Files
calc/shs.c
2017-05-21 15:38:50 -07:00

728 lines
19 KiB
C

/*
* shs - old Secure Hash Standard
*
**************************************************************************
* This version implements the old Secure Hash Algorithm specified by *
* (FIPS Pub 180). This version is kept for backward compatibility with *
* shs version 2.10.1. See the shs utility for the new standard. *
**************************************************************************
*
* Written 2 September 1992, Peter C. Gutmann.
*
* This file was Modified/Re-written by:
*
* Landon Curt Noll
* http://www.isthe.com/chongo/
*
* chongo <was here> /\../\
*
* This code has been placed in the public domain. Please do not
* copyright this code.
*
* LANDON CURT NOLL DISCLAIMS ALL WARRANTIES WITH REGARD TO
* THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MER-
* CHANTABILITY AND FITNESS. IN NO EVENT SHALL LANDON CURT
* NOLL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL
* DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
* USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
* NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* Based on Version 2.11 (09 Mar 1995) from Landon Curt Noll's
* (http://www.isthe.com/chongo/) shs hash program.
*
* @(#) $Revision: 29.4 $
* @(#) $Id: shs.c,v 29.4 2007/02/11 10:19:14 chongo Exp $
* @(#) $Source: /usr/local/src/cmd/calc/RCS/shs.c,v $
*
* This file is not covered under version 2.1 of the GNU LGPL.
*
****
*
* The SHS algorithm hashes 32 bit unsigned values, 16 at a time.
* It further specifies that strings are to be converted into
* 32 bit values in BIG ENDIAN order. That is on little endian
* machines, strings are byte swapped into BIG ENDIAN order before
* they are taken 32 bit at a time. Even so, when hashing 32 bit
* numeric values the byte order DOES NOT MATTER because the
* algorithm works off of their numeric value, not their byte order.
*
* In calc, we want to hash equal values to the same hash value.
* For the most part, we will be hashing arrays of HALF's instead
* of strings. For this reason, the functions below do not byte
* swap on little endian machines automatically. Instead it is
* the responsibility of the caller of the internal SHS function
* to ensure that the values are already in the canonical 32 bit
* numeric value form.
*/
#include <stdio.h>
#include "longbits.h"
#include "align32.h"
#include "endian_calc.h"
#include "value.h"
#include "hash.h"
#include "shs.h"
/*
* The SHS f()-functions. The f1 and f3 functions can be optimized
* to save one boolean operation each - thanks to Rich Schroeppel,
* rcs@cs.arizona.edu for discovering this.
*
* f1: ((x&y) | (~x&z)) == (z ^ (x&(y^z)))
* f3: ((x&y) | (x&z) | (y&z)) == ((x&y) | (z&(x|y)))
*/
#define f1(x,y,z) (z ^ (x&(y^z))) /* Rounds 0-19 */
#define f2(x,y,z) (x^y^z) /* Rounds 20-39 */
#define f3(x,y,z) ((x&y) | (z&(x|y))) /* Rounds 40-59 */
#define f4(x,y,z) (x^y^z) /* Rounds 60-79 */
/* The SHS Mysterious Constants */
#define K1 0x5A827999L /* Rounds 0-19 */
#define K2 0x6ED9EBA1L /* Rounds 20-39 */
#define K3 0x8F1BBCDCL /* Rounds 40-59 */
#define K4 0xCA62C1D6L /* Rounds 60-79 */
/* SHS initial values */
#define h0init 0x67452301L
#define h1init 0xEFCDAB89L
#define h2init 0x98BADCFEL
#define h3init 0x10325476L
#define h4init 0xC3D2E1F0L
/* 32-bit rotate left - kludged with shifts */
#define LEFT_ROT(X,n) (((X)<<(n)) | ((X)>>(32-(n))))
/*
* The initial expanding function. The hash function is defined over an
* 80-word expanded input array W, where the first 16 are copies of the input
* data, and the remaining 64 are defined by
*
* W[i] = W[i-16] ^ W[i-14] ^ W[i-8] ^ W[i-3]
*
* This implementation generates these values on the fly in a circular
* buffer - thanks to Colin Plumb (colin@nyx10.cs.du.edu) for this
* optimization.
