Files
calc/cal/palindrome.cal
Landon Curt Noll b7a42a9d3d Optimize palindrome.cal
In cal/palindrome.cal:

Improved the performace of nextpal() and nextprimepal()
by adding and using palnextpal().

Improved the performace of prevpal() and prevprimepal()
by adding and using palprevpal().

Test showed that runs that took 0.0530 cpu seconds can
now be done in as little as 0.0327 cpu seconds.
2021-11-07 14:15:19 -08:00

642 lines
14 KiB
Plaintext

/*
* palindrome - palindrome utilities
*
* Copyright (C) 2021 Landon Curt Noll
*
* Calc is open software; you can redistribute it and/or modify it under
* the terms of the version 2.1 of the GNU Lesser General Public License
* as published by the Free Software Foundation.
*
* Calc is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General
* Public License for more details.
*
* A copy of version 2.1 of the GNU Lesser General Public License is
* distributed with calc under the filename COPYING-LGPL. You should have
* received a copy with calc; if not, write to Free Software Foundation, Inc.
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Under source code control: 2021/11/06 14:35:37
* File existed as early as: before 2021
*
* Share and enjoy! :-) http://www.isthe.com/chongo/tech/comp/calc/
*/
/*
* digitof - return the a digit of a value
*
* NOTE: We assume base 10 digits and place 1 is the units digit.
*
* given:
* val value to find a digit of
* place digit place
*
* returns:
* value (>= 0 and < 10) that is the place-th digit of val
* or 0 if place is not a digit of val
*/
define digitof(val, place)
{
local d; /* length of val in digits */
/* determine length */
d = digits(val);
/* firewall - return 0 if digit place doesn't exist */
if (place < 1 || place > d) {
return 0;
}
/* return the place-th digit of val as a single digit */
return (val // (10^(place-1))) % 10;
}
/*
* copalplace - determine the other place in a palindrome
*
* NOTE: We assume base 10 digits and place 1 is the units digit.
*
* given:
* d digits of a value
* place digit place
*
* returns:
* given palindrome val, the other digit paired with place
* or 0 if place is not a digit of val
*/
define copalplace(d, place)
{
/* firewall - return 0 if digit place doesn't exist */
if (d < 1 || place < 1 || place > d) {
return 0;
}
/* return digit coplace */
return d+1 - place;
}
/*
* upperhalf - return the upper half of a palindrome
*
* NOTE: We assume base 10 digits and place 1 is the units digit.
*
* NOTE: When the value has an odd number of digits, the upper half
* includes the middle digit.
*
* given:
* val a value
*
* returns:
* the upper half digits of a value
*/
define upperhalf(val)
{
local d; /* length of val in digits */
local halfd; /* length of upper hand of val */
/* determine length */
d = digits(val);
halfd = d // 2;
/* return upper half */
return (val // 10^halfd);
}
/*
* mkpal - make a value into a palindrome
*
* NOTE: We assume base 10 digits and place 1 is the units digit.
*
* given:
* val a value
*
* returns:
* val as a palindrome with lower half being reverse digits of val
*/
define mkpal(val)
{
local d; /* length of val in digits */
local i; /* counter */
local ret; /* palindrome being formed */
/* determine length */
d = digits(val);
/* insert digits in reverse order at the bottom */
ret = val;
for (i=0; i < d; ++i) {
ret = ret*10 + digit(val, i);
}
return ret;
}
/*
* mkpalmiddigit - make a value into a palindrome with a middle digit
*
* NOTE: We assume base 10 digits and place 1 is the units digit.
*
* given:
* val a value
* digit the digit to put into the middle of the palindrome
*
* returns:
* val as a palindrome with lower half being reverse digits of val
* and digit as a middle digit
*/
define mkpalmiddigit(val, digit)
{
local d; /* length of val in digits */
local i; /* counter */
local ret; /* palindrome being formed */
/* determine length */
d = digits(val);
/* insert digits in reverse order at the bottom */
ret = val*10 + digit;
for (i=0; i < d; ++i) {
ret = ret*10 + digit(val, i);
}
return ret;
}
/*
* ispal - determine if a value is a palindrome
*
* NOTE: We assume base 10 digits and place 1 is the units digit.
*
* given:
* val a value
*
* returns:
* 1 ==> val is a palindrome
* 0 ==> val is NOT a palindrome
*/
define ispal(val)
{
local half; /* upper half of digits of val */
local digit; /* middle digit */
/* case: val has an even number of digits */
if (iseven(digits(val))) {
/* test palindrome-ness */
return (val == mkpal(upperhalf(val)));
/* case: val can an odd number of digits */
} else {
/* test palindrome-ness */
half = upperhalