest of the calc error system has been updated to associated errsym
E_STRING's with errnum error codes and errmsg error messages.

Minor improvements to help/rand.

The verify_error_table() function that does a verification
the error_table[] array and setup private_error_alias[] array
is now called by libcalc_call_me_first().

Fix comment about wrong include file in have_sys_mount.h.

Removed unused booltostr() and strtobool() macros from bool.h.

Moved define of math_error(char *, ...) from zmath.h to errtbl.h.
The errtbl.h include file, unless ERRCODE_SRC is defined
also includes attribute.h and errsym.h.

Group calc error related builtin support functions together in func.c.

Make switch indenting in func.c consistent.

Passing an invalid argument to error(), errno() or strerror() will
set errno AND throw a math error.  Before errno would be set and
an error value was returned.  Before there was no way to tell if
the error value was a result of the arg or if an error detected.

Added E_STRING to error([errnum | "E_STRING"]) builtin function.
Added E_STRING to errno([errnum | "E_STRING"]) builtin function.
Added E_STRING to strerror([errnum | "E_STRING"]) builtin function.
Calling these functions with an E_STRING errsym is the same as calling
them with the matching errnum code.

Standardized on calc computation error related E_STRING strings
where there are a set of related codes.  Changed "E_...digits" into
"E_..._digits".  For example, E_FPUTC1 became E_FPUTC_1, E_FPUTC2
became E_FPUTC_2, and E_FPUTC3 became E_FPUTC_3.  In a few cases
such as E_APPR became E_APPR_1, because there was a E_APPR2 (which
became E_APPR_2) and E_APPR3 (which became E_APPR_3).  To other
special cases, E_ILOG10 became E_IBASE10_LOG and E_ILOG2 became
E_IBASE2_LOG because E_ILOG10 and E_ILOG2 are both independent calc
computation error related E_STRING strings.  Now related sets of
E_STRING strings end in _ (underscore) followed by digits.

The following is the list of E_STRING strings changes:

    E_APPR ==> E_APPR_1
    E_ROUND ==> E_ROUND_1
    E_SQRT ==> E_SQRT_1
    E_ROOT ==> E_ROOT_1
    E_SHIFT ==> E_SHIFT_1
    E_SCALE ==> E_SCALE_1
    E_POWI ==> E_POWI_1
    E_POWER ==> E_POWER_1
    E_QUO ==> E_QUO_1
    E_MOD ==> E_MOD_1
    E_ABS ==> E_ABS_1
    E_APPR2 ==> E_APPR_2
    E_APPR3 ==> E_APPR_3
    E_ROUND2 ==> E_ROUND_2
    E_ROUND3 ==> E_ROUND_3
    E_BROUND2 ==> E_BROUND_2
    E_BROUND3 ==> E_BROUND_3
    E_SQRT2 ==> E_SQRT_2
    E_SQRT3 ==> E_SQRT_3
    E_ROOT2 ==> E_ROOT_2
    E_ROOT3 ==> E_ROOT_3
    E_SHIFT2 ==> E_SHIFT_2
    E_SCALE2 ==> E_SCALE_2
    E_POWI2 ==> E_POWI_2
    E_POWER2 ==> E_POWER_2
    E_POWER3 ==> E_POWER_3
    E_QUO2 ==> E_QUO_2
    E_QUO3 ==> E_QUO_3
    E_MOD2 ==> E_MOD_2
    E_MOD3 ==> E_MOD_3
    E_ABS2 ==> E_ABS_2
    E_EXP1 ==> E_EXP_1
    E_EXP2 ==> E_EXP_2
    E_FPUTC1 ==> E_FPUTC_1
    E_FPUTC2 ==> E_FPUTC_2
    E_FPUTC3 ==> E_FPUTC_3
    E_FGETC1 ==> E_FGETC_1
    E_FGETC2 ==> E_FGETC_2
    E_FOPEN1 ==> E_FOPEN_1
    E_FOPEN2 ==> E_FOPEN_2
    E_FREOPEN1 ==> E_FREOPEN_1
    E_FREOPEN2 ==> E_FREOPEN_2
    E_FREOPEN3 ==> E_FREOPEN_3
    E_FCLOSE1 ==> E_FCLOSE_1
    E_FPUTS1 ==> E_FPUTS_1
    E_FPUTS2 ==> E_FPUTS_2
    E_FPUTS3 ==> E_FPUTS_3
    E_FGETS1 ==> E_FGETS_1
    E_FGETS2 ==> E_FGETS_2
    E_FPUTSTR1 ==> E_FPUTSTR_1
    E_FPUTSTR2 ==> E_FPUTSTR_2
    E_FPUTSTR3 ==> E_FPUTSTR_3
    E_FGETSTR1 ==> E_FGETSTR_1
    E_FGETSTR2 ==> E_FGETSTR_2
    E_FGETLINE1 ==> E_FGETLINE_1
    E_FGETLINE2 ==> E_FGETLINE_2
    E_FGETFIELD1 ==> E_FGETFIELD_1
    E_FGETFIELD2 ==> E_FGETFIELD_2
    E_REWIND1 ==> E_REWIND_1
    E_PRINTF1 ==> E_PRINTF_1
    E_PRINTF2 ==> E_PRINTF_2
    E_FPRINTF1 ==> E_FPRINTF_1
    E_FPRINTF2 ==> E_FPRINTF_2
    E_FPRINTF3 ==> E_FPRINTF_3
    E_STRPRINTF1 ==> E_STRPRINTF_1
    E_STRPRINTF2 ==> E_STRPRINTF_2
    E_FSCAN1 ==> E_FSCAN_1
    E_FSCAN2 ==> E_FSCAN_2
    E_FSCANF1 ==> E_FSCANF_1
    E_FSCANF2 ==> E_FSCANF_2
    E_FSCANF3 ==> E_FSCANF_3
    E_FSCANF4 ==> E_FSCANF_4
    E_STRSCANF1 ==> E_STRSCANF_1
    E_STRSCANF2 ==> E_STRSCANF_2
    E_STRSCANF3 ==> E_STRSCANF_3
    E_STRSCANF4 ==> E_STRSCANF_4
    E_SCANF1 ==> E_SCANF_1
    E_SCANF2 ==> E_SCANF_2
    E_SCANF3 ==> E_SCANF_3
    E_FTELL1 ==> E_FTELL_1
    E_FTELL2 ==> E_FTELL_2
    E_FSEEK1 ==> E_FSEEK_1
    E_FSEEK2 ==> E_FSEEK_2
    E_FSEEK3 ==> E_FSEEK_3
    E_FSIZE1 ==> E_FSIZE_1
    E_FSIZE2 ==> E_FSIZE_2
    E_FEOF1 ==> E_FEOF_1
    E_FEOF2 ==> E_FEOF_2
    E_FERROR1 ==> E_FERROR_1
    E_FERROR2 ==> E_FERROR_2
    E_UNGETC1 ==> E_UNGETC_1
    E_UNGETC2 ==> E_UNGETC_2
    E_UNGETC3 ==> E_UNGETC_3
    E_ISATTY1 ==> E_ISATTY_1
    E_ISATTY2 ==> E_ISATTY_2
    E_ACCESS1 ==> E_ACCESS_1
    E_ACCESS2 ==> E_ACCESS_2
    E_SEARCH1 ==> E_SEARCH_1
    E_SEARCH2 ==> E_SEARCH_2
    E_SEARCH3 ==> E_SEARCH_3
    E_SEARCH4 ==> E_SEARCH_4
    E_SEARCH5 ==> E_SEARCH_5
    E_SEARCH6 ==> E_SEARCH_6
    E_RSEARCH1 ==> E_RSEARCH_1
    E_RSEARCH2 ==> E_RSEARCH_2
    E_RSEARCH3 ==> E_RSEARCH_3
    E_RSEARCH4 ==> E_RSEARCH_4
    E_RSEARCH5 ==> E_RSEARCH_5
    E_RSEARCH6 ==> E_RSEARCH_6
    E_REWIND2 ==> E_REWIND_2
    E_STRERROR1 ==> E_STRERROR_1
    E_STRERROR2 ==> E_STRERROR_2
    E_COS1 ==> E_COS_1
    E_COS2 ==> E_COS_2
    E_SIN1 ==> E_SIN_1
    E_SIN2 ==> E_SIN_2
    E_EVAL2 ==> E_EVAL_2
    E_ARG1 ==> E_ARG_1
    E_ARG2 ==> E_ARG_2
    E_POLAR1 ==> E_POLAR_1
    E_POLAR2 ==> E_POLAR_2
    E_MATFILL1 ==> E_MATFILL_1
    E_MATFILL2 ==> E_MATFILL_2
    E_MATTRANS1 ==> E_MATTRANS_1
    E_MATTRANS2 ==> E_MATTRANS_2
    E_DET1 ==> E_DET_1
    E_DET2 ==> E_DET_2
    E_DET3 ==> E_DET_3
    E_MATMIN1 ==> E_MATMIN_1
    E_MATMIN2 ==> E_MATMIN_2
    E_MATMIN3 ==> E_MATMIN_3
    E_MATMAX1 ==> E_MATMAX_1
    E_MATMAX2 ==> E_MATMAX_2
    E_MATMAX3 ==> E_MATMAX_3
    E_CP1 ==> E_CP_1
    E_CP2 ==> E_CP_2
    E_CP3 ==> E_CP_3
    E_DP1 ==> E_DP_1
    E_DP2 ==> E_DP_2
    E_DP3 ==> E_DP_3
    E_SUBSTR1 ==> E_SUBSTR_1
    E_SUBSTR2 ==> E_SUBSTR_2
    E_INSERT1 ==> E_INSERT_1
    E_INSERT2 ==> E_INSERT_2
    E_DELETE1 ==> E_DELETE_1
    E_DELETE2 ==> E_DELETE_2
    E_LN1 ==> E_LN_1
    E_LN2 ==> E_LN_2
    E_ERROR1 ==> E_ERROR_1
    E_ERROR2 ==> E_ERROR_2
    E_EVAL3 ==> E_EVAL_3
    E_EVAL4 ==> E_EVAL_4
    E_RM1 ==> E_RM_1
    E_RM2 ==> E_RM_2
    E_BLK1 ==> E_BLK_1
    E_BLK2 ==> E_BLK_2
    E_BLK3 ==> E_BLK_3
    E_BLK4 ==> E_BLK_4
    E_BLKFREE1 ==> E_BLKFREE_1
    E_BLKFREE2 ==> E_BLKFREE_2
    E_BLKFREE3 ==> E_BLKFREE_3
    E_BLKFREE4 ==> E_BLKFREE_4
    E_BLKFREE5 ==> E_BLKFREE_5
    E_BLOCKS1 ==> E_BLOCKS_1
    E_BLOCKS2 ==> E_BLOCKS_2
    E_COPY1 ==> E_COPY_01
    E_COPY2 ==> E_COPY_02
    E_COPY3 ==> E_COPY_03
    E_COPY4 ==> E_COPY_04
    E_COPY5 ==> E_COPY_05
    E_COPY6 ==> E_COPY_06
    E_COPY7 ==> E_COPY_07
    E_COPY8 ==> E_COPY_08
    E_COPY9 ==> E_COPY_09
    E_COPY10 ==> E_COPY_10
    E_COPY11 ==> E_COPY_11
    E_COPY12 ==> E_COPY_12
    E_COPY13 ==> E_COPY_13
    E_COPY14 ==> E_COPY_14
    E_COPY15 ==> E_COPY_15
    E_COPY16 ==> E_COPY_16
    E_COPY17 ==> E_COPY_17
    E_COPYF1 ==> E_COPYF_1
    E_COPYF2 ==> E_COPYF_2
    E_COPYF3 ==> E_COPYF_3
    E_COPYF4 ==> E_COPYF_4
    E_PROTECT1 ==> E_PROTECT_1
    E_PROTECT2 ==> E_PROTECT_2
    E_PROTECT3 ==> E_PROTECT_3
    E_MATFILL3 ==> E_MATFILL_3
    E_MATFILL4 ==> E_MATFILL_4
    E_MATTRACE1 ==> E_MATTRACE_1
    E_MATTRACE2 ==> E_MATTRACE_2
    E_MATTRACE3 ==> E_MATTRACE_3
    E_TAN1 ==> E_TAN_1
    E_TAN2 ==> E_TAN_2
    E_COT1 ==> E_COT_1
    E_COT2 ==> E_COT_2
    E_SEC1 ==> E_SEC_1
    E_SEC2 ==> E_SEC_2
    E_CSC1 ==> E_CSC_1
    E_CSC2 ==> E_CSC_2
    E_SINH1 ==> E_SINH_1
    E_SINH2 ==> E_SINH_2
    E_COSH1 ==> E_COSH_1
    E_COSH2 ==> E_COSH_2
    E_TANH1 ==> E_TANH_1
    E_TANH2 ==> E_TANH_2
    E_COTH1 ==> E_COTH_1
    E_COTH2 ==> E_COTH_2
    E_SECH1 ==> E_SECH_1
    E_SECH2 ==> E_SECH_2
    E_CSCH1 ==> E_CSCH_1
    E_CSCH2 ==> E_CSCH_2
    E_ASIN1 ==> E_ASIN_1
    E_ASIN2 ==> E_ASIN_2
    E_ACOS1 ==> E_ACOS_1
    E_ACOS2 ==> E_ACOS_2
    E_ATAN1 ==> E_ATAN_1
    E_ATAN2 ==> E_ATAN_2
    E_ACOT1 ==> E_ACOT_1
    E_ACOT2 ==> E_ACOT_2
    E_ASEC1 ==> E_ASEC_1
    E_ASEC2 ==> E_ASEC_2
    E_ACSC1 ==> E_ACSC_1
    E_ACSC2 ==> E_ACSC_2
    E_ASINH1 ==> E_ASINH_1
    E_ASINH2 ==> E_ASINH_2
    E_ACOSH1 ==> E_ACOSH_1
    E_ACOSH2 ==> E_ACOSH_2
    E_ATANH1 ==> E_ATANH_1
    E_ATANH2 ==> E_ATANH_2
    E_ACOTH1 ==> E_ACOTH_1
    E_ACOTH2 ==> E_ACOTH_2
    E_ASECH1 ==> E_ASECH_1
    E_ASECH2 ==> E_ASECH_2
    E_ACSCH1 ==> E_ACSCH_1
    E_ACSCH2 ==> E_ACSCH_2
    E_GD1 ==> E_GD_1
    E_GD2 ==> E_GD_2
    E_AGD1 ==> E_AGD_1
    E_AGD2 ==> E_AGD_2
    E_BIT1 ==> E_BIT_1
    E_BIT2 ==> E_BIT_2
    E_SETBIT1 ==> E_SETBIT_1
    E_SETBIT2 ==> E_SETBIT_2
    E_SETBIT3 ==> E_SETBIT_3
    E_SEG1 ==> E_SEG_1
    E_SEG2 ==> E_SEG_2
    E_SEG3 ==> E_SEG_3
    E_HIGHBIT1 ==> E_HIGHBIT_1
    E_HIGHBIT2 ==> E_HIGHBIT_2
    E_LOWBIT1 ==> E_LOWBIT_1
    E_LOWBIT2 ==> E_LOWBIT_2
    E_HEAD1 ==> E_HEAD_1
    E_HEAD2 ==> E_HEAD_2
    E_TAIL1 ==> E_TAIL_1
    E_TAIL2 ==> E_TAIL_2
    E_XOR1 ==> E_XOR_1
    E_XOR2 ==> E_XOR_2
    E_INDICES1 ==> E_INDICES_1
    E_INDICES2 ==> E_INDICES_2
    E_EXP3 ==> E_EXP_3
    E_SINH3 ==> E_SINH_3
    E_COSH3 ==> E_COSH_3
    E_SIN3 ==> E_SIN_3
    E_COS3 ==> E_COS_3
    E_GD3 ==> E_GD_3
    E_AGD3 ==> E_AGD_3
    E_POWER4 ==> E_POWER_4
    E_ROOT4 ==> E_ROOT_4
    E_DGT1 ==> E_DGT_1
    E_DGT2 ==> E_DGT_2
    E_DGT3 ==> E_DGT_3
    E_PLCS1 ==> E_PLCS_1
    E_PLCS2 ==> E_PLCS_2
    E_DGTS1 ==> E_DGTS_1
    E_DGTS2 ==> E_DGTS_2
    E_ILOG10 ==> E_IBASE10_LOG
    E_ILOG2 ==> E_IBASE2_LOG
    E_COMB1 ==> E_COMB_1
    E_COMB2 ==> E_COMB_2
    E_ASSIGN1 ==> E_ASSIGN_1
    E_ASSIGN2 ==> E_ASSIGN_2
    E_ASSIGN3 ==> E_ASSIGN_3
    E_ASSIGN4 ==> E_ASSIGN_4
    E_ASSIGN5 ==> E_ASSIGN_5
    E_ASSIGN6 ==> E_ASSIGN_6
    E_ASSIGN7 ==> E_ASSIGN_7
    E_ASSIGN8 ==> E_ASSIGN_8
    E_ASSIGN9 ==> E_ASSIGN_9
    E_SWAP1 ==> E_SWAP_1
    E_SWAP2 ==> E_SWAP_2
    E_SWAP3 ==> E_SWAP_3
    E_QUOMOD1 ==> E_QUOMOD_1
    E_QUOMOD2 ==> E_QUOMOD_2
    E_QUOMOD3 ==> E_QUOMOD_3
    E_PREINC1 ==> E_PREINC_1
    E_PREINC2 ==> E_PREINC_2
    E_PREINC3 ==> E_PREINC_3
    E_PREDEC1 ==> E_PREDEC_1
    E_PREDEC2 ==> E_PREDEC_2
    E_PREDEC3 ==> E_PREDEC_3
    E_POSTINC1 ==> E_POSTINC_1
    E_POSTINC2 ==> E_POSTINC_2
    E_POSTINC3 ==> E_POSTINC_3
    E_POSTDEC1 ==> E_POSTDEC_1
    E_POSTDEC2 ==> E_POSTDEC_2
    E_POSTDEC3 ==> E_POSTDEC_3
    E_INIT1 ==> E_INIT_01
    E_INIT2 ==> E_INIT_02
    E_INIT3 ==> E_INIT_03
    E_INIT4 ==> E_INIT_04
    E_INIT5 ==> E_INIT_05
    E_INIT6 ==> E_INIT_06
    E_INIT7 ==> E_INIT_07
    E_INIT8 ==> E_INIT_08
    E_INIT9 ==> E_INIT_09
    E_INIT10 ==> E_INIT_10
    E_LIST1 ==> E_LIST_1
    E_LIST2 ==> E_LIST_2
    E_LIST3 ==> E_LIST_3
    E_LIST4 ==> E_LIST_4
    E_LIST5 ==> E_LIST_5
    E_LIST6 ==> E_LIST_6
    E_MODIFY1 ==> E_MODIFY_1
    E_MODIFY2 ==> E_MODIFY_2
    E_MODIFY3 ==> E_MODIFY_3
    E_MODIFY4 ==> E_MODIFY_4
    E_MODIFY5 ==> E_MODIFY_5
    E_FPATHOPEN1 ==> E_FPATHOPEN_1
    E_FPATHOPEN2 ==> E_FPATHOPEN_2
    E_LOG1 ==> E_LOG_1
    E_LOG2 ==> E_LOG_2
    E_LOG3 ==> E_LOG_3
    E_FGETFILE1 ==> E_FGETFILE_1
    E_FGETFILE2 ==> E_FGETFILE_2
    E_FGETFILE3 ==> E_FGETFILE_3
    E_TAN3 ==> E_TAN_3
    E_TAN4 ==> E_TAN_4
    E_COT3 ==> E_COT_3
    E_COT4 ==> E_COT_4
    E_SEC3 ==> E_SEC_3
    E_CSC3 ==> E_CSC_3
    E_TANH3 ==> E_TANH_3
    E_TANH4 ==> E_TANH_4
    E_COTH3 ==> E_COTH_3
    E_COTH4 ==> E_COTH_4
    E_SECH3 ==> E_SECH_3
    E_CSCH3 ==> E_CSCH_3
    E_ASIN3 ==> E_ASIN_3
    E_ACOS3 ==> E_ACOS_3
    E_ASINH3 ==> E_ASINH_3
    E_ACOSH3 ==> E_ACOSH_3
    E_ATAN3 ==> E_ATAN_3
    E_ACOT3 ==> E_ACOT_3
    E_ASEC3 ==> E_ASEC_3
    E_ACSC3 ==> E_ACSC_3
    E_ATANH3 ==> E_ATANH_3
    E_ACOTH3 ==> E_ACOTH_3
    E_ASECH3 ==> E_ASECH_3
    E_ACSCH3 ==> E_ACSCH_3
    E_D2R1 ==> E_D2R_1
    E_D2R2 ==> E_D2R_2
    E_R2D1 ==> E_R2D_1
    E_R2D2 ==> E_R2D_2
    E_G2R1 ==> E_G2R_1
    E_G2R2 ==> E_G2R_2
    E_R2G1 ==> E_R2G_1
    E_R2G2 ==> E_R2G_2
    E_D2G1 ==> E_D2G_1
    E_G2D1 ==> E_G2D_1
    E_D2DMS1 ==> E_D2DMS_1
    E_D2DMS2 ==> E_D2DMS_2
    E_D2DMS3 ==> E_D2DMS_3
    E_D2DMS4 ==> E_D2DMS_4
    E_D2DM1 ==> E_D2DM_1
    E_D2DM2 ==> E_D2DM_2
    E_D2DM3 ==> E_D2DM_3
    E_D2DM4 ==> E_D2DM_4
    E_G2GMS1 ==> E_G2GMS_1
    E_G2GMS2 ==> E_G2GMS_2
    E_G2GMS3 ==> E_G2GMS_3
    E_G2GMS4 ==> E_G2GMS_4
    E_G2GM1 ==> E_G2GM_1
    E_G2GM2 ==> E_G2GM_2
    E_G2GM3 ==> E_G2GM_3
    E_G2GM4 ==> E_G2GM_4
    E_H2HMS1 ==> E_H2HMS_1
    E_H2HMS2 ==> E_H2HMS_2
    E_H2HMS3 ==> E_H2HMS_3
    E_H2HMS4 ==> E_H2HMS_4
    E_H2HM1 ==> E_H2HM_1
    E_H2HM2 ==> E_H2HM_2
    E_H2HM3 ==> E_H2HM_3
    E_H2HM4 ==> E_H2HM_4
    E_DMS2D1 ==> E_DMS2D_1
    E_DMS2D2 ==> E_DMS2D_2
    E_DM2D1 ==> E_DM2D_1
    E_DM2D2 ==> E_DM2D_2
    E_GMS2G1 ==> E_GMS2G_1
    E_GMS2G2 ==> E_GMS2G_2
    E_GM2G1 ==> E_GM2G_1
    E_GM2G2 ==> E_GM2G_2
    E_HMS2H1 ==> E_HMS2H_1
    E_HMS2H2 ==> E_HMS2H_2
    E_HM2H1 ==> E_HM2H_1
    E_HM2H2 ==> E_HM2H_2
    E_VERSIN1 ==> E_VERSIN_1
    E_VERSIN2 ==> E_VERSIN_2
    E_VERSIN3 ==> E_VERSIN_3
    E_AVERSIN1 ==> E_AVERSIN_1
    E_AVERSIN2 ==> E_AVERSIN_2
    E_AVERSIN3 ==> E_AVERSIN_3
    E_COVERSIN1 ==> E_COVERSIN_1
    E_COVERSIN2 ==> E_COVERSIN_2
    E_COVERSIN3 ==> E_COVERSIN_3
    E_ACOVERSIN1 ==> E_ACOVERSIN_1
    E_ACOVERSIN2 ==> E_ACOVERSIN_2
    E_ACOVERSIN3 ==> E_ACOVERSIN_3
    E_VERCOS1 ==> E_VERCOS_1
    E_VERCOS2 ==> E_VERCOS_2
    E_VERCOS3 ==> E_VERCOS_3
    E_AVERCOS1 ==> E_AVERCOS_1
    E_AVERCOS2 ==> E_AVERCOS_2
    E_AVERCOS3 ==> E_AVERCOS_3
    E_COVERCOS1 ==> E_COVERCOS_1
    E_COVERCOS2 ==> E_COVERCOS_2
    E_COVERCOS3 ==> E_COVERCOS_3
    E_ACOVERCOS1 ==> E_ACOVERCOS_1
    E_ACOVERCOS2 ==> E_ACOVERCOS_2
    E_ACOVERCOS3 ==> E_ACOVERCOS_3
    E_TAN5 ==> E_TAN_5
    E_COT5 ==> E_COT_5
    E_COT6 ==> E_COT_6
    E_SEC5 ==> E_SEC_5
    E_CSC5 ==> E_CSC_5
    E_CSC6 ==> E_CSC_6
2023-09-19 18:34:21 -07:00

2420 lines
80 KiB
C

/*
* zrand - subtractive 100 shuffle generator
*
* Copyright (C) 1999-2007,2021-2023 Landon Curt Noll
*
* Calc is open software; you can redistribute it and/or modify it under
* the terms of the version 2.1 of the GNU Lesser General Public License
* as published by the Free Software Foundation.
*
* Calc is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General
* Public License for more details.
*
* A copy of version 2.1 of the GNU Lesser General Public License is
* distributed with calc under the filename COPYING-LGPL. You should have
* received a copy with calc; if not, write to Free Software Foundation, Inc.
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Under source code control: 1995/01/07 09:45:25
* File existed as early as: 1994
*
* chongo <was here> /\oo/\ http://www.isthe.com/chongo/
* Share and enjoy! :-) http://www.isthe.com/chongo/tech/comp/calc/
*/
/*
* AN OVERVIEW OF THE FUNCTIONS:
*
* This module contains an Subtractive 100 shuffle generator wrapped inside
* of a shuffle generator.
*
* We refer to this generator as the s100 generator.
*
* rand - s100 shuffle generator
* srand - seed the s100 shuffle generator
*
* This generator has two distinct parts, the s100 generator
* and the shuffle generator.
*
* The subtractive 100 generator is described in Knuth's "The Art of
* Computer Programming - Seminumerical Algorithms", Vol 2, 3rd edition
* (1998), Section 3.6, page 186, formula (2).
*
* The "use only the first 100 our of every 1009" is described in
* Knuth's "The Art of Computer Programming - Seminumerical Algorithms",
* Vol 2, 3rd edition (1998), Section 3.6, page 188".
*
* The period and other properties of this generator make it very
* useful to 'seed' other generators.
*
* The shuffle generator is described in Knuth's "The Art of Computer
* Programming - Seminumerical Algorithms", Vol 2, 3rd edition (1998),
* Section 3.2.2, page 34, Algorithm B.
*
* The shuffle generator is fast and serves as a fairly good standard
* pseudo-random generator. If you need a fast generator and do not
* need a cryptographically strong one, this generator is likely to do
* the job.
*
* The shuffle generator is feed values by the subtractive 100 process.
*
******************************************************************************
*
* GOALS:
*
* The goals of this package are:
*
* all magic numbers are explained
*
* I distrust systems with constants (magic numbers) and tables
* that have no justification. I believe that I have
* done my best to justify all of the magic numbers used.
*
* full documentation
*
* You have this source file, plus background publications,
* what more could you ask?
*
* large selection of seeds
*
* Seeds are not limited to a small number of bits. A seed
* may be of any size.
*
* the strength of the generators may be tuned to meet the need
*
* By using the appropriate seed and other arguments, one may
* increase the strength of the generator to suit the need of
* the application. One does not have just a few levels.
*
* Even though I have done my best to implement a good system, you still
* must use these routines your own risk.
*
* Share and enjoy! :-)
*/
/*
* ON THE GENERATORS:
*
* The subtractive 100 generator has a good period, and is fast. It is
* reasonable as generators go, though there are better ones available.
* The shuffle generator has a very good period, and is fast. It is
* fairly good as generators go, particularly when it is feed reasonably
* random numbers. Because of this, we use feed values from the subtractive
* 100 process into the shuffle generator.
*
* The s100 generator uses 2 tables:
*
* subtractive table - 100 entries of 64 bits used by the subtractive 100
* part of the s100 generator
*
* shuffle table - 256 entries of 64 bits used by the shuffle
* part of the s100 generator and feed by the
* subtractive table.
*
* Casual direct use of the shuffle generator may be acceptable. If one
* desires cryptographically strong random numbers, or if one is paranoid,
* one should use the Blum generator instead (see zrandom.c).
*
* The s100 generator as the following calc interfaces:
*
* rand(min,beyond) (where min < beyond)
*
* Print an s100 generator random value over interval [a,b).
*
* rand()
*
* Same as rand(0, 2^64). Print 64 bits.
*
* rand(lim) (where 0 > lim)
*
* Same as rand(0, lim).
*
* randbit(x) (where x > 0)
*
* Same as rand(0, 2^x). Print x bits.
*
* randbit(skip) (where skip < 0)
*
* Skip random bits and return the bit skip count (-skip).
*/
/*
* INITIALIZATION AND SEEDS:
*
* All generators come already seeded with precomputed initial constants.
* Thus, it is not required to seed a generator before using it.
*
* The s100 generator may be initialized and seeded via srand().
*
* Using a seed of '0' will reload generators with their initial states.
*
* srand(0) restore subtractive 100 generator to the initial state
*
* The above single arg calls are fairly fast.
*
* Optimal seed range for the s100 generator:
*
* There is no limit on the size of a seed. On the other hand,
* extremely large seeds require large tables and long seed times.
* Using a seed in the range of [2^64, 2^64 * 100!) should be
* sufficient for most purposes. An easy way to stay within this
* range to to use seeds that are between 21 and 178 digits, or
* 64 to 588 bits long.
*
* To help make the generator produced by seed S, significantly
* different from S+1, seeds are scrambled prior to use. The
* function randreseed64() maps [0,2^64) into [0,2^64) in a 1-to-1
* and onto fashion.
*
* The purpose of the randreseed64() is not to add security. It
* simply helps remove the human perception of the relationship
* between the seed and the production of the generator.
*
* The randreseed64() process does not reduce the security of the
* generators. Every seed is converted into a different unique seed.
* No seed is ignored or favored.
*
******************************************************************************
*
* srand(seed)
*
* Seed the s100 generator.
*
* seed != 0:
* ---------
* Any buffered random bits are flushed. The subtractive table is loaded
* with the default subtractive table. The low order 64 bits of seed is
* xor-ed against each table value. The subtractive table is shuffled
* according to seed/2^64.
*
* The following calc code produces the same effect:
*
* (* reload default subtractive table xor-ed with low 64 seed bits *)
* seed_xor = seed & ((1<<64)-1);
* for (i=0; i < 100; ++i) {
* subtractive[i] = xor(default_subtractive[i], seed_xor);
* }
*
* (* shuffle the subtractive table *)
* seed >>= 64;
* for (i=100; seed > 0 && i > 0; --i) {
* quomod(seed, i+1, seed, j);
* swap(subtractive[i], subtractive[j]);
* }
*
* Seed must be >= 0. All seed values < 0 are reserved for future use.
*
* The subtractive 100 pointers are reset to subtractive[36] and
* subtractive[99]. Last the shuffle table is loaded with successive
* values from the subtractive 100 generator.
*
* seed == 0:
* ---------
* Restore the initial state and modulus of the s100 generator.
* After this call, the s100 generator is restored to its initial
* state after calc started.
*
* The subtractive 100 pointers are reset to subtractive[36] and
* subtractive[99]. Last the shuffle table is loaded with successive
* values from the subtractive 100 generator.
*
******************************************************************************
*
* srand(mat100)
*
* Seed the s100 generator.
*
* Any buffered random bits are flushed. The subtractive table with the
* first 100 entries of the array mat100, mod 2^64.
*
* The subtractive 100 pointers are reset to subtractive[36] and
* subtractive[99]. Last the shuffle table is loaded with successive
* values from the subtractive 100 generator.
*
******************************************************************************
*
* srand()
*
* Return current s100 generator state. This call does not alter
* the generator state.
*
******************************************************************************
*
* srand(state)
*
* Restore the s100 state and return the previous state. Note that
* the argument state is a rand state value (isrand(state) is true).
* Any internally buffered random bits are restored.
*
* The states of the s100 generators can be saved by calling the seed
* function with no arguments, and later restored by calling the seed
* functions with that same return value.
*
* rand_state = srand();
* ... generate random bits ...
* prev_rand_state = srand(rand_state);
* ... generate the same random bits ...
* srand() == prev_rand_state; (* is true *)
*
* Saving the state just after seeding a generator and restoring it later
* as a very fast way to reseed a generator.
*/
/*
* TRUTH IN ADVERTISING:
*
* A "truth in advertising" issue is the use of the term
* 'pseudo-random'. All deterministic generators are pseudo random.
* This is opposed to true random generators based on some special
* physical device.
*
* A final "truth in advertising" issue deals with how the magic numbers
* found in this file were generated. Detains can be found in the
* various functions, while a overview can be found in the "SOURCE FOR
* MAGIC NUMBERS" section below.
*/
/*
* SOURCE OF MAGIC NUMBERS:
*
* Most of the magic constants used on this file ultimately are
* based on LavaRnd. LavaRnd produced them via a cryptographic
* of the digitization of chaotic system that consisted of a noisy
* digital camera and 6 Lava Lite(R) lamps.
*
* BTW: Lava Lite(R) is a trademark of Haggerty Enterprises, Inc.
*
* The first 100 groups of 64 bit bits were used to initialize init_s100.slot.
*
* The function, randreseed64(), uses 2 primes to scramble 64 bits
* into 64 bits. These primes were also extracted from the Rand
* Book of Random Numbers. See randreseed64() for details.
*
* The shuffle table size is longer than the 100 entries recommended
* by Knuth. We use a power of 2 shuffle table length so that the
* shuffle process can select a table entry from a new subtractive 100
* value by extracting its low order bits. The value 256 is convenient
* in that it is the size of a byte which allows for easy extraction.
*
* We use the upper byte of the subtractive 100 value to select the shuffle
* table entry because it allows all of 64 bits to play a part in the
* entry selection. If we were to select a lower 8 bits in the 64 bit
* value, carries that propagate above our 8 bits would not impact the
* s100 generator output.
*
******************************************************************************
*
* FOR THE PARANOID:
*
* The truly paranoid might suggest that my claims in the MAGIC NUMBERS
* section are a lie intended to entrap people. Well they are not, but
* if you that paranoid why would you use a non-cryptographically strong
* pseudo-random number generator in the first place? You would be
* better off using the random() builtin function.
*
* The two constants that were picked from the Rand Book of Random Numbers
* The random numbers from the Rand Book of Random Numbers can be
* verified by anyone who obtains the book. As these numbers were
* created before I (Landon Curt Noll) was born (you can look up
* my birth record if you want), I claim to have no possible influence
* on their generation.
*
* There is a very slight chance that the electronic copy of the
* Rand Book of Random Numbers that I was given access to differs
* from the printed text. I am willing to provide access to this
* electronic copy should anyone wants to compare it to the printed text.
*
* When using the s100 generator, one may select your own 100 subtractive
* values by calling:
*
* srand(mat100)
*
* and avoid using my magic numbers. The randreseed64 process is NOT
* applied to the matrix values. Of course, you must pick good subtractive
* 100 values yourself!
*
* One might object to the complexity of the seed scramble/mapping
* via the randreseed64() function. The randreseed64() function maps:
*
* 0 ==> 0
* 10239951819489363767 ==> 1363042948800878693
*
* so that srand(0) does the default action and randreseed64() remains
* an 1-to-1 and onto map. Thus calling srand(0) with the randreseed64()
* process would be the same as calling srand(4967126403401436567) without
* it. No extra security is gained or reduced by using the randreseed64()
* process. The meaning of seeds are exchanged, but not lost or favored
* (used by more than one input seed).
*/
#include <stdio.h>
#include "alloc.h"
#include "zrand.h"
#include "have_const.h"
#include "have_unused.h"
#include "errtbl.h"
#include "banned.h" /* include after system header <> includes */
/*
* default s100 generator state
*
* This is the state of the s100 generator after initialization, or srand(0),
* or srand(0) is called. The init_s100 value is never changed, only copied.
*/
STATIC CONST RAND init_s100 = {
1, /* seeded */
0, /* no buffered bits */
#if FULL_BITS == SBITS /* buffer */
{0},
#elif 2*FULL_BITS == SBITS
{0, 0},
#else
/\../\ BASEB is assumed to be 16 or 32 /\../\ !!!
#endif
INIT_J, /* j */
INIT_K, /* k */
RAND_CONSEQ_USE, /* use this many before skipping values */
#if FULL_BITS == SBITS
{ /* subtractive 100 table */
(FULL)U(0xc8c0370c7db7dc19), (FULL)U(0x738e33b940a06fbb),
(FULL)U(0x481abb76a859ed2b), (FULL)U(0x74106bb39ccdccb5),
(FULL)U(0x05a8eeb5c3173bfc), (FULL)U(0xefd5100d5a02e577),
(FULL)U(0xa69271f74030b24a), (FULL)U(0x641282fc16fe22c5),
(FULL)U(0x7aa7267c40438da3), (FULL)U(0x1fdf4abdc2d878d1),
(FULL)U(0xd9899e7a95702379), (FULL)U(0x5ea8e217d02d7f08),
(FULL)U(0x770587fe4d47a353), (FULL)U(0xde7d1bdd0a33a2b8),
(FULL)U(0x4378c3c5900e7c45), (FULL)U(0x77c9447819a514f9),
(FULL)U(0xfc5edb22843d1d32), (FULL)U(0x4fc42ce5e8ee5e6e),
(FULL)U(0xc938713c8488013e), (FULL)U(0x6a318f0320ab0cac),
(FULL)U(0x73e6d1a3ffc8bff3), (FULL)U(0x0cd3232a8ca96aa7),
(FULL)U(0x605c8036905f770d), (FULL)U(0x4d037b008b8d04a2),
(FULL)U(0x1ed81965cb277294), (FULL)U(0x408d9c477a254ff3),
(FULL)U(0x8b68587ae26c7377), (FULL)U(0xcff191a48a48832f),
(FULL)U(0x12d3df1d8aeb6fe6), (FULL)U(0xb2bf907e1feda37a),
(FULL)U(0x4e5f77193bb5f39f), (FULL)U(0x33ebcf6f8f5d1581),
(FULL)U(0x203c8e48d33654eb), (FULL)U(0x68d3656ef19c8a4e),
(FULL)U(0x3ec20b04986eb2af), (FULL)U(0x5d73a03b062c3841),
(FULL)U(0x836ce7095d4e49eb), (FULL)U(0x2310bc40c3f49221),
(FULL)U(0x3868ee48a6d0cbf6), (FULL)U(0x67578aa64a43deb1),
(FULL)U(0x6e3426c1150dfc26), (FULL)U(0xc541ccaa3131be30),
(FULL)U(0xf7e57432cec7aab2), (FULL)U(0x2b35de998cb3c873),
(FULL)U(0x7b9f77648663a5d7), (FULL)U(0x23b00e6aa771e5a6),
(FULL)U(0x859c775ca9985d05), (FULL)U(0x99636ea16b692f1f),
(FULL)U(0x8700ac703730800d), (FULL)U(0x461425024298a753),
(FULL)U(0xea4a411b809e955f), (FULL)U(0x3119ad4033709dfb),
(FULL)U(0xb76a6c6e5f01cb7c), (FULL)U(0x6109dc8a15984eaf),
(FULL)U(0x5d686db9a5ca9505), (FULL)U(0x8e80d7613b7e6add),
(FULL)U(0x79cbd718de6f6fd3), (FULL)U(0x40e9cd151da0f699),
(FULL)U(0xe82158bab24f312d), (FULL)U(0x79a4c927f5e5c36b),
(FULL)U(0xc25247c9a0039333), (FULL)U(0x936871161766d81d),
(FULL)U(0x3c6a03b4a6741327), (FULL)U(0xc8a7b6e8c002f29a),
(FULL)U(0x0e2a67c67bbd5ea3), (FULL)U(0x0929042d441eabc1),
(FULL)U(0x7dbe232a25e82085), (FULL)U(0x8cfb26e544fbac3d),
(FULL)U(0x8e40384d388ab983), (FULL)U(0x48dc1230554632f8),
(FULL)U(0xab405048ab492397), (FULL)U(0x21c9e2f5a118e387),
(FULL)U(0x484d1a8c343b61b5), (FULL)U(0xd49e3decab256f26),
(FULL)U(0xe615c7fd78f2d2e3), (FULL)U(0x8442cc33ce6cc2ed),
(FULL)U(0x0a3b93d844d4bbf6), (FULL)U(0x2d7e4efe9301de77),
(FULL)U(0x33711b76d8790d8a), (FULL)U(0xc07dc30e44df77e7),
(FULL)U(0xb9132ed09ddd508f), (FULL)U(0x45d06cf8c6fb43cc),
(FULL)U(0x22bed18ad585dd7b), (FULL)U(0x61c6cced10799ffa),
(FULL)U(0xd7f2393be4bd9aa9), (FULL)U(0x706753fbcfd55094),
(FULL)U(0xf65a6713ede6e446), (FULL)U(0x8bf6dfae47c0d5c3),
(FULL)U(0xfb4dfc179f7927d6), (FULL)U(0x12ebbc16e212c297),
(FULL)U(0x43c71283a00a954c), (FULL)U(0x8957087ae7bd40a5),
(FULL)U(0xb0859d7108344837), (FULL)U(0xfbf4b9a3aeb313f5),
(FULL)U(0x5e66e5bece81823a), (FULL)U(0x09a11c6e58ad6da1),
(FULL)U(0xc76f4316c608054f), (FULL)U(0xb582136146084099),
(FULL)U(0x4210008f17a725ed), (FULL)U(0xe5ff8912d347c481)
},
{ /* shuffle table */
(FULL)U(0x69a2296cec8abd57), (FULL)U(0x867e186999a6df81),
(FULL)U(0xc05ab96bd849a48a), (FULL)U(0x7eb3ce0cfa00554b),
(FULL)U(0x520d01f65a5a9acd), (FULL)U(0xd4ef1e3336022d81),
(FULL)U(0xaf44772bc6f84f70), (FULL)U(0x647e85a6a7c55173),
(FULL)U(0x26746cf1959df8d1), (FULL)U(0x98681a904db28abd),
(FULL)U(0xb146c969744c5cd2), (FULL)U(0x8ce69d1f706f88c2),
(FULL)U(0xfd12eac421b4a748), (FULL)U(0xf12e70fe2710eea5),
(FULL)U(0x0b8f78055901f2b5), (FULL)U(0x48860a764f2c115e),
(FULL)U(0x0edf6d2a30767e2c), (FULL)U(0x8a6d7dc5fce2713b),
(FULL)U(0x46a362ea4e0e2346), (FULL)U(0x6c369a0a359f5aa7),
(FULL)U(0xdfca81fe41def54e), (FULL)U(0x4b73381996c2bc4e),
(FULL)U(0x659e8b996f3f14f9), (FULL)U(0x8b97b93493d47e6f),
(FULL)U(0xa73a8704dfa10a55), (FULL)U(0x8d9eafe9b06503da),
(FULL)U(0x2556fb88f32336b0), (FULL)U(0xe71e9f751002a161),
(FULL)U(0x27a7be6e200af907), (FULL)U(0x1b9b734ed028e9a3),
(FULL)U(0x950cfeed4c0be0d3), (FULL)U(0xf4c416942536d275),
(FULL)U(0xf05a58e85687b76e), (FULL)U(0xba53ac0171a62d54),
(FULL)U(0x4b14cbcb285adc96), (FULL)U(0xfdf66eddb00a5557),
(FULL)U(0xbb43d58d185b6ea1), (FULL)U(0x905db9cdf355c9a6),
(FULL)U(0xfc3a07fc04429c8a), (FULL)U(0x65d7e365aa3a4f7e),
(FULL)U(0x2d284c18b243ac65), (FULL)U(0x72fba65d44e417fd),
(FULL)U(0x422d50b45c934805), (FULL)U(0xb62a6053d1587441),
(FULL)U(0xa5e71ce96f7ae035), (FULL)U(0x93abca2e595c8dd8),
(FULL)U(0x534231afe39afad5), (FULL)U(0x08d26cac12eaad56),
(FULL)U(0xec18bf8d7fb1b1c2), (FULL)U(0x3d28ea16faf6f09b),
(FULL)U(0xea357a7816697dd6), (FULL)U(0x51471ea1420f3f51),
(FULL)U(0x5e051aeb7f8946b4), (FULL)U(0x881be0970cf0524c),
(FULL)U(0xd558b25b1b31489e), (FULL)U(0x707d1a943a8b065c),
(FULL)U(0x37017e66568ff836), (FULL)U(0xb9cd627c24c2f747),
(FULL)U(0x1485549ffb1d9ff6), (FULL)U(0x308d32d9bdf2dc6f),
(FULL)U(0x4d4142cad543818a), (FULL)U(0x5d9c7aee87ebba43),
(FULL)U(0x81c5bdd8e17adb2f), (FULL)U(0x3dc9752ec8d8677a),
(FULL)U(0x66b086e6c34e4212), (FULL)U(0x3af7a90dc62b25e3),
(FULL)U(0xf8349f7935539315), (FULL)U(0x6bcfd9d5a22917f0),