*/
#define exor(W,i) (W[i&15] ^= (W[(i-14)&15] ^ W[(i-8)&15] ^ W[(i-3)&15]))
/*
* The prototype SHS sub-round. The fundamental sub-round is:
*
* a' = e + LEFT_ROT(a,5) + f(b,c,d) + k + data;
* b' = a;
* c' = LEFT_ROT(b,30);
* d' = c;
* e' = d;
*
* but this is implemented by unrolling the loop 5 times and renaming the
* variables ( e, a, b, c, d ) = ( a', b', c', d', e' ) each iteration.
* This code is then replicated 20 times for each of the 4 functions, using
* the next 20 values from the W[] array each time.
*/
#define subRound(a, b, c, d, e, f, k, data) \
(e += LEFT_ROT(a,5) + f(b,c,d) + k + data, b = LEFT_ROT(b,30))
/*
* forward declarations
*/
S_FUNC void shsInit(HASH*);
S_FUNC void shsTransform(USB32*, USB32*);
S_FUNC void shsUpdate(HASH*, USB8*, USB32);
S_FUNC void shsFinal(HASH*);
S_FUNC void shs_chkpt(HASH*);
S_FUNC void shs_note(int, HASH*);
S_FUNC void shs_type(int, HASH*);
void shs_init_state(HASH*);
S_FUNC ZVALUE shs_final_state(HASH*);
S_FUNC int shs_cmp(HASH*, HASH*);
S_FUNC void shs_print(HASH*);
/*
* shsInit - initialize the SHS state
*/
S_FUNC void
shsInit(HASH *state)
{
SHS_INFO *dig = &state->h_union.h_shs; /* digest state */
/* Set the h-vars to their initial values */
dig->digest[0] = h0init;
dig->digest[1] = h1init;
dig->digest[2] = h2init;
dig->digest[3] = h3init;
dig->digest[4] = h4init;
/* Initialise bit count */
dig->countLo = 0;
dig->countHi = 0;
dig->datalen = 0;
}
/*
* shsTransform - perform the SHS transformatio
*
* Note that this code, like MD5, seems to break some optimizing compilers.
* It may be necessary to split it into sections, eg based on the four
* subrounds. One may also want to roll each subround into a loop.
*/
S_FUNC void
shsTransform(USB32 *digest, USB32 *W)
{
USB32 A, B, C, D, E; /* Local vars */
/* Set up first buffer and local data buffer */
A = digest[0];
B = digest[1];
C = digest[2];
D = digest[3];
E = digest[4];
/* Heavy mangling, in 4 sub-rounds of 20 interations each. */
subRound(A, B, C, D, E, f1, K1, W[ 0]);
subRound(E, A, B, C, D, f1, K1, W[ 1]);
subRound(D, E, A, B, C, f1, K1, W[ 2]);
subRound(C, D, E, A, B, f1, K1, W[ 3]);
subRound(B, C, D, E, A, f1, K1, W[ 4]);
subRound(A, B, C, D, E, f1, K1, W[ 5]);
subRound(E, A, B, C, D, f1, K1, W[ 6]);
subRound(D, E, A, B, C, f1, K1, W[ 7]);
subRound(C, D, E, A, B, f1, K1, W[ 8]);
subRound(B, C, D, E, A, f1, K1, W[ 9]);
subRound(A, B, C, D, E, f1, K1, W[10]);
subRound(E, A, B, C, D, f1, K1, W[11]);
subRound(D, E, A, B, C, f1, K1, W[12]);
subRound(C, D, E, A, B, f1, K1, W[13]);
subRound(B, C, D, E, A, f1, K1, W[14]);
subRound(A, B, C, D, E, f1, K1, W[15]);
subRound(E, A, B, C, D, f1, K1, exor(W,16));
subRound(D, E, A, B, C, f1, K1, exor(W,17));
subRound(C, D, E, A, B, f1, K1, exor(W,18));
subRound(B, C, D, E, A, f1, K1, exor(W,19));
subRound(A, B, C, D, E, f2, K2, exor(W,20));
subRound(E, A, B, C, D, f2, K2, exor(W,21));
subRound(D, E, A, B, C, f2, K2, exor(W,22));
subRound(C, D, E, A, B, f2, K2, exor(W,23));
subRound(B, C, D, E, A, f2, K2, exor(W,24));
subRound(A, B, C, D, E, f2, K2, exor(W,25));
subRound(E, A, B, C, D, f2, K2, exor(W,26));
subRound(D, E, A, B, C, f2, K2, exor(W,27));
subRound(C, D, E, A, B, f2, K2, exor(W,28));
subRound(B, C, D, E, A, f2, K2, exor(W,29));
subRound(A, B, C, D, E, f2, K2, exor(W,30));
subRound(E, A, B, C, D, f2, K2, exor(W,31));
subRound(D, E, A, B, C, f2, K2, exor(W,32));
subRound(C, D, E, A, B, f2, K2, exor(W,33));
subRound(B, C, D, E, A, f2, K2, exor(W,34));
subRound(A, B, C, D, E, f2, K2, exor(W,35));
subRound(E, A, B, C, D, f2, K2, exor(W,36));
subRound(D, E, A, B, C, f2, K2, exor(W,37));
subRound(C, D, E, A, B, f2, K2, exor(W,38));
subRound(B, C, D, E, A, f2, K2, exor(W,39));
subRound(A, B, C, D, E, f3, K3, exor(W,40));
subRound(E, A, B, C, D, f3, K3, exor(W,41));
subRound(D, E, A, B, C, f3, K3, exor(W,42));
subRound(C, D, E, A, B, f3, K3, exor(W,43));
subRound(B, C, D, E, A, f3, K3, exor(W,44));
subRound(A, B, C, D, E, f3, K3, exor(W,45));
subRound(E, A, B, C, D, f3, K3, exor(W,46));
subRound(D, E, A, B, C, f3, K3, exor(W,47));
subRound(C, D, E, A, B, f3, K3, exor(W,48));
subRound(B, C, D, E, A, f3, K3, exor(W,49));
subRound(A, B, C, D, E, f3, K3, exor(W,50));
subRound(E, A, B, C, D, f3, K3, exor(W,51));
subRound(D, E, A, B, C, f3, K3, exor(W,52));
subRound(C, D, E, A, B, f3, K3, exor(W,53));
subRound(B, C, D, E, A, f3, K3, exor(W,54));
subRound(A, B, C, D, E, f3, K3, exor(W,55));
subRound(E, A, B, C, D, f3, K3, exor(W,56));
subRound(D, E, A, B, C, f3, K3, exor(W,57));
subRound(C, D, E, A, B, f3, K3, exor(W,58));
subRound(B, C, D, E, A, f3, K3, exor(W,59));
subRound(A, B, C, D, E, f4, K4, exor(W,60));
subRound(E, A, B, C, D, f4, K4, exor(W,61));
subRound(D, E, A, B, C, f4, K4, exor(W,62));
subRound(C, D, E, A, B, f4, K4, exor(W,63));
subRound(B, C, D, E, A, f4, K4, exor(W,64));
subRound(A, B, C, D, E, f4, K4, exor(W,65));
subRound(E, A, B, C, D, f4, K4, exor(W,66));
subRound(D, E, A, B, C, f4, K4, exor(W,67));
subRound(C, D, E, A, B, f4, K4, exor(W,68));
subRound(B, C, D, E, A, f4, K4, exor(W,69));
subRound(A, B, C, D, E, f4, K4, exor(W,70));
subRound(E, A, B, C, D, f4, K4, exor(W,71));
subRound(D, E, A, B, C, f4, K4, exor(W,72));
subRound(C, D, E, A, B, f4, K4, exor(W,73));
subRound(B, C, D, E, A, f4, K4, exor(W,74));
subRound(A, B, C, D, E, f4, K4, exor(W,75));
subRound(E, A, B, C, D, f4, K4, exor(W,76));
subRound(D, E, A, B, C, f4, K4, exor(W,77));
subRound(C, D, E, A, B, f4, K4, exor(W,78));
subRound(B, C, D, E, A, f4, K4, exor(W,79));
/* Build message digest */
digest[0] += A;
digest[1] += B;
digest[2] += C;
digest[3] += D;
digest[4] += E;
}
/*
* shsUpdate - update SHS with arbitrary length data
*/
S_FUNC void
shsUpdate(HASH *state, USB8 *buffer, USB32 count)
{
SHS_INFO *dig = &state->h_union.h_shs; /* digest state */