(FULL)U(0x8639bb765f5ee517), (FULL)U(0xd3c5e3698095b092),
(FULL)U(0x8a33851e7eb44748), (FULL)U(0x5e29d443ea54bbcf),
(FULL)U(0x0f84651f4d59a834), (FULL)U(0x85040beaf1a5f951),
(FULL)U(0x3dba1c7498002078), (FULL)U(0x5d70712bf0b2cc15),
(FULL)U(0xfa3af8ebcce8e5a7), (FULL)U(0xfb3e223704bba57d),
(FULL)U(0x5d3b87858a950434), (FULL)U(0xce3112bdba3f8dcf),
(FULL)U(0x44904f55860d3051), (FULL)U(0xcec8fed44ed3e98b),
(FULL)U(0x4581698d25d01ea4), (FULL)U(0x11eb68289a9548e0),
(FULL)U(0x796cb4c6e911fac8), (FULL)U(0x2164cf26b5fd813e),
(FULL)U(0x4ac8e0f5d5de640f), (FULL)U(0xe9e757d78802ab4e),
(FULL)U(0x3c97de26f49dfcbd), (FULL)U(0xc604881b6ee6dbe6),
(FULL)U(0xa7c22a6e57d6154e), (FULL)U(0x234e2370877b3cc7),
(FULL)U(0xc0bdb72bdf1f8358), (FULL)U(0x6522e0fca95b7b55),
(FULL)U(0xba174c9022344162), (FULL)U(0x712c9b2d75d48867),
(FULL)U(0x240f7e92e59f3700), (FULL)U(0xe83cc2d4ad95d763),
(FULL)U(0x8509445a4336d717), (FULL)U(0xf1e572c5dfff1804),
(FULL)U(0xed10eb5d623232dd), (FULL)U(0x9205ea1bd4f957e8),
(FULL)U(0x4973a54f2ff062f5), (FULL)U(0x26b018f1e8c48cd5),
(FULL)U(0x56908401d1c7ed9f), (FULL)U(0x2e48937bdf89a247),
(FULL)U(0x9d53069b2be47129), (FULL)U(0x98069e3bc048a2b0),
(FULL)U(0xf25b7d651cd83f93), (FULL)U(0x2b004e6ce6f886c8),
(FULL)U(0xf618442a5c635935), (FULL)U(0xa502ab5c7198e052),
(FULL)U(0xc14241a4a6c41b0b), (FULL)U(0x720e845a7db9b18e),
(FULL)U(0x2abb13e94b713918), (FULL)U(0x90fc0c207f52467d),
(FULL)U(0x799c8ccd7868d348), (FULL)U(0xf4817ced912a0ea4),
(FULL)U(0xd68c0f4cc4903a57), (FULL)U(0xa3171f29e2b7934c),
(FULL)U(0xb1158baa0b4ccc22), (FULL)U(0xf5d8555349a29eda),
(FULL)U(0x59d1a078959442ef), (FULL)U(0xdb9b4a96a67fd518),
(FULL)U(0xcc7ca9eed2870636), (FULL)U(0x548f021cecf59920),
(FULL)U(0x25b7f4b6571bc8c5), (FULL)U(0x4fa527473a44f536),
(FULL)U(0xb246845fdf0ebdc2), (FULL)U(0xdd8d68ae42058793),
(FULL)U(0x3ba133289f6c39fb), (FULL)U(0x8bfdfbf37b6b42af),
(FULL)U(0xfb34c5ca7fb2b3b0), (FULL)U(0x2345dcecd428e32a),
(FULL)U(0x6891e850ad42b63e), (FULL)U(0x930642c8362c1381),
(FULL)U(0x13871e9b1886aff5), (FULL)U(0xd0cf2407482bda55),
(FULL)U(0x125b5fc95069bc31), (FULL)U(0x9b71d0a9f07dfa5d),
(FULL)U(0x55c044cc6712e524), (FULL)U(0xf0377358bb601978),
(FULL)U(0x152ad5f87fa51e8b), (FULL)U(0xe5ebf4789fcdd9af),
(FULL)U(0x3d78e18c66ebce7e), (FULL)U(0x8246db72f36aa83f),
(FULL)U(0xcc6ddc6d2c64c0a3), (FULL)U(0xa758d6870d91851e),
(FULL)U(0x24b20a6f9488ee36), (FULL)U(0xbe11ccdf09798197),
(FULL)U(0x11aca01599c1f4e3), (FULL)U(0x40e89e366437ac05),
(FULL)U(0xc8bfc7625af675f8), (FULL)U(0x6367c578b577e759),
(FULL)U(0x00380346615f0b74), (FULL)U(0xee964cc48de07d81),
(FULL)U(0x17f6ac16859d9261), (FULL)U(0x092f4a173a6e2f6c),
(FULL)U(0x79981a3db9024b95), (FULL)U(0x36db166004f7f540),
(FULL)U(0xc36252cf65a2f1c8), (FULL)U(0x705b6fde124c9bd2),
(FULL)U(0x31e58dda85db40ce), (FULL)U(0x6342b1a59f5e8d6d),
(FULL)U(0x5c2c67d0bd6d1d4d), (FULL)U(0x1fe5b46fba7e069d),
(FULL)U(0x21c46c6cac72e13c), (FULL)U(0xb80c5fd59eb8f52a),
(FULL)U(0x56c3aebfa74c92bc), (FULL)U(0xc1aff1fcbf8c4196),
(FULL)U(0x2b1df645754ad208), (FULL)U(0x5c734600d46eeb50),
(FULL)U(0xe0ff1b126a70a765), (FULL)U(0xd54164977a94547c),
(FULL)U(0x67b59d7c4ea35206), (FULL)U(0x53be7146779203b4),
(FULL)U(0x6b589fe5414026b8), (FULL)U(0x9e81016c3083bfee),
(FULL)U(0xb23526b93b4b7671), (FULL)U(0x4fa9ffb17ee300ba),
(FULL)U(0x6217e212ad05fb21), (FULL)U(0xf5b3fcd3b294e6c2),
(FULL)U(0xac040bbe216beb2a), (FULL)U(0x1f8d8a5471d0e78c),
(FULL)U(0xb6d15b419cfec96b), (FULL)U(0xc5477845d0508c78),
(FULL)U(0x5b486e81b4bba621), (FULL)U(0x90c35c94ef4c4121),
(FULL)U(0xefce7346f6a6bc55), (FULL)U(0xa27828d925bdb9bb),
(FULL)U(0xe3a53095a1f0b205), (FULL)U(0x1bfa6093d9f208ab),
(FULL)U(0xfb078f6a6842cdf4), (FULL)U(0x07806d7297133a38),
(FULL)U(0x2c6c901ba3ce9592), (FULL)U(0x1f0ab2cfebc1b789),
(FULL)U(0x2ce81415e2d03d5e), (FULL)U(0x7da45d5baa9f2417),
(FULL)U(0x3be4f76ddd800682), (FULL)U(0xdbf4e4a3364d72d3),
(FULL)U(0xb538cccf4fc59da5), (FULL)U(0xb0aa39d5487f66ec),
(FULL)U(0x2fd28dfd87927d3d), (FULL)U(0xd14e77f05900c6b1),
(FULL)U(0x2523fad25330c7b4), (FULL)U(0x991b5938d82368a4),
(FULL)U(0xb7c114432b9c1302), (FULL)U(0xdb842db61394b116),
(FULL)U(0x3641548d78ed26d8), (FULL)U(0x274fa8ef0a61dacf),
(FULL)U(0xa554ba63112df6f1), (FULL)U(0x7b7fe9856b50438d),
(FULL)U(0xc9fa0042bb63bbad), (FULL)U(0x3abf45d0e27f00da),
(FULL)U(0xd95faa159f87aabb), (FULL)U(0x4a95012e3488e7ae),
(FULL)U(0x1be2bdb90c642d04), (FULL)U(0x145c88818b4abf3e),
(FULL)U(0x7f9fb635544cf17f), (FULL)U(0xb8ab2f62cc78db70),
(FULL)U(0x8ee64bcdb4242f9a), (FULL)U(0xabd5285895dad129),
(FULL)U(0xbe722c2fccf31141), (FULL)U(0x7c330703575e26a9),
(FULL)U(0x45d3e3b3361b79e4), (FULL)U(0x241163a754b2e6a6),
(FULL)U(0x8f678d7df7cacb77), (FULL)U(0x988a68a483211d19),
(FULL)U(0x79599598ba7836f6), (FULL)U(0x4850c887eeda68bf),
(FULL)U(0xafa69a718052ce25), (FULL)U(0x8b21efc6bdd73573),
(FULL)U(0x89dbae18d0972493), (FULL)U(0x560776bf537d9454),
(FULL)U(0x3c009f78165310f2), (FULL)U(0xa36800210160c3af),
(FULL)U(0x3353ec3ca643bd40), (FULL)U(0x7e593f99911dab02),
(FULL)U(0x72d1ddd94f676e89), (FULL)U(0xfd18b8bd6b43c0ea),
(FULL)U(0x43cacef2ddbd697d), (FULL)U(0x2868a4d0acefe884),
(FULL)U(0x5f377b63a506f013), (FULL)U(0xeaa0975e05ca662b),
(FULL)U(0x3740e6b8eb433931), (FULL)U(0xce85df0008557948),
(FULL)U(0x784745fb547e33f9), (FULL)U(0x4a1fc5d4e5c6f598),
(FULL)U(0x85fa6fec768430a7), (FULL)U(0x990d0c24d2332a51),
(FULL)U(0x55245c2c33b676d5), (FULL)U(0xb1091519e2bcfa71),
(FULL)U(0x38521478d23a28d8), (FULL)U(0x9b794f899a573010),
(FULL)U(0x61d225e8699bb486), (FULL)U(0x21476d241c2158b0)
}
#elif 2*FULL_BITS == SBITS
{ /* subtractive 100 table */
(FULL)0x7db7dc19,(FULL)0xc8c0370c,(FULL)0x40a06fbb,(FULL)0x738e33b9,
(FULL)0xa859ed2b,(FULL)0x481abb76,(FULL)0x9ccdccb5,(FULL)0x74106bb3,
(FULL)0xc3173bfc,(FULL)0x05a8eeb5,(FULL)0x5a02e577,(FULL)0xefd5100d,
(FULL)0x4030b24a,(FULL)0xa69271f7,(FULL)0x16fe22c5,(FULL)0x641282fc,
(FULL)0x40438da3,(FULL)0x7aa7267c,(FULL)0xc2d878d1,(FULL)0x1fdf4abd,
(FULL)0x95702379,(FULL)0xd9899e7a,(FULL)0xd02d7f08,(FULL)0x5ea8e217,
(FULL)0x4d47a353,(FULL)0x770587fe,(FULL)0x0a33a2b8,(FULL)0xde7d1bdd,
(FULL)0x900e7c45,(FULL)0x4378c3c5,(FULL)0x19a514f9,(FULL)0x77c94478,
(FULL)0x843d1d32,(FULL)0xfc5edb22,(FULL)0xe8ee5e6e,(FULL)0x4fc42ce5,
(FULL)0x8488013e,(FULL)0xc938713c,(FULL)0x20ab0cac,(FULL)0x6a318f03,
(FULL)0xffc8bff3,(FULL)0x73e6d1a3,(FULL)0x8ca96aa7,(FULL)0x0cd3232a,
(FULL)0x905f770d,(FULL)0x605c8036,(FULL)0x8b8d04a2,(FULL)0x4d037b00,
(FULL)0xcb277294,(FULL)0x1ed81965,(FULL)0x7a254ff3,(FULL)0x408d9c47,
(FULL)0xe26c7377,(FULL)0x8b68587a,(FULL)0x8a48832f,(FULL)0xcff191a4,
(FULL)0x8aeb6fe6,(FULL)0x12d3df1d,(FULL)0x1feda37a,(FULL)0xb2bf907e,
(FULL)0x3bb5f39f,(FULL)0x4e5f7719,(FULL)0x8f5d1581,(FULL)0x33ebcf6f,
(FULL)0xd33654eb,(FULL)0x203c8e48,(FULL)0xf19c8a4e,(FULL)0x68d3656e,
(FULL)0x986eb2af,(FULL)0x3ec20b04,(FULL)0x062c3841,(FULL)0x5d73a03b,
(FULL)0x5d4e49eb,(FULL)0x836ce709,(FULL)0xc3f49221,(FULL)0x2310bc40,
(FULL)0xa6d0cbf6,(FULL)0x3868ee48,(FULL)0x4a43deb1,(FULL)0x67578aa6,
(FULL)0x150dfc26,(FULL)0x6e3426c1,(FULL)0x3131be30,(FULL)0xc541ccaa,
(FULL)0xcec7aab2,(FULL)0xf7e57432,(FULL)0x8cb3c873,(FULL)0x2b35de99,
(FULL)0x8663a5d7,(FULL)0x7b9f7764,(FULL)0xa771e5a6,(FULL)0x23b00e6a,
(FULL)0xa9985d05,(FULL)0x859c775c,(FULL)0x6b692f1f,(FULL)0x99636ea1,
(FULL)0x3730800d,(FULL)0x8700ac70,(FULL)0x4298a753,(FULL)0x46142502,
(FULL)0x809e955f,(FULL)0xea4a411b,(FULL)0x33709dfb,(FULL)0x3119ad40,
(FULL)0x5f01cb7c,(FULL)0xb76a6c6e,(FULL)0x15984eaf,(FULL)0x6109dc8a,
(FULL)0xa5ca9505,(FULL)0x5d686db9,(FULL)0x3b7e6add,(FULL)0x8e80d761,
(FULL)0xde6f6fd3,(FULL)0x79cbd718,(FULL)0x1da0f699,(FULL)0x40e9cd15,
(FULL)0xb24f312d,(FULL)0xe82158ba,(FULL)0xf5e5c36b,(FULL)0x79a4c927,
(FULL)0xa0039333,(FULL)0xc25247c9,(FULL)0x1766d81d,(FULL)0x93687116,
(FULL)0xa6741327,(FULL)0x3c6a03b4,(FULL)0xc002f29a,(FULL)0xc8a7b6e8,
(FULL)0x7bbd5ea3,(FULL)0x0e2a67c6,(FULL)0x441eabc1,(FULL)0x0929042d,
(FULL)0x25e82085,(FULL)0x7dbe232a,(FULL)0x44fbac3d,(FULL)0x8cfb26e5,
(FULL)0x388ab983,(FULL)0x8e40384d,(FULL)0x554632f8,(FULL)0x48dc1230,
(FULL)0xab492397,(FULL)0xab405048,(FULL)0xa118e387,(FULL)0x21c9e2f5,
(FULL)0x343b61b5,(FULL)0x484d1a8c,(FULL)0xab256f26,(FULL)0xd49e3dec,
(FULL)0x78f2d2e3,(FULL)0xe615c7fd,(FULL)0xce6cc2ed,(FULL)0x8442cc33,
(FULL)0x44d4bbf6,(FULL)0x0a3b93d8,(FULL)0x9301de77,(FULL)0x2d7e4efe,
(FULL)0xd8790d8a,(FULL)0x33711b76,(FULL)0x44df77e7,(FULL)0xc07dc30e,
(FULL)0x9ddd508f,(FULL)0xb9132ed0,(FULL)0xc6fb43cc,(FULL)0x45d06cf8,
(FULL)0xd585dd7b,(FULL)0x22bed18a,(FULL)0x10799ffa,(FULL)0x61c6cced,
(FULL)0xe4bd9aa9,(FULL)0xd7f2393b,(FULL)0xcfd55094,(FULL)0x706753fb,
(FULL)0xede6e446,(FULL)0xf65a6713,(FULL)0x47c0d5c3,(FULL)0x8bf6dfae,
(FULL)0x9f7927d6,(FULL)0xfb4dfc17,(FULL)0xe212c297,(FULL)0x12ebbc16,
(FULL)0xa00a954c,(FULL)0x43c71283,(FULL)0xe7bd40a5,(FULL)0x8957087a,
(FULL)0x08344837,(FULL)0xb0859d71,(FULL)0xaeb313f5,(FULL)0xfbf4b9a3,
(FULL)0xce81823a,(FULL)0x5e66e5be,(FULL)0x58ad6da1,(FULL)0x09a11c6e,
(FULL)0xc608054f,(FULL)0xc76f4316,(FULL)0x46084099,(FULL)0xb5821361,
(FULL)0x17a725ed,(FULL)0x4210008f,(FULL)0xd347c481,(FULL)0xe5ff8912
},
{ /* shuffle table */
(FULL)0xec8abd57,(FULL)0x69a2296c,(FULL)0x99a6df81,(FULL)0x867e1869,