USB32 datalen = dig->datalen;
USB32 cpylen;
#if CALC_BYTE_ORDER == LITTLE_ENDIAN
unsigned int i;
#endif
/*
* Update the full count, even if some of it is buffered for later
*/
SHSCOUNT(dig, count);
/* determine the size we need to copy */
cpylen = SHS_CHUNKSIZE - datalen;
/* case: new data will not fill the buffer */
if (cpylen > count) {
memcpy((char *)dig->data + datalen,
(char *)buffer, count);
dig->datalen = datalen+count;
return;
}
/* case: buffer will be filled */
memcpy((char *)dig->data + datalen, (char *)buffer, cpylen);
/*
* process data in SHS_CHUNKSIZE chunks
*/
for (;;) {
#if CALC_BYTE_ORDER == LITTLE_ENDIAN
if (state->bytes) {
for (i=0; i < SHS_CHUNKWORDS; ++i) {
SWAP_B8_IN_B32(dig->data+i, dig->data+i);
}
}
#endif
shsTransform(dig->digest, dig->data);
buffer += cpylen;
count -= cpylen;
if (count < SHS_CHUNKSIZE)
break;
cpylen = SHS_CHUNKSIZE;
memcpy((char *) dig->data, (char *) buffer, cpylen);
}
/*
* Handle any remaining bytes of data.
*/
if (count > 0) {
memcpy((char *)dig->data, (char *)buffer, count);
}
dig->datalen = count;
}
/*
* shsFinal - perform final SHS transforms
*
* At this point we have less than a full chunk of data remaining
* (and possibly no data) in the shs state data buffer.
*
* First we append a final 0x80 byte.
*
* Next if we have more than 56 bytes, we will zero fill the remainder
* of the chunk, transform and then zero fill the first 56 bytes.
* If we have 56 or fewer bytes, we will zero fill out to the 56th
* chunk byte. Regardless, we wind up with 56 bytes data.
*
* Finally we append the 64 bit length on to the 56 bytes of data
* remaining. This final chunk is transformed.
*/
S_FUNC void
shsFinal(HASH *state)
{
SHS_INFO *dig = &state->h_union.h_shs; /* digest state */
long count = (long)(dig->datalen);
USB32 lowBitcount;
USB32 highBitcount;
USB8 *data = (USB8 *) dig->data;
#if CALC_BYTE_ORDER == LITTLE_ENDIAN
unsigned int i;
#endif
/*
* If processing bytes, set the first byte of padding to 0x80.
* if processing words: on a big-endian machine set the first
* byte of padding to 0x80, on a little-endian machine set
* the first four bytes to 0x00000080
* This is safe since there is always at least one byte or word free
*/
/* Pad to end of chunk */
memset(data + count, 0, SHS_CHUNKSIZE - count);
#if CALC_BYTE_ORDER == LITTLE_ENDIAN
if (state->bytes) {
data[count] = 0x80;
for (i=0; i < SHS_CHUNKWORDS; ++i) {
SWAP_B8_IN_B32(dig->data+i, dig->data+i);
}
} else {
if (count % 4) {
math_error("This should not happen in shsFinal");
/*NOTREACHED*/
}
data[count + 3] = 0x80;
}
#else
data[count] = 0x80;
#endif
if (count >= SHS_CHUNKSIZE-8) {
shsTransform(dig->digest, dig->data);
/* Now fill another chunk with 56 bytes */
memset(data, 0, SHS_CHUNKSIZE-8);
}
/*
* Append length in bits and transform
*
* We assume that bit count is a multiple of 8 because we have
* only processed full bytes.