(FULL)0xd849a48a,(FULL)0xc05ab96b,(FULL)0xfa00554b,(FULL)0x7eb3ce0c,
(FULL)0x5a5a9acd,(FULL)0x520d01f6,(FULL)0x36022d81,(FULL)0xd4ef1e33,
(FULL)0xc6f84f70,(FULL)0xaf44772b,(FULL)0xa7c55173,(FULL)0x647e85a6,
(FULL)0x959df8d1,(FULL)0x26746cf1,(FULL)0x4db28abd,(FULL)0x98681a90,
(FULL)0x744c5cd2,(FULL)0xb146c969,(FULL)0x706f88c2,(FULL)0x8ce69d1f,
(FULL)0x21b4a748,(FULL)0xfd12eac4,(FULL)0x2710eea5,(FULL)0xf12e70fe,
(FULL)0x5901f2b5,(FULL)0x0b8f7805,(FULL)0x4f2c115e,(FULL)0x48860a76,
(FULL)0x30767e2c,(FULL)0x0edf6d2a,(FULL)0xfce2713b,(FULL)0x8a6d7dc5,
(FULL)0x4e0e2346,(FULL)0x46a362ea,(FULL)0x359f5aa7,(FULL)0x6c369a0a,
(FULL)0x41def54e,(FULL)0xdfca81fe,(FULL)0x96c2bc4e,(FULL)0x4b733819,
(FULL)0x6f3f14f9,(FULL)0x659e8b99,(FULL)0x93d47e6f,(FULL)0x8b97b934,
(FULL)0xdfa10a55,(FULL)0xa73a8704,(FULL)0xb06503da,(FULL)0x8d9eafe9,
(FULL)0xf32336b0,(FULL)0x2556fb88,(FULL)0x1002a161,(FULL)0xe71e9f75,
(FULL)0x200af907,(FULL)0x27a7be6e,(FULL)0xd028e9a3,(FULL)0x1b9b734e,
(FULL)0x4c0be0d3,(FULL)0x950cfeed,(FULL)0x2536d275,(FULL)0xf4c41694,
(FULL)0x5687b76e,(FULL)0xf05a58e8,(FULL)0x71a62d54,(FULL)0xba53ac01,
(FULL)0x285adc96,(FULL)0x4b14cbcb,(FULL)0xb00a5557,(FULL)0xfdf66edd,
(FULL)0x185b6ea1,(FULL)0xbb43d58d,(FULL)0xf355c9a6,(FULL)0x905db9cd,
(FULL)0x04429c8a,(FULL)0xfc3a07fc,(FULL)0xaa3a4f7e,(FULL)0x65d7e365,
(FULL)0xb243ac65,(FULL)0x2d284c18,(FULL)0x44e417fd,(FULL)0x72fba65d,
(FULL)0x5c934805,(FULL)0x422d50b4,(FULL)0xd1587441,(FULL)0xb62a6053,
(FULL)0x6f7ae035,(FULL)0xa5e71ce9,(FULL)0x595c8dd8,(FULL)0x93abca2e,
(FULL)0xe39afad5,(FULL)0x534231af,(FULL)0x12eaad56,(FULL)0x08d26cac,
(FULL)0x7fb1b1c2,(FULL)0xec18bf8d,(FULL)0xfaf6f09b,(FULL)0x3d28ea16,
(FULL)0x16697dd6,(FULL)0xea357a78,(FULL)0x420f3f51,(FULL)0x51471ea1,
(FULL)0x7f8946b4,(FULL)0x5e051aeb,(FULL)0x0cf0524c,(FULL)0x881be097,
(FULL)0x1b31489e,(FULL)0xd558b25b,(FULL)0x3a8b065c,(FULL)0x707d1a94,
(FULL)0x568ff836,(FULL)0x37017e66,(FULL)0x24c2f747,(FULL)0xb9cd627c,
(FULL)0xfb1d9ff6,(FULL)0x1485549f,(FULL)0xbdf2dc6f,(FULL)0x308d32d9,
(FULL)0xd543818a,(FULL)0x4d4142ca,(FULL)0x87ebba43,(FULL)0x5d9c7aee,
(FULL)0xe17adb2f,(FULL)0x81c5bdd8,(FULL)0xc8d8677a,(FULL)0x3dc9752e,
(FULL)0xc34e4212,(FULL)0x66b086e6,(FULL)0xc62b25e3,(FULL)0x3af7a90d,
(FULL)0x35539315,(FULL)0xf8349f79,(FULL)0xa22917f0,(FULL)0x6bcfd9d5,
(FULL)0x5f5ee517,(FULL)0x8639bb76,(FULL)0x8095b092,(FULL)0xd3c5e369,
(FULL)0x7eb44748,(FULL)0x8a33851e,(FULL)0xea54bbcf,(FULL)0x5e29d443,
(FULL)0x4d59a834,(FULL)0x0f84651f,(FULL)0xf1a5f951,(FULL)0x85040bea,
(FULL)0x98002078,(FULL)0x3dba1c74,(FULL)0xf0b2cc15,(FULL)0x5d70712b,
(FULL)0xcce8e5a7,(FULL)0xfa3af8eb,(FULL)0x04bba57d,(FULL)0xfb3e2237,
(FULL)0x8a950434,(FULL)0x5d3b8785,(FULL)0xba3f8dcf,(FULL)0xce3112bd,
(FULL)0x860d3051,(FULL)0x44904f55,(FULL)0x4ed3e98b,(FULL)0xcec8fed4,
(FULL)0x25d01ea4,(FULL)0x4581698d,(FULL)0x9a9548e0,(FULL)0x11eb6828,
(FULL)0xe911fac8,(FULL)0x796cb4c6,(FULL)0xb5fd813e,(FULL)0x2164cf26,
(FULL)0xd5de640f,(FULL)0x4ac8e0f5,(FULL)0x8802ab4e,(FULL)0xe9e757d7,
(FULL)0xf49dfcbd,(FULL)0x3c97de26,(FULL)0x6ee6dbe6,(FULL)0xc604881b,
(FULL)0x57d6154e,(FULL)0xa7c22a6e,(FULL)0x877b3cc7,(FULL)0x234e2370,
(FULL)0xdf1f8358,(FULL)0xc0bdb72b,(FULL)0xa95b7b55,(FULL)0x6522e0fc,
(FULL)0x22344162,(FULL)0xba174c90,(FULL)0x75d48867,(FULL)0x712c9b2d,
(FULL)0xe59f3700,(FULL)0x240f7e92,(FULL)0xad95d763,(FULL)0xe83cc2d4,
(FULL)0x4336d717,(FULL)0x8509445a,(FULL)0xdfff1804,(FULL)0xf1e572c5,
(FULL)0x623232dd,(FULL)0xed10eb5d,(FULL)0xd4f957e8,(FULL)0x9205ea1b,
(FULL)0x2ff062f5,(FULL)0x4973a54f,(FULL)0xe8c48cd5,(FULL)0x26b018f1,
(FULL)0xd1c7ed9f,(FULL)0x56908401,(FULL)0xdf89a247,(FULL)0x2e48937b,
(FULL)0x2be47129,(FULL)0x9d53069b,(FULL)0xc048a2b0,(FULL)0x98069e3b,
(FULL)0x1cd83f93,(FULL)0xf25b7d65,(FULL)0xe6f886c8,(FULL)0x2b004e6c,
(FULL)0x5c635935,(FULL)0xf618442a,(FULL)0x7198e052,(FULL)0xa502ab5c,
(FULL)0xa6c41b0b,(FULL)0xc14241a4,(FULL)0x7db9b18e,(FULL)0x720e845a,
(FULL)0x4b713918,(FULL)0x2abb13e9,(FULL)0x7f52467d,(FULL)0x90fc0c20,
(FULL)0x7868d348,(FULL)0x799c8ccd,(FULL)0x912a0ea4,(FULL)0xf4817ced,
(FULL)0xc4903a57,(FULL)0xd68c0f4c,(FULL)0xe2b7934c,(FULL)0xa3171f29,
(FULL)0x0b4ccc22,(FULL)0xb1158baa,(FULL)0x49a29eda,(FULL)0xf5d85553,
(FULL)0x959442ef,(FULL)0x59d1a078,(FULL)0xa67fd518,(FULL)0xdb9b4a96,
(FULL)0xd2870636,(FULL)0xcc7ca9ee,(FULL)0xecf59920,(FULL)0x548f021c,
(FULL)0x571bc8c5,(FULL)0x25b7f4b6,(FULL)0x3a44f536,(FULL)0x4fa52747,
(FULL)0xdf0ebdc2,(FULL)0xb246845f,(FULL)0x42058793,(FULL)0xdd8d68ae,
(FULL)0x9f6c39fb,(FULL)0x3ba13328,(FULL)0x7b6b42af,(FULL)0x8bfdfbf3,
(FULL)0x7fb2b3b0,(FULL)0xfb34c5ca,(FULL)0xd428e32a,(FULL)0x2345dcec,
(FULL)0xad42b63e,(FULL)0x6891e850,(FULL)0x362c1381,(FULL)0x930642c8,
(FULL)0x1886aff5,(FULL)0x13871e9b,(FULL)0x482bda55,(FULL)0xd0cf2407,
(FULL)0x5069bc31,(FULL)0x125b5fc9,(FULL)0xf07dfa5d,(FULL)0x9b71d0a9,
(FULL)0x6712e524,(FULL)0x55c044cc,(FULL)0xbb601978,(FULL)0xf0377358,
(FULL)0x7fa51e8b,(FULL)0x152ad5f8,(FULL)0x9fcdd9af,(FULL)0xe5ebf478,
(FULL)0x66ebce7e,(FULL)0x3d78e18c,(FULL)0xf36aa83f,(FULL)0x8246db72,
(FULL)0x2c64c0a3,(FULL)0xcc6ddc6d,(FULL)0x0d91851e,(FULL)0xa758d687,
(FULL)0x9488ee36,(FULL)0x24b20a6f,(FULL)0x09798197,(FULL)0xbe11ccdf,
(FULL)0x99c1f4e3,(FULL)0x11aca015,(FULL)0x6437ac05,(FULL)0x40e89e36,
(FULL)0x5af675f8,(FULL)0xc8bfc762,(FULL)0xb577e759,(FULL)0x6367c578,
(FULL)0x615f0b74,(FULL)0x00380346,(FULL)0x8de07d81,(FULL)0xee964cc4,
(FULL)0x859d9261,(FULL)0x17f6ac16,(FULL)0x3a6e2f6c,(FULL)0x092f4a17,
(FULL)0xb9024b95,(FULL)0x79981a3d,(FULL)0x04f7f540,(FULL)0x36db1660,
(FULL)0x65a2f1c8,(FULL)0xc36252cf,(FULL)0x124c9bd2,(FULL)0x705b6fde,
(FULL)0x85db40ce,(FULL)0x31e58dda,(FULL)0x9f5e8d6d,(FULL)0x6342b1a5,
(FULL)0xbd6d1d4d,(FULL)0x5c2c67d0,(FULL)0xba7e069d,(FULL)0x1fe5b46f,
(FULL)0xac72e13c,(FULL)0x21c46c6c,(FULL)0x9eb8f52a,(FULL)0xb80c5fd5,
(FULL)0xa74c92bc,(FULL)0x56c3aebf,(FULL)0xbf8c4196,(FULL)0xc1aff1fc,
(FULL)0x754ad208,(FULL)0x2b1df645,(FULL)0xd46eeb50,(FULL)0x5c734600,
(FULL)0x6a70a765,(FULL)0xe0ff1b12,(FULL)0x7a94547c,(FULL)0xd5416497,
(FULL)0x4ea35206,(FULL)0x67b59d7c,(FULL)0x779203b4,(FULL)0x53be7146,
(FULL)0x414026b8,(FULL)0x6b589fe5,(FULL)0x3083bfee,(FULL)0x9e81016c,
(FULL)0x3b4b7671,(FULL)0xb23526b9,(FULL)0x7ee300ba,(FULL)0x4fa9ffb1,
(FULL)0xad05fb21,(FULL)0x6217e212,(FULL)0xb294e6c2,(FULL)0xf5b3fcd3,
(FULL)0x216beb2a,(FULL)0xac040bbe,(FULL)0x71d0e78c,(FULL)0x1f8d8a54,
(FULL)0x9cfec96b,(FULL)0xb6d15b41,(FULL)0xd0508c78,(FULL)0xc5477845,
(FULL)0xb4bba621,(FULL)0x5b486e81,(FULL)0xef4c4121,(FULL)0x90c35c94,
(FULL)0xf6a6bc55,(FULL)0xefce7346,(FULL)0x25bdb9bb,(FULL)0xa27828d9,
(FULL)0xa1f0b205,(FULL)0xe3a53095,(FULL)0xd9f208ab,(FULL)0x1bfa6093,
(FULL)0x6842cdf4,(FULL)0xfb078f6a,(FULL)0x97133a38,(FULL)0x07806d72,
(FULL)0xa3ce9592,(FULL)0x2c6c901b,(FULL)0xebc1b789,(FULL)0x1f0ab2cf,
(FULL)0xe2d03d5e,(FULL)0x2ce81415,(FULL)0xaa9f2417,(FULL)0x7da45d5b,
(FULL)0xdd800682,(FULL)0x3be4f76d,(FULL)0x364d72d3,(FULL)0xdbf4e4a3,
(FULL)0x4fc59da5,(FULL)0xb538cccf,(FULL)0x487f66ec,(FULL)0xb0aa39d5,
(FULL)0x87927d3d,(FULL)0x2fd28dfd,(FULL)0x5900c6b1,(FULL)0xd14e77f0,
(FULL)0x5330c7b4,(FULL)0x2523fad2,(FULL)0xd82368a4,(FULL)0x991b5938,
(FULL)0x2b9c1302,(FULL)0xb7c11443,(FULL)0x1394b116,(FULL)0xdb842db6,
(FULL)0x78ed26d8,(FULL)0x3641548d,(FULL)0x0a61dacf,(FULL)0x274fa8ef,
(FULL)0x112df6f1,(FULL)0xa554ba63,(FULL)0x6b50438d,(FULL)0x7b7fe985,
(FULL)0xbb63bbad,(FULL)0xc9fa0042,(FULL)0xe27f00da,(FULL)0x3abf45d0,
(FULL)0x9f87aabb,(FULL)0xd95faa15,(FULL)0x3488e7ae,(FULL)0x4a95012e,
(FULL)0x0c642d04,(FULL)0x1be2bdb9,(FULL)0x8b4abf3e,(FULL)0x145c8881,
(FULL)0x544cf17f,(FULL)0x7f9fb635,(FULL)0xcc78db70,(FULL)0xb8ab2f62,
(FULL)0xb4242f9a,(FULL)0x8ee64bcd,(FULL)0x95dad129,(FULL)0xabd52858,
(FULL)0xccf31141,(FULL)0xbe722c2f,(FULL)0x575e26a9,(FULL)0x7c330703,
(FULL)0x361b79e4,(FULL)0x45d3e3b3,(FULL)0x54b2e6a6,(FULL)0x241163a7,
(FULL)0xf7cacb77,(FULL)0x8f678d7d,(FULL)0x83211d19,(FULL)0x988a68a4,
(FULL)0xba7836f6,(FULL)0x79599598,(FULL)0xeeda68bf,(FULL)0x4850c887,
(FULL)0x8052ce25,(FULL)0xafa69a71,(FULL)0xbdd73573,(FULL)0x8b21efc6,
(FULL)0xd0972493,(FULL)0x89dbae18,(FULL)0x537d9454,(FULL)0x560776bf,
(FULL)0x165310f2,(FULL)0x3c009f78,(FULL)0x0160c3af,(FULL)0xa3680021,
(FULL)0xa643bd40,(FULL)0x3353ec3c,(FULL)0x911dab02,(FULL)0x7e593f99,
(FULL)0x4f676e89,(FULL)0x72d1ddd9,(FULL)0x6b43c0ea,(FULL)0xfd18b8bd,
(FULL)0xddbd697d,(FULL)0x43cacef2,(FULL)0xacefe884,(FULL)0x2868a4d0,
(FULL)0xa506f013,(FULL)0x5f377b63,(FULL)0x05ca662b,(FULL)0xeaa0975e,
(FULL)0xeb433931,(FULL)0x3740e6b8,(FULL)0x08557948,(FULL)0xce85df00,
(FULL)0x547e33f9,(FULL)0x784745fb,(FULL)0xe5c6f598,(FULL)0x4a1fc5d4,
(FULL)0x768430a7,(FULL)0x85fa6fec,(FULL)0xd2332a51,(FULL)0x990d0c24,
(FULL)0x33b676d5,(FULL)0x55245c2c,(FULL)0xe2bcfa71,(FULL)0xb1091519,
(FULL)0xd23a28d8,(FULL)0x38521478,(FULL)0x9a573010,(FULL)0x9b794f89,
(FULL)0x699bb486,(FULL)0x61d225e8,(FULL)0x1c2158b0,(FULL)0x21476d24
}
#else
/\../\ FULL_BITS must be 32 or 64 /\../\ !!!
#endif
};
/*
* default subtractive 100 table
*
* The subtractive 100 table in init_s100 has been processed 256 times in order
* to preload the shuffle table. The array below is the table before
* this processing. These values have came from LavaRnd.
*
* This array is never changed, only copied.
*/
STATIC CONST FULL def_subtract[SCNT] = {
#if FULL_BITS == SBITS
(FULL)U(0xc8c0370c7db7dc19), (FULL)U(0x738e33b940a06fbb),
(FULL)U(0x481abb76a859ed2b), (FULL)U(0x74106bb39ccdccb5),
(FULL)U(0x05a8eeb5c3173bfc), (FULL)U(0xefd5100d5a02e577),
(FULL)U(0xa69271f74030b24a), (FULL)U(0x641282fc16fe22c5),
(FULL)U(0x7aa7267c40438da3), (FULL)U(0x1fdf4abdc2d878d1),
(FULL)U(0xd9899e7a95702379), (FULL)U(0x5ea8e217d02d7f08),
(FULL)U(0x770587fe4d47a353), (FULL)U(0xde7d1bdd0a33a2b8),
(FULL)U(0x4378c3c5900e7c45), (FULL)U(0x77c9447819a514f9),
(FULL)U(0xfc5edb22843d1d32), (FULL)U(0x4fc42ce5e8ee5e6e),
(FULL)U(0xc938713c8488013e), (FULL)U(0x6a318f0320ab0cac),
(FULL)U(0x73e6d1a3ffc8bff3), (FULL)U(0x0cd3232a8ca96aa7),
(FULL)U(0x605c8036905f770d), (FULL)U(0x4d037b008b8d04a2),
(FULL)U(0x1ed81965cb277294), (FULL)U(0x408d9c477a254ff3),
(FULL)U(0x8b68587ae26c7377), (FULL)U(0xcff191a48a48832f),
(FULL)U(0x12d3df1d8aeb6fe6), (FULL)U(0xb2bf907e1feda37a),
(FULL)U(0x4e5f77193bb5f39f), (FULL)U(0x33ebcf6f8f5d1581),
(FULL)U(0x203c8e48d33654eb), (FULL)U(0x68d3656ef19c8a4e),
(FULL)U(0x3ec20b04986eb2af), (FULL)U(0x5d73a03b062c3841),
(FULL)U(0x836ce7095d4e49eb), (FULL)U(0x2310bc40c3f49221),
(FULL)U(0x3868ee48a6d0cbf6), (FULL)U(0x67578aa64a43deb1),
(FULL)U(0x6e3426c1150dfc26), (FULL)U(0xc541ccaa3131be30),
(FULL)U(0xf7e57432cec7aab2), (FULL)U(0x2b35de998cb3c873),
(FULL)U(0x7b9f77648663a5d7), (FULL)U(0x23b00e6aa771e5a6),
(FULL)U(0x859c775ca9985d05), (FULL)U(0x99636ea16b692f1f),
(FULL)U(0x8700ac703730800d), (FULL)U(0x461425024298a753),
(FULL)U(0xea4a411b809e955f), (FULL)U(0x3119ad4033709dfb),
(FULL)U(0xb76a6c6e5f01cb7c), (FULL)U(0x6109dc8a15984eaf),
(FULL)U(0x5d686db9a5ca9505), (FULL)U(0x8e80d7613b7e6add),
(FULL)U(0x79cbd718de6f6fd3), (FULL)U(0x40e9cd151da0f699),
(FULL)U(0xe82158bab24f312d), (FULL)U(0x79a4c927f5e5c36b),
(FULL)U(0xc25247c9a0039333), (FULL)U(0x936871161766d81d),
(FULL)U(0x3c6a03b4a6741327), (FULL)U(0xc8a7b6e8c002f29a),
(FULL)U(0x0e2a67c67bbd5ea3), (FULL)U(0x0929042d441eabc1),
(FULL)U(0x7dbe232a25e82085), (FULL)U(0x8cfb26e544fbac3d),
(FULL)U(0x8e40384d388ab983), (FULL)U(0x48dc1230554632f8),
(FULL)U(0xab405048ab492397), (FULL)U(0x21c9e2f5a118e387),
(FULL)U(0x484d1a8c343b61b5), (FULL)U(0xd49e3decab256f26),
(FULL)U(0xe615c7fd78f2d2e3), (FULL)U(0x8442cc33ce6cc2ed),
(FULL)U(0x0a3b93d844d4bbf6), (FULL)U(0x2d7e4efe9301de77),
(FULL)U(0x33711b76d8790d8a), (FULL)U(0xc07dc30e44df77e7),
(FULL)U(0xb9132ed09ddd508f), (FULL)U(0x45d06cf8c6fb43cc),
(FULL)U(0x22bed18ad585dd7b), (FULL)U(0x61c6cced10799ffa),
(FULL)U(0xd7f2393be4bd9aa9), (FULL)U(0x706753fbcfd55094),
(FULL)U(0xf65a6713ede6e446), (FULL)U(0x8bf6dfae47c0d5c3),
(FULL)U(0xfb4dfc179f7927d6), (FULL)U(0x12ebbc16e212c297),
(FULL)U(0x43c71283a00a954c), (FULL)U(0x8957087ae7bd40a5),
(FULL)U(0xb0859d7108344837), (FULL)U(0xfbf4b9a3aeb313f5),
(FULL)U(0x5e66e5bece81823a), (FULL)U(0x09a11c6e58ad6da1),
(FULL)U(0xc76f4316c608054f), (FULL)U(0xb582136146084099),
(FULL)U(0x4210008f17a725ed), (FULL)U(0xe5ff8912d347c481)
#elif 2*FULL_BITS == SBITS
(FULL)0x7db7dc19,(FULL)0xc8c0370c,(FULL)0x40a06fbb,(FULL)0x738e33b9,
(FULL)0xa859ed2b,(FULL)0x481abb76,(FULL)0x9ccdccb5,(FULL)0x74106bb3,
(FULL)0xc3173bfc,(FULL)0x05a8eeb5,(FULL)0x5a02e577,(FULL)0xefd5100d,
(FULL)0x4030b24a,(FULL)0xa69271f7,(FULL)0x16fe22c5,(FULL)0x641282fc,
(FULL)0x40438da3,(FULL)0x7aa7267c,(FULL)0xc2d878d1,(FULL)0x1fdf4abd,
(FULL)0x95702379,(FULL)0xd9899e7a,(FULL)0xd02d7f08,(FULL)0x5ea8e217,
(FULL)0x4d47a353,(FULL)0x770587fe,(FULL)0x0a33a2b8,(FULL)0xde7d1bdd,
(FULL)0x900e7c45,(FULL)0x4378c3c5,(FULL)0x19a514f9,(FULL)0x77c94478,
(FULL)0x843d1d32,(FULL)0xfc5edb22,(FULL)0xe8ee5e6e,(FULL)0x4fc42ce5,
(FULL)0x8488013e,(FULL)0xc938713c,(FULL)0x20ab0cac,(FULL)0x6a318f03,
(FULL)0xffc8bff3,(FULL)0x73e6d1a3,(FULL)0x8ca96aa7,(FULL)0x0cd3232a,
(FULL)0x905f770d,(FULL)0x605c8036,(FULL)0x8b8d04a2,(FULL)0x4d037b00,
(FULL)0xcb277294,(FULL)0x1ed81965,(FULL)0x7a254ff3,(FULL)0x408d9c47,
(FULL)0xe26c7377,(FULL)0x8b68587a,(FULL)0x8a48832f,(FULL)0xcff191a4,
(FULL)0x8aeb6fe6,(FULL)0x12d3df1d,(FULL)0x1feda37a,(FULL)0xb2bf907e,
(FULL)0x3bb5f39f,(FULL)0x4e5f7719,(FULL)0x8f5d1581,(FULL)0x33ebcf6f,
(FULL)0xd33654eb,(FULL)0x203c8e48,(FULL)0xf19c8a4e,(FULL)0x68d3656e,
(FULL)0x986eb2af,(FULL)0x3ec20b04,(FULL)0x062c3841,(FULL)0x5d73a03b,
(FULL)0x5d4e49eb,(FULL)0x836ce709,(FULL)0xc3f49221,(FULL)0x2310bc40,
(FULL)0xa6d0cbf6,(FULL)0x3868ee48,(FULL)0x4a43deb1,(FULL)0x67578aa6,
(FULL)0x150dfc26,(FULL)0x6e3426c1,(FULL)0x3131be30,(FULL)0xc541ccaa,
(FULL)0xcec7aab2,(FULL)0xf7e57432,(FULL)0x8cb3c873,(FULL)0x2b35de99,
(FULL)0x8663a5d7,(FULL)0x7b9f7764,(FULL)0xa771e5a6,(FULL)0x23b00e6a,
(FULL)0xa9985d05,(FULL)0x859c775c,(FULL)0x6b692f1f,(FULL)0x99636ea1,
(FULL)0x3730800d,(FULL)0x8700ac70,(FULL)0x4298a753,(FULL)0x46142502,
(FULL)0x809e955f,(FULL)0xea4a411b,(FULL)0x33709dfb,(FULL)0x3119ad40,
(FULL)0x5f01cb7c,(FULL)0xb76a6c6e,(FULL)0x15984eaf,(FULL)0x6109dc8a,
(FULL)0xa5ca9505,(FULL)0x5d686db9,(FULL)0x3b7e6add,(FULL)0x8e80d761,
(FULL)0xde6f6fd3,(FULL)0x79cbd718,(FULL)0x1da0f699,(FULL)0x40e9cd15,
(FULL)0xb24f312d,(FULL)0xe82158ba,(FULL)0xf5e5c36b,(FULL)0x79a4c927,
(FULL)0xa0039333,(FULL)0xc25247c9,(FULL)0x1766d81d,(FULL)0x93687116,
(FULL)0xa6741327,(FULL)0x3c6a03b4,(FULL)0xc002f29a,(FULL)0xc8a7b6e8,
(FULL)0x7bbd5ea3,(FULL)0x0e2a67c6,(FULL)0x441eabc1,(FULL)0x0929042d,
(FULL)0x25e82085,(FULL)0x7dbe232a,(FULL)0x44fbac3d,(FULL)0x8cfb26e5,
(FULL)0x388ab983,(FULL)0x8e40384d,(FULL)0x554632f8,(FULL)0x48dc1230,
(FULL)0xab492397,(FULL)0xab405048,(FULL)0xa118e387,(FULL)0x21c9e2f5,
(FULL)0x343b61b5,(FULL)0x484d1a8c,(FULL)0xab256f26,(FULL)0xd49e3dec,
(FULL)0x78f2d2e3,(FULL)0xe615c7fd,(FULL)0xce6cc2ed,(FULL)0x8442cc33,
(FULL)0x44d4bbf6,(FULL)0x0a3b93d8,(FULL)0x9301de77,(FULL)0x2d7e4efe,
(FULL)0xd8790d8a,(FULL)0x33711b76,(FULL)0x44df77e7,(FULL)0xc07dc30e,
(FULL)0x9ddd508f,(FULL)0xb9132ed0,(FULL)0xc6fb43cc,(FULL)0x45d06cf8,
(FULL)0xd585dd7b,(FULL)0x22bed18a,(FULL)0x10799ffa,(FULL)0x61c6cced,
(FULL)0xe4bd9aa9,(FULL)0xd7f2393b,(FULL)0xcfd55094,(FULL)0x706753fb,
(FULL)0xede6e446,(FULL)0xf65a6713,(FULL)0x47c0d5c3,(FULL)0x8bf6dfae,
(FULL)0x9f7927d6,(FULL)0xfb4dfc17,(FULL)0xe212c297,(FULL)0x12ebbc16,
(FULL)0xa00a954c,(FULL)0x43c71283,(FULL)0xe7bd40a5,(FULL)0x8957087a,
(FULL)0x08344837,(FULL)0xb0859d71,(FULL)0xaeb313f5,(FULL)0xfbf4b9a3,
(FULL)0xce81823a,(FULL)0x5e66e5be,(FULL)0x58ad6da1,(FULL)0x09a11c6e,
(FULL)0xc608054f,(FULL)0xc76f4316,(FULL)0x46084099,(FULL)0xb5821361,
(FULL)0x17a725ed,(FULL)0x4210008f,(FULL)0xd347c481,(FULL)0xe5ff8912
#else
/\../\ FULL_BITS must be 32 or 64 /\../\ !!!
#endif
};
/*
* Linear Congruential Constants
*
* a = 6316878969928993981 = 0x57aa0ff473c0ccbd
* c = 1363042948800878693 = 0x12ea805718e09865
*
* These constants are used in the randreseed64(). See below.
*/
#if FULL_BITS == SBITS
STATIC CONST HALF a_vec[SHALFS] = { (HALF)0x73c0ccbd, (HALF)0x57aa0ff4 };
STATIC CONST HALF c_vec[SHALFS] = { (HALF)0x18e09865, (HALF)0x12ea8057 };
#elif 2*FULL_BITS == SBITS
STATIC CONST HALF a_vec[SHALFS] = { (HALF)0xccbd, (HALF)0x73c0,
(HALF)0x0ff4, (HALF)0x57aa };
STATIC CONST HALF c_vec[SHALFS] = { (HALF)0x9865, (HALF)0x18e0,
(HALF)0x8057, (HALF)0x12ea };
#else
/\../\ FULL_BITS must be 32 or 64 /\../\ !!!
#endif
STATIC CONST ZVALUE a_val = {(HALF *)a_vec, SHALFS, 0};
STATIC CONST ZVALUE c_val = {(HALF *)c_vec, SHALFS, 0};
/*
* current s100 generator state
*/
STATIC RAND s100;
/*
* declare static functions
*/
S_FUNC void randreseed64(ZVALUE seed, ZVALUE *res);
S_FUNC int slotcp(BITSTR *bitstr, FULL *src, int count);
S_FUNC void slotcp64(BITSTR *bitstr, FULL *src);
/*
* randreseed64 - scramble seed in 64 bit chunks
*
* given:
* a seed
*
* returns:
* a scrambled seed, or 0 if seed was 0
*
* It is 'nice' when a seed of "n" produces a 'significantly different'
* sequence than a seed of "n+1". Generators, by convention, assign
* special significance to the seed of '0'. It is an unfortunate that
* people often pick small seed values, particularly when large seed
* are of significance to the generators found in this file.
*
* We will process seed 64 bits at a time until the entire seed has been
* exhausted. If a 64 bit chunk is 0, then 0 is returned. If the 64 bit
* chunk is non-zero, we will produce a different and unique new scrambled
* chunk. In particular, if the seed is 0 we will return 0. If the seed
* is non-zero, we will return a different value (though chunks of 64
* zeros will remain zero). This scrambling will effectively eliminate
* the human perceptions that are noted above.
*
* It should be noted that the purpose of this process is to scramble a seed
* ONLY. We do not care if these generators produce good random numbers.
* We only want to help eliminate the human factors and perceptions
* noted above.
*
* This function scrambles all 64 bit chunks of a seed, by mapping [0,2^64)
* into [0,2^64). This map is one-to-one and onto. Mapping is performed
* using a linear congruence generator of the form:
*
* X1 <-- (a*X0 + c) % m
*
* with the exception that:
*
* 0 ==> 0 (so that srand(0) acts as default)
* randreseed64() is an 1-to-1 and onto map
*
* The generator are based on the linear congruential generators found in
* Knuth's "The Art of Computer Programming - Seminumerical Algorithms",
* vol 2, 2nd edition (1981), Section 3.6, pages 170-171.
*
* Because we process 64 bits we will take:
*
* m = 2^64 (based on note ii)
*
* We will scan the Rand Book of Random Numbers to look for an 'a' such that:
*
* a mod 8 == 5 (based on note iii)
* 0.01*m < a < 0.99*m (based on note iv)
* 0.01*2^64 < a < 0.99*2^64
*
* To help keep the generators independent, we want:
*
* a is prime
*
* The choice of an adder 'c' is considered immaterial according (based
* in note v). Knuth suggests 'c==1' or 'c==a'. We elect to select 'c'
* using the same process as we used to select 'a'. The choice is
* 'immaterial' after all, and as long as:
*
* gcd(c, m) == 1 (based on note v)
* gcd(c, 2^64) == 1
*
* the concerns are met. It can be shown that if we have:
*
* gcd(a, c) == 1
*
* then the adders and multipliers will be more independent.
*
* We will obtain the values 'a' and 'c for our generator from the
* Rand Book of Random Numbers. Because m=2^64 is 20 decimal digits long,
* we will search the Rand Book of Random Numbers 20 at a time. We will
* skip any of the 100 values that were used to initialize the subtractive 100
* generators. The values obtained from the Rand Book of Random Numbers are:
*
* a = 6316878969928993981
* c = 1363042948800878693
*
* As we stated before, we must map 0 ==> 0. The linear congruence
* generator would normally map as follows:
*
* 0 ==> 1363042948800878693 (0 ==> c)
*
* We can determine which 0<=y<m will produce a given value z by inverting the
* linear congruence generator:
*
* z = (a*y + c) % m
*
* z = a*y % m + c % m
*
* z-c % m = a*y % m
*
* (z-c % m) * minv(a,m) = (a*y % m) * minv(a,m)
* [minv(a,m) is the multiplicative inverse of a % m]
*
* ((z-c % m) * minv(a,m)) % m = ((a*y % m) * minv(a,m)) % m
*
* ((z-c % m) * minv(a,m)) % m = y % m
* [a % m * minv(a,m) = 1 % m by definition]
*
* ((z-c) * minv(a,m)) % m = y % m
*
* ((z-c) * minv(a,m)) % m = y
* [we defined y to be 0<=y<m]
*
* To determine which value maps back into 0, we let z = 0 and compute:
*
* ((0-c) * minv(a,m)) % m ==> 10239951819489363767
*
* and thus we find that the congruence generator would also normally map:
*
* 10239951819489363767 ==> 0
*
* To overcome this, and preserve the 1-to-1 and onto map, we force:
*
* 0 ==> 0
* 10239951819489363767 ==> 1363042948800878693
*
* To repeat, this function converts a values into a seed value. With the
* except of 'seed == 0', every value is mapped into a unique seed value.
* This mapping need not be complex, random or secure. All we attempt
* to do here is to allow humans who pick small or successive seed values
* to obtain reasonably different sequences from the generators below.
*
* NOTE: This is NOT a pseudo random number generator. This function is
* intended to be used internally by ss100rand() and sshufrand().