*/
highBitcount = dig->countHi;
lowBitcount = dig->countLo;
dig->data[SHS_HIGH] = (highBitcount << 3) | (lowBitcount >> 29);
dig->data[SHS_LOW] = (lowBitcount << 3);
shsTransform(dig->digest, dig->data);
dig->datalen = 0;
}
/*
* shs_chkpt - checkpoint a SHS state
*
* given:
* state the state to checkpoint
*
* This function will ensure that the the hash chunk buffer is empty.
* Any partially hashed data will be padded out with 0's and hashed.
*/
S_FUNC void
shs_chkpt(HASH *state)
{
SHS_INFO *dig = &state->h_union.h_shs; /* digest state */
#if CALC_BYTE_ORDER == LITTLE_ENDIAN
unsigned int i;
#endif
/*
* checkpoint if partial buffer exists
*/
if (dig->datalen > 0) {
/* pad to the end of the chunk */
memset((USB8 *)dig->data + dig->datalen, 0,
SHS_CHUNKSIZE-dig->datalen);
#if CALC_BYTE_ORDER == LITTLE_ENDIAN
if (state->bytes) {
for (i=0; i < SHS_CHUNKWORDS; ++i) {
SWAP_B8_IN_B32(dig->data+i, dig->data+i);
}
}
#endif
/* transform padded chunk */
shsTransform(dig->digest, dig->data);
SHSCOUNT(dig, SHS_CHUNKSIZE-dig->datalen);
/* empty buffer */
dig->datalen = 0;
}
return;
}
/*
* shs_note - note a special value
*
* given:
* state the state to hash
* special a special value (SHS_HASH_XYZ) to note
*
* This function will note that a special value is about to be hashed.
* Types include negative values, complex values, division, zero numeric
* and array of HALFs.
*/
S_FUNC void
shs_note(int special, HASH *state)
{
SHS_INFO *dig = &state->h_union.h_shs; /* digest state */
unsigned int i;
/*
* change state to reflect a special value
*/
dig->digest[0] ^= special;
for (i=1; i < SHS_DIGESTWORDS; ++i) {
dig->digest[i] ^= (special + dig->digest[i-1] + i);
}
return;
}
/*
* shs_type - note a VALUE type
*
* given:
* state the state to hash
* type the VALUE type to note
*
* This function will note that a type of value is about to be hashed.
* The type of a VALUE will be noted. For purposes of hash comparison,
* we will do nothing with V_NUM and V_COM so that the other functions
* can hash to the same value regardless of if shs_value() is called
* or not. We also do nothing with V_STR so that a hash of a string
* will produce the same value as the standard hash function.