*/
S_FUNC void
randreseed64(ZVALUE seed, ZVALUE *res)
{
ZVALUE t; /* temp value */
ZVALUE chunk; /* processed 64 bit chunk value */
ZVALUE seed64; /* seed mod 2^64 */
HALF *v64; /* 64 bit array of HALFs */
long chunknum; /* 64 bit chunk number */
/* firewall */
if (res == NULL) {
math_error("%s: res NULL", __func__);
not_reached();
}
/*
* quickly return 0 if seed is 0
*/
if (ziszero(seed) || seed.len <= 0) {
itoz(0, res);
return;
}
/*
* allocate result
*/
seed.sign = 0; /* use the value of seed */
res->len = (int)(((seed.len+SHALFS-1) / SHALFS) * SHALFS);
res->v = alloc(res->len);
res->sign = 0;
memset(res->v, 0, res->len*sizeof(HALF)); /* default value is 0 */
/*
* process 64 bit chunks until done
*/
chunknum = 0;
while (!zislezero(seed)) {
/*
* grab the lower 64 bits of seed
*/
if (zge64b(seed)) {
v64 = alloc(SHALFS);
memcpy(v64, seed.v, SHALFS*sizeof(HALF));
seed64.v = v64;
seed64.len = SHALFS;
seed64.sign = 0;
} else {
zcopy(seed, &seed64);
}
zshiftr(seed, SBITS);
ztrim(&seed);
ztrim(&seed64);
/*
* do nothing if chunk is zero
*/
if (ziszero(seed64)) {
++chunknum;
zfree(seed64);
continue;
}
/*
* Compute the linear congruence generator map:
*
* X1 <-- (a*X0 + c) mod m
*
* in other words:
*
* chunk == (a_val*seed + c_val) mod 2^64
*/
zmul(seed64, a_val, &t);
zfree(seed64);
zadd(t, c_val, &chunk);
zfree(t);
/*
* form chunk mod 2^64
*/
if (chunk.len > (SB32)SHALFS) {
/* result is too large, reduce to 64 bits */
v64 = alloc(SHALFS);
memcpy(v64, chunk.v, SHALFS*sizeof(HALF));
free(chunk.v);
chunk.v = v64;
chunk.len = SHALFS;
ztrim(&chunk);
}
/*
* Normally, the above equation would map:
*
* f(0) == 1363042948800878693
* f(10239951819489363767) == 0
*
* However, we have already forced f(0) == 0. To preserve the
* 1-to-1 and onto map property, we force:
*
* f(10239951819489363767) ==> 1363042948800878693
*/
if (ziszero(chunk)) {
/* load 1363042948800878693 instead of 0 */
zcopy(c_val, &chunk);
memcpy(res->v+(chunknum*SHALFS), c_val.v,
c_val.len*sizeof(HALF));
/*
* load the 64 bit chunk into the result
*/
} else {
memcpy(res->v+(chunknum*SHALFS), chunk.v,
chunk.len*sizeof(HALF));
}
++chunknum;
zfree(chunk);
}
ztrim(res);
}
/*
* zsrand - seed the s100 generator
*
* given:
* pseed - ptr to seed of the generator or NULL
* pmat100 - subtractive 100 state table or NULL
*
* returns:
* previous s100 state
*/
RAND *
zsrand(CONST ZVALUE *pseed, CONST MATRIX *pmat100)
{
RAND *ret; /* previous s100 state */
CONST VALUE *v; /* value from a passed matrix */
ZVALUE zscram; /* scrambled 64 bit seed */
ZVALUE ztmp; /* temp holding value for zscram */
ZVALUE seed; /* to hold *pseed */
FULL shufxor[SLEN]; /* zshufxor as an 64 bit array of FULLs */
long indx; /* index to shuffle slots for seeding */
int i;
/* NOTE: It is OK for pseed == NULL */
/* NOTE: It is OK for pmat100 == NULL */
/*
* firewall
*/
if (pseed != NULL && zisneg(*pseed)) {
math_error("neg seeds for srand reserved for future use");
not_reached();
}
/*
* initialize state if first call
*/
if (!s100.seeded) {
s100 = init_s100;
}
/*
* save the current state to return later
*/
ret = (RAND *)malloc(sizeof(RAND));
if (ret == NULL) {
math_error("cannot allocate RAND state");
not_reached();
}
*ret = s100;
/*
* if call was srand(), just return current state
*/
if (pseed == NULL && pmat100 == NULL) {
return ret;
}
/*
* if call is srand(0), initialize and return quickly
*/
if (pmat100 == NULL && ziszero(*pseed)) {
s100 = init_s100;
return ret;
}
/*
* clear buffered bits, initialize pointers
*/
s100.seeded = 0; /* not seeded now */
s100.j = INIT_J;
s100.k = INIT_K;
s100.bits = 0;
memset(s100.buffer, 0, sizeof(s100.buffer));
/*
* load subtractive table
*
* We will load the default subtractive table unless we are passed a
* matrix. If we are passed a matrix, we will load the first 100
* values mod 2^64 instead.
*/
if (pmat100 == NULL) {
memcpy(s100.slot, def_subtract, sizeof(def_subtract));
} else {
/*
* use the first 100 entries from the matrix arg
*/
if (pmat100->m_size < S100) {
math_error("matrix for srand has < 100 elements");
not_reached();
}
for (v=pmat100->m_table, i=0; i < S100; ++i, ++v) {
/* reject if not integer */
if (v->v_type != V_NUM || qisfrac(v->v_num)) {
math_error("matrix for srand must contain ints");
not_reached();
}
/* load table element from matrix element mod 2^64 */
SLOAD(s100, i, v->v_num->num);
}
}
/*
* scramble the seed in 64 bit chunks
*/
if (pseed != NULL) {
seed.sign = pseed->sign;
seed.len = pseed->len;
seed.v = alloc(seed.len);
zcopyval(*pseed, seed);
randreseed64(seed, &zscram);
zfree(seed);
}
/*
* xor subtractive table with the rehashed lower 64 bits of seed
*/
if (pseed != NULL && !ziszero(zscram)) {
/* xor subtractive table with lower 64 bits of seed */
SMOD64(shufxor, zscram);
for (i=0; i < S100; ++i) {
SXOR(s100, i, shufxor);
}
}
/*
* shuffle subtractive 100 table according to seed, if passed
*/
if (pseed != NULL && zge64b(zscram)) {
/* prepare the seed for subtractive slot shuffling */
zshiftr(zscram, 64);
ztrim(&zscram);
/* shuffle subtractive table */
for (i=S100-1; i > 0 && !zislezero(zscram); --i) {
/* determine what we will swap with */
indx = zdivi(zscram, i+1, &ztmp);
zfree(zscram);
zscram = ztmp;
/* do nothing if swap with itself */
if (indx == i) {
continue;
}
/* swap slot[i] with slot[indx] */
SSWAP(s100, i, indx);
}
zfree(zscram);
} else if (pseed != NULL) {
zfree(zscram);
}
/*
* load the shuffle table
*
* We will generate SHUFCNT entries from the subtractive 100 slots
* and fill the shuffle table in consecutive order.
*/
for (i=0; i < SHUFCNT; ++i) {
/*
* skip values if required
*
* See:
* Knuth's "The Art of Computer Programming -
* Seminumerical Algorithms", Vol 2, 3rd edition (1998),
* Section 3.6, page 188".
*/
if (s100.need_to_skip <= 0) {
int sk;
/* skip the require number of values */
for (sk=0; sk < RAND_SKIP; ++sk) {
/* bump j and k */
if (++s100.j >= S100) {
s100.j = 0;
}
if (++s100.k >= S100) {
s100.k = 0;
}
/* slot[k] -= slot[j] */
SSUB(s100, s100.k, s100.j);
/* NOTE: don't shuffle, no shuffle table yet */
}
/* reset the skip count */
s100.need_to_skip = RAND_CONSEQ_USE;
if (conf->calc_debug & CALCDBG_RAND) {
printf("rand: skipped %d states\n", RAND_SKIP);
}
/* no skip, just decrement use counter */
} else {
--s100.need_to_skip;
}
/* bump j and k */
if (++s100.j >= S100) {
s100.j = 0;
}
if (++s100.k >= S100) {
s100.k = 0;
}
/* slot[k] -= slot[j] */
SSUB(s100, s100.k, s100.j);
/* shuf[i] = slot[k] */
SSHUF(s100, i, s100.k);
}
/*
* note that we are seeded
*/
s100.seeded = 1;
/*
* return the previous state
*/
return ret;
}
/*
* zsetrand - set the s100 generator state
*
* given:
* state - the state to copy
*
* returns:
* previous s100 state
*/
RAND *
zsetrand(CONST RAND *state)
{
RAND *ret; /* previous s100 state */
/* firewall */
if (state == NULL) {
math_error("%s: state NULL", __func__);
not_reached();
}
/*
* initialize state if first call
*/
if (!s100.seeded) {
s100 = init_s100;
}
/*
* save the current state to return later
*/
ret = randcopy(&s100);
/*
* load the new state
*/
s100 = *state;
/*
* return the previous state
*/
return ret;
}
/*
* slotcp - copy up to 64 bits from a 64 bit array of FULLs to some HALFs
*
* We will copy data from an array of FULLs into an array of HALFs.
* The destination within the HALFs is some bit location found in bitstr.
* We will attempt to copy 64 bits, but if there is not enough room
* (bits not yet loaded) in the destination bit string we will transfer
* what we can.
*
* The src slot is 64 bits long and is stored as an array of FULLs.
* When FULL_BITS is 64 the element is 1 FULL, otherwise FULL_BITS
* is 32 bits and the element is 2 FULLs. The most significant bit
* in the array (highest bit in the last FULL of the array) is to
* be transferred to the most significant bit in the destination.
*
* given:
* bitstr - most significant destination bit in a bit string
* src - low order FULL in a 64 bit slot
* count - number of bits to transfer (must be 0 < count <= 64)
*
* returns:
* number of bits transferred
*/
S_FUNC int
slotcp(BITSTR *bitstr, FULL *src, int count)
{
HALF *dh; /* most significant HALF in dest */
int dnxtbit; /* next bit beyond most significant in dh */
int need; /* number of bits we need to transfer */
int ret; /* bits transferred */
/* firewall */
if (src == NULL) {
math_error("%s: src NULL", __func__);
not_reached();
}
/*
* determine how many bits we actually need to transfer
*/
dh = bitstr->loc;
dnxtbit = bitstr->bit+1;
count &= (SBITS-1);
need = (bitstr->len < count) ? bitstr->len : count;
/*
* prepare for the return
*
* Note the final bitstr location after we have moved the
* position down 'need' bits.
*/
bitstr->len -= need;
bitstr->loc -= need / BASEB;
bitstr->bit -= need % BASEB;
if (bitstr->bit < 0) {
--bitstr->loc;
bitstr->bit += BASEB;
}
ret = need;
/*
* deal with aligned copies quickly
*/
if (dnxtbit == BASEB) {
if (need == SBITS) {
#if 2*FULL_BITS == SBITS
*dh-- = (HALF)(src[SLEN-1] >> BASEB);
*dh-- = (HALF)(src[SLEN-1]);
#endif
*dh-- = (HALF)(src[0] >> BASEB);
*dh = (HALF)(src[0]);
#if 2*FULL_BITS == SBITS
} else if (need > FULL_BITS+BASEB) {
*dh-- = (HALF)(src[SLEN-1] >> BASEB);
*dh-- = (HALF)(src[SLEN-1]);
*dh-- = (HALF)(src[0] >> BASEB);
*dh = ((HALF)src[0] &
highhalf[need-FULL_BITS-BASEB]);
} else if (need > FULL_BITS) {
*dh-- = (HALF)(src[SLEN-1] >> BASEB);
*dh-- = (HALF)(src[SLEN-1]);
*dh = ((HALF)(src[0] >> BASEB) &
highhalf[need-FULL_BITS]);
#endif
} else if (need > BASEB) {
*dh-- = (HALF)(src[SLEN-1] >> BASEB);
*dh = ((HALF)(src[SLEN-1]) & highhalf[need-BASEB]);
} else {
*dh = ((HALF)(src[SLEN-1] >> BASEB) & highhalf[need]);
}
return ret;
}
/*
* load the most significant HALF
*/
if (need >= dnxtbit) {
/* fill up the most significant HALF */
*dh-- |= (HALF)(src[SLEN-1] >> (FULL_BITS-dnxtbit));
need -= dnxtbit;
} else if (need > 0) {
/* we exhaust our need before 1st half is filled */
*dh |= (HALF)((src[SLEN-1] >> (FULL_BITS-need)) <<
(dnxtbit-need));
return ret; /* our need has been filled */
} else {
return ret; /* our need has been filled */
}
/*
* load the 2nd most significant HALF
*/
if (need > BASEB) {
/* fill up the 2nd most significant HALF */
*dh-- = (HALF)(src[SLEN-1] >> (BASEB-dnxtbit));
need -= BASEB;
} else if (need > 0) {
/* we exhaust our need before 2nd half is filled */
*dh |= ((HALF)(src[SLEN-1] >> (BASEB-dnxtbit)) &
highhalf[need]);
return ret; /* our need has been filled */
} else {
return ret; /* our need has been filled */
}
/*
* load the 3rd most significant HALF
*
* At this point we know that our 3rd HALF will force us
* to cross into a second FULL for systems with 32 bit FULLs.
* We know this because the aligned case has been previously
* taken care of above.
*
* For systems that have 64 bit FULLs (and 32 bit HALFs) this
* is will be our least significant HALF. We also know that
* the need must be < BASEB.
*/
#if FULL_BITS == SBITS
*dh |= (((HALF)src[0] & highhalf[dnxtbit+need]) << dnxtbit);
#else
if (need > BASEB) {
/* load the remaining bits from the most significant FULL */
*dh-- = ((((HALF)src[SLEN-1] & lowhalf[BASEB-dnxtbit])
<< dnxtbit) | (HALF)(src[0] >> (FULL_BITS-dnxtbit)));
need -= BASEB;
} else if (need > 0) {
/* load the remaining bits from the most significant FULL */
*dh-- |= (((((HALF)src[SLEN-1] & lowhalf[BASEB-dnxtbit])
<< dnxtbit) | (HALF)(src[0] >> (FULL_BITS-dnxtbit))) &
highhalf[need]);
return ret; /* our need has been filled */
} else {
return ret; /* our need has been filled */
}
/*
* load the 4th most significant HALF
*
* At this point, only 32 bit FULLs are operating.
*/
if (need > BASEB) {
/* fill up the 2nd most significant HALF */
*dh-- = (HALF)(src[0] >> (BASEB-dnxtbit));
/* no need TODO: need -= BASEB, because we are nearly done */
} else if (need > 0) {
/* we exhaust our need before 2nd half is filled */
*dh |= ((HALF)(src[0] >> (BASEB-dnxtbit)) &
highhalf[need]);
return ret; /* our need has been filled */
} else {
return ret; /* our need has been filled */
}
/*
* load the 5th and least significant HALF
*
* At this point we know that the need will be satisfied.
*/
*dh |= (((HALF)src[0] & lowhalf[BASEB-dnxtbit]) << dnxtbit);
#endif
return ret; /* our need has been filled */
}
/*
* slotcp64 - copy 64 bits from a 64 bit array of FULLs to some HALFs
*
* We will copy data from an array of FULLs into an array of HALFs.
* The destination within the HALFs is some bit location found in bitstr.
* Unlike slotcp(), this function will always copy 64 bits.
*
* The src slot is 64 bits long and is stored as an array of FULLs.
* When FULL_BITS is 64 this array is 1 FULL, otherwise FULL_BITS
* is 32 bits and the array is 2 FULLs. The most significant bit
* in the array (highest bit in the last FULL of the array) is to
* be transferred to the most significant bit in the destination.
*
* given:
* bitstr - most significant destination bit in a bit string
* src - low order FULL in a 64 bit slot
*
* returns:
* number of bits transferred
*/
S_FUNC void
slotcp64(BITSTR *bitstr, FULL *src)
{
HALF *dh = bitstr->loc; /* most significant HALF in dest */
int dnxtbit = bitstr->bit+1; /* next dh bit beyond most significant */
/* firewall */
if (bitstr == NULL) {
math_error("%s: bitstr NULL", __func__);
not_reached();
}
if (src == NULL) {
math_error("%s: src NULL", __func__);
not_reached();
}
/*
* prepare for the return
*
* Since we are moving the point 64 bits down, we know that
* the bit location (bitstr->bit) will remain the same.
*/
bitstr->len -= SBITS;
bitstr->loc -= SBITS/BASEB;
/*
* deal with aligned copies quickly
*/
if (dnxtbit == BASEB) {
#if 2*FULL_BITS == SBITS
*dh-- = (HALF)(src[SLEN-1] >> BASEB);
*dh-- = (HALF)(src[SLEN-1]);
#endif
*dh-- = (HALF)(src[0] >> BASEB);
*dh = (HALF)(src[0]);
return;
}
/*
* load the most significant HALF
*/
*dh-- |= (HALF)(src[SLEN-1] >> (FULL_BITS-dnxtbit));
/*
* load the 2nd most significant HALF
*/
*dh-- = (HALF)(src[SLEN-1] >> (BASEB-dnxtbit));
/*
* load the 3rd most significant HALF
*
* At this point we know that our 3rd HALF will force us
* to cross into a second FULL for systems with 32 bit FULLs.
* We know this because the aligned case has been previously
* taken care of above.
*
* For systems that have 64 bit FULLs (and 32 bit HALFs) this
* is will be our least significant HALF.
*/
#if FULL_BITS == SBITS
*dh |= (((HALF)src[0] & lowhalf[BASEB-dnxtbit]) << dnxtbit);
#else
/* load the remaining bits from the most significant FULL */
*dh-- = ((((HALF)src[SLEN-1] & lowhalf[BASEB-dnxtbit])
<< dnxtbit) | (HALF)(src[0] >> (FULL_BITS-dnxtbit)));
/*
* load the 4th most significant HALF
*
* At this point, only 32 bit FULLs are operating.