*/
S_FUNC void
shs_type(int type, HASH *state)
{
SHS_INFO *dig = &state->h_union.h_shs; /* digest state */
unsigned int i;
/*
* ignore NUMBER and COMPLEX
*/
if (type == V_NUM || type == V_COM || type == V_STR) {
return;
}
/*
* change state to reflect a VALUE type
*/
dig->digest[0] += type;
for (i=1; i < SHS_DIGESTWORDS; ++i) {
dig->digest[i] += ((type+i) ^ dig->digest[i-1]);
}
return;
}
/*
* shs_init_state - initialize a hash state structure for this hash
*
* given:
* state - pointer to the hfunction element to initialize
*/
void
shs_init_state(HASH *state)
{
/*
* initalize state
*/
state->hashtype = SHS_HASH_TYPE;
state->bytes = TRUE;
state->update = shsUpdate;
state->chkpt = shs_chkpt;
state->note = shs_note;
state->type = shs_type;
state->final = shs_final_state;
state->cmp = shs_cmp;
state->print = shs_print;
state->base = SHS_BASE;
state->chunksize = SHS_CHUNKSIZE;
state->unionsize = sizeof(SHS_INFO);
/*
* perform the internal init function
*/
memset((void *)&(state->h_union.h_shs), 0, sizeof(SHS_INFO));
shsInit(state);
return;
}
/*
* shs_final_state - complete hash state and return a ZVALUE
*
* given:
* state the state to complete and convert
*
* returns:
* a ZVALUE representing the state
*/
S_FUNC ZVALUE
shs_final_state(HASH *state)
{
SHS_INFO *dig = &state->h_union.h_shs; /* digest state */
ZVALUE ret; /* return ZVALUE of completed hash state */
int i;
/*
* malloc and initialize if state is NULL
*/
if (state == NULL) {
state = (HASH *)malloc(sizeof(HASH));
if (state == NULL) {
math_error("cannot malloc HASH");
/*NOTREACHED*/
}
shs_init_state(state);
}
/*
* complete the hash state
*/
shsFinal(state);
/*
* allocate storage for ZVALUE
*/
ret.len = SHS_DIGESTSIZE/sizeof(HALF);
ret.sign = 0;
ret.v = alloc(ret.len);
/*
* load ZVALUE
*/
#if BASEB == 16 && CALC_BYTE_ORDER == LITTLE_ENDIAN
for (i=0; i < ret.len; i+=2) {
ret.v[ret.len-i-1] = ((HALF*)dig->digest)[i+1];
ret.v[ret.len-i-2] = ((HALF*)dig->digest)[i];
}
#else
for (i=0; i < ret.len; ++i) {
ret.v[ret.len-i-1] = ((HALF*)dig->digest)[i];
}
#endif
ztrim(&ret);
/*
* return ZVALUE
*/
return ret;
}
/*
* shs_cmp - compare two hash states
*
* given:
* a first hash state
* b second hash state
*
* returns:
* TRUE => hash states are different
* FALSE => hash states are the same
*/
S_FUNC int
shs_cmp(HASH *a, HASH *b)
{
/*
* firewall and quick check
*/
if (a == b) {
/* pointers to the same object */
return FALSE;
}
if (a == NULL || b == NULL) {
/* one is NULL, so they differ */
return TRUE;
}
/*
* compare data-reading modes
*/
if (a->bytes != b->bytes)
return TRUE;
/*
* compare bit counts
*/
if (a->h_union.h_shs.countLo != b->h_union.h_shs.countLo ||
a->h_union.h_shs.countHi != b->h_union.h_shs.countHi) {
/* counts differ */
return TRUE;
}
/*
* compare pending buffers
*/
if (a->h_union.h_shs.datalen != b->h_union.h_shs.datalen) {
/* buffer lengths differ */
return TRUE;
}
if (memcmp((USB8*)a->h_union.h_shs.data,
(USB8*)b->h_union.h_shs.data,
a->h_union.h_shs.datalen) != 0) {
/* buffer contents differ */
return TRUE;
}
/*
* compare digest
*/
return (memcmp((USB8*)(a->h_union.h_shs.digest),
(USB8*)(b->h_union.h_shs.digest),
SHS_DIGESTSIZE) != 0);
}
/*
* shs_print - print a hash state
*
* given:
* state the hash state to print
*/
S_FUNC void
shs_print(HASH *state)
{
/*
* form the hash value
*/
if (conf->calc_debug & CALCDBG_HASH_STATE) {
char buf[DEBUG_SIZE+1]; /* hash value buffer */
/*
* print numeric debug value
*
* NOTE: This value represents only the hash value as of
* the last full update or finalization. Thus it
* may NOT be the actual hash value.
*/
sprintf(buf,
"sha: 0x%08x%08x%08x%08x%08x data: %d octets",
(int)state->h_union.h_shs.digest[0],
(int)state->h_union.h_shs.digest[1],
(int)state->h_union.h_shs.digest[2],
(int)state->h_union.h_shs.digest[3],
(int)state->h_union.h_shs.digest[4],
(int)state->h_union.h_shs.datalen);
math_str(buf);
} else {
math_str("sha hash state");
}
return;
}