*/
*dh-- = (HALF)(src[0] >> (BASEB-dnxtbit));
/*
* load the 5th and least significant HALF
*
* At this point we know that the need will be satisfied.
*/
*dh |= (((HALF)src[0] & lowhalf[BASEB-dnxtbit]) << dnxtbit);
#endif
}
/*
* zrandskip - skip s s100 bits
*
* given:
* count - number of bits to be skipped
*/
void
zrandskip(long cnt)
{
int indx; /* shuffle entry index */
/*
* initialize state if first call
*/
if (!s100.seeded) {
s100 = init_s100;
}
/*
* skip required bits in the buffer
*/
if (s100.bits > 0 && s100.bits <= cnt) {
/* just toss the buffer bits */
cnt -= s100.bits;
s100.bits = 0;
memset(s100.buffer, 0, sizeof(s100.buffer));
} else if (s100.bits > 0 && s100.bits > cnt) {
/* buffer contains more bits than we need to toss */
#if FULL_BITS == SBITS
s100.buffer[0] <<= cnt;
#else
if (cnt >= FULL_BITS) {
s100.buffer[SLEN-1] = (s100.buffer[0] << cnt);
s100.buffer[0] = 0;
} else {
s100.buffer[SLEN-1] =
((s100.buffer[SLEN-1] << cnt) |
(s100.buffer[0] >> (FULL_BITS-cnt)));
s100.buffer[0] <<= cnt;
}
#endif
s100.bits -= cnt;
return; /* skip need satisfied */
}
/*
* skip 64 bits at a time
*/
while (cnt >= SBITS) {
/*
* skip values if required
*
* NOTE: This skip loop is part of the algorithm, not part
* of the builtin function request.
*
* See:
* Knuth's "The Art of Computer Programming -
* Seminumerical Algorithms", Vol 2, 3rd edition (1998),
* Section 3.6, page 188".
*/
if (s100.need_to_skip <= 0) {
int sk;
/* skip the require number of values */
for (sk=0; sk < RAND_SKIP; ++sk) {
/* bump j and k */
if (++s100.j >= S100) {
s100.j = 0;
}
if (++s100.k >= S100) {
s100.k = 0;
}
/* slot[k] -= slot[j] */
SSUB(s100, s100.k, s100.j);
/* store s100.k into s100.slot[indx] */
indx = SINDX(s100, s100.k);
SSHUF(s100, indx, s100.k);
}
/* reset the skip count */
s100.need_to_skip = RAND_CONSEQ_USE;
if (conf->calc_debug & CALCDBG_RAND) {
printf("rand: skipped %d states\n", RAND_SKIP);
}
/* no skip, just decrement use counter */
} else {
--s100.need_to_skip;
}
/* bump j and k */
if (++s100.j >= S100) {
s100.j = 0;
}
if (++s100.k >= S100) {
s100.k = 0;
}
/* slot[k] -= slot[j] */
SSUB(s100, s100.k, s100.j);
/* we will ignore the output value of s100.slot[indx] */
indx = SINDX(s100, s100.k);
cnt -= SBITS;
/* store s100.k into s100.slot[indx] */
SSHUF(s100, indx, s100.k);
}
/*
* skip the final bits
*/
if (cnt > 0) {
/*
* skip values if required
*
* NOTE: This skip loop is part of the algorithm, not part
* of the builtin function request.
*
* See:
* Knuth's "The Art of Computer Programming -
* Seminumerical Algorithms", Vol 2, 3rd edition (1998),
* Section 3.6, page 188".
*/
if (s100.need_to_skip <= 0) {
int sk;
/* skip the require number of values */
for (sk=0; sk < RAND_SKIP; ++sk) {
/* bump j and k */
if (++s100.j >= S100) {
s100.j = 0;
}
if (++s100.k >= S100) {
s100.k = 0;
}
/* slot[k] -= slot[j] */
SSUB(s100, s100.k, s100.j);
/* store s100.k into s100.slot[indx] */
indx = SINDX(s100, s100.k);
SSHUF(s100, indx, s100.k);
}
/* reset the skip count */
s100.need_to_skip = RAND_CONSEQ_USE;
if (conf->calc_debug & CALCDBG_RAND) {
printf("rand: skipped %d states\n", RAND_SKIP);
}
/* no skip, just decrement use counter */
} else {
--s100.need_to_skip;
}
/* bump j and k */
if (++s100.j >= S100) {
s100.j = 0;
}
if (++s100.k >= S100) {
s100.k = 0;
}
/* slot[k] -= slot[j] */
SSUB(s100, s100.k, s100.j);
/* we will ignore the output value of s100.slot[indx] */
indx = SINDX(s100, s100.k);
/*
* We know the buffer is empty, so fill it
* with any unused bits. Copy SBITS-trans bits
* from slot[indx] into buffer.
*/
s100.bits = (int)(SBITS-cnt);
memcpy(s100.buffer, &s100.shuf[indx*SLEN],
sizeof(s100.buffer));
/*
* shift the buffer bits all the way up to
* the most significant bit
*/
#if FULL_BITS == SBITS
s100.buffer[0] <<= cnt;
#else
if (cnt >= FULL_BITS) {
s100.buffer[SLEN-1] = (s100.buffer[0] << cnt);
s100.buffer[0] = 0;
} else {
s100.buffer[SLEN-1] =
((s100.buffer[SLEN-1] << cnt) |
(s100.buffer[0] >> (FULL_BITS-cnt)));
s100.buffer[0] <<= cnt;
}
#endif
/* store s100.k into s100.slot[indx] */
SSHUF(s100, indx, s100.k);
}
}
/*
* zrand - crank the s100 generator for some bits
*
* We will load the ZVALUE with random bits starting from the
* most significant and ending with the lowest bit in the
* least significant HALF.
*
* given:
* count - number of bits required
* res - where to place the random bits as ZVALUE
*/
void
zrand(long cnt, ZVALUE *res)
{
BITSTR dest; /* destination bit string */
int trans; /* bits transferred */
int indx; /* shuffle entry index */
/* firewall */
if (res == NULL) {
math_error("%s: res NULL", __func__);
not_reached();
}
/*
* firewall
*/
if (cnt <= 0) {
if (cnt == 0) {
/* zero length random number is always 0 */
itoz(0, res);
return;
} else {
math_error("negative zrand bit count");
not_reached();
}
#if LONG_BITS > 32
} else if (cnt > (1L<<31)) {
math_error("huge rand bit count in internal zrand function");
not_reached();
#endif
}
/*
* initialize state if first call
*/
if (!s100.seeded) {
s100 = init_s100;
}
/*
* allocate storage
*/
res->len = (LEN)((cnt+BASEB-1)/BASEB);
res->v = alloc((LEN)((cnt+BASEB-1)/BASEB));
/*
* dest bit string
*/
dest.len = (int)cnt;
dest.loc = res->v + (((cnt+BASEB-1)/BASEB)-1);
dest.bit = (int)((cnt-1) % BASEB);
memset(res->v, 0, (LEN)((cnt+BASEB-1)/BASEB)*sizeof(HALF));
/*
* load from buffer first
*/
if (s100.bits > 0) {
/*
* We know there are only s100.bits in the buffer, so
* transfer as much as we can (treating it as a slot)
* and return the bit transfer count.
*/
trans = slotcp(&dest, s100.buffer, s100.bits);
/*
* If we need to keep bits in the buffer,
* shift the buffer bits all the way up to
* the most significant unused bit.
*/
if (trans < s100.bits) {
#if FULL_BITS == SBITS
s100.buffer[0] <<= trans;
#else
if (trans >= FULL_BITS) {
s100.buffer[SLEN-1] =
(s100.buffer[0] << (trans-FULL_BITS));
s100.buffer[0] = 0;
} else {
s100.buffer[SLEN-1] =
((s100.buffer[SLEN-1] << trans) |
(s100.buffer[0] >> (FULL_BITS-trans)));
s100.buffer[0] <<= trans;
}
#endif
}
/* note that we have fewer bits in the buffer */
s100.bits -= trans;
}
/*
* spin the generator until we need less than 64 bits
*
* The buffer did not contain enough bits, so we crank the
* s100 generator and load then 64 bits at a time.
*/
while (dest.len >= SBITS) {
/*
* skip values if required
*
* See:
* Knuth's "The Art of Computer Programming -
* Seminumerical Algorithms", Vol 2, 3rd edition (1998),
* Section 3.6, page 188".
*/
if (s100.need_to_skip <= 0) {
int sk;
/* skip the require number of values */
for (sk=0; sk < RAND_SKIP; ++sk) {
/* bump j and k */
if (++s100.j >= S100) {
s100.j = 0;
}
if (++s100.k >= S100) {
s100.k = 0;
}
/* slot[k] -= slot[j] */
SSUB(s100, s100.k, s100.j);
/* select slot index to output */
indx = SINDX(s100, s100.k);
/* store s100.k into s100.slot[indx] */
SSHUF(s100, indx, s100.k);
}
/* reset the skip count */
s100.need_to_skip = RAND_CONSEQ_USE;
if (conf->calc_debug & CALCDBG_RAND) {
printf("rand: skipped %d states\n", RAND_SKIP);
}
/* no skip, just decrement use counter */
} else {
--s100.need_to_skip;
}
/* bump j and k */
if (++s100.j >= S100) {
s100.j = 0;
}
if (++s100.k >= S100) {
s100.k = 0;
}
/* slot[k] -= slot[j] */
SSUB(s100, s100.k, s100.j);
/* select slot index to output */
indx = SINDX(s100, s100.k);
/* move up to 64 bits from slot[indx] to dest */
slotcp64(&dest, &s100.shuf[indx*SLEN]);
/* store s100.k into s100.slot[indx] */
SSHUF(s100, indx, s100.k);
}
/*
* spin the generator one last time to fill out the remaining need
*/
if (dest.len > 0) {
/*
* skip values if required
*
* See:
* Knuth's "The Art of Computer Programming -
* Seminumerical Algorithms", Vol 2, 3rd edition (1998),
* Section 3.6, page 188".
*/
if (s100.need_to_skip <= 0) {
int sk;
/* skip the require number of values */
for (sk=0; sk < RAND_SKIP; ++sk) {
/* bump j and k */
if (++s100.j >= S100) {
s100.j = 0;
}
if (++s100.k >= S100) {
s100.k = 0;
}
/* slot[k] -= slot[j] */
SSUB(s100, s100.k, s100.j);
/* select slot index to output */
indx = SINDX(s100, s100.k);
/* store s100.k into s100.slot[indx] */
SSHUF(s100, indx, s100.k);
}
/* reset the skip count */
s100.need_to_skip = RAND_CONSEQ_USE;
if (conf->calc_debug & CALCDBG_RAND) {
printf("rand: skipped %d states\n", RAND_SKIP);
}
/* no skip, just decrement use counter */
} else {
--s100.need_to_skip;
}
/* bump j and k */
if (++s100.j >= S100) {
s100.j = 0;
}
if (++s100.k >= S100) {
s100.k = 0;
}
/* slot[k] -= slot[j] */
SSUB(s100, s100.k, s100.j);
/* select slot index to output */
indx = SINDX(s100, s100.k);
/* move up to 64 bits from slot[indx] to dest */
trans = slotcp(&dest, &s100.shuf[indx*SLEN], dest.len);
/* buffer up unused bits if we are done */
if (trans != SBITS) {
/*
* We know the buffer is empty, so fill it
* with any unused bits. Copy SBITS-trans bits
* from slot[indx] into buffer.
*/
s100.bits = SBITS-trans;
memcpy(s100.buffer, &s100.shuf[indx*SLEN],
sizeof(s100.buffer));
/*
* shift the buffer bits all the way up to
* the most significant bit
*/
#if FULL_BITS == SBITS
s100.buffer[0] <<= trans;
#else
if (trans >= FULL_BITS) {
s100.buffer[SLEN-1] =
(s100.buffer[0] << (trans-FULL_BITS));
s100.buffer[0] = 0;
} else {
s100.buffer[SLEN-1] =
((s100.buffer[SLEN-1] << trans) |
(s100.buffer[0] >> (FULL_BITS-trans)));
s100.buffer[0] <<= trans;
}
#endif
}
/* store s100.k into s100.slot[indx] */
SSHUF(s100, indx, s100.k);
}
res->sign = 0;
ztrim(res);
}
/*
* zrandrange - generate an s100 random value in the range [low, beyond)
*
* given:
* low - low value of range
* beyond - beyond end of range
* res - where to place the random bits as ZVALUE
*/
void
zrandrange(CONST ZVALUE low, CONST ZVALUE beyond, ZVALUE *res)
{
ZVALUE range; /* beyond-low */
ZVALUE rval; /* random value [0, 2^bitlen) */
ZVALUE rangem1; /* range - 1 */
long bitlen; /* smallest power of 2 >= diff */
/* firewall */
if (res == NULL) {
math_error("%s: res NULL", __func__);
not_reached();
}
/*
* firewall
*/
if (zrel(low, beyond) >= 0) {
math_error("srand low range >= beyond range");
not_reached();
}
/*
* determine the size of the random number needed
*/
zsub(beyond, low, &range);
if (zisone(range)) {
zfree(range);
*res = low;
return;
}
zsub(range, _one_, &rangem1);
bitlen = 1+zhighbit(rangem1);
zfree(rangem1);
/*
* generate a random value between [0, diff)
*
* We will not fall into the trap of thinking that we can simply take
* a value mod 'range'. Consider the case where 'range' is '80'
* and we are given pseudo-random numbers [0,100). If we took them
* mod 80, then the numbers [0,20) would be produced more frequently
* because the numbers [81,100) mod 80 wrap back into [0,20).
*/
rval.v = NULL;
do {
if (rval.v != NULL) {
zfree(rval);
}
zrand(bitlen, &rval);
} while (zrel(rval, range) >= 0);
/*
* add in low value to produce the range [0+low, diff+low)
* which is the range [low, beyond)
*/
zadd(rval, low, res);
zfree(rval);
zfree(range);
}
/*
* irand - generate an s100 random long in the range [0, s)
*
* given:
* s - limit of the range
*
* returns:
* random long in the range [0, s)
*/
long
irand(long s)
{
ZVALUE z1, z2;
long res;
if (s <= 0) {
math_error("Non-positive argument for irand()");
not_reached();
}
if (s == 1)
return 0;
itoz(s, &z1);
zrandrange(_zero_, z1, &z2);
res = ztoi(z2);
zfree(z1);
zfree(z2);
return res;
}
/*
* randcopy - make a copy of an s100 state
*
* given:
* state - the state to copy
*
* returns:
* a malloced copy of the state
*/
RAND *
randcopy(CONST RAND *state)
{
RAND *ret; /* return copy of state */
/* firewall */
if (state == NULL) {
math_error("%s: state NULL", __func__);
not_reached();
}
/*
* malloc state
*/
ret = (RAND *)malloc(sizeof(RAND));
if (ret == NULL) {
math_error("can't allocate RAND state");
not_reached();
}
memcpy(ret, state, sizeof(RAND));
/*
* return copy
*/
return ret;
}
/*
* randfree - free an s100 state
*
* given:
* state - the state to free
*/
void
randfree(RAND *state)
{
/* free it */
free(state);
}
/*
* randcmp - compare two s100 states
*
* given:
* s1 - first state to compare
* s2 - second state to compare
*
* return:
* true if states differ
*/
bool
randcmp(CONST RAND *s1, CONST RAND *s2)
{
/* firewall */
if (s1 == NULL) {
math_error("%s: s1 NULL", __func__);
not_reached();
}
if (s2 == NULL) {
math_error("%s: s2 NULL", __func__);
not_reached();
}
/*
* assume uninitialized state == the default seeded state
*/
if (!s1->seeded) {
if (!s2->seeded) {
/* uninitialized == uninitialized */
return false;
} else {
/* uninitialized only equals default state */
return randcmp(s2, &init_s100);
}
} else if (!s2->seeded) {
/* uninitialized only equals default state */
return randcmp(s1, &init_s100);
}
/* compare states */
return (bool)(memcmp(s1, s2, sizeof(RAND)) != 0);
}
/*
* randprint - print an s100 state
*
* given:
* state - state to print
* flags - print flags passed from printvalue() in value.c
*/
/*ARGSUSED*/
void
randprint(CONST RAND *UNUSED(state), int UNUSED(flags))
{
/* NOTE: It is OK for state == NULL */
math_str("RAND state");
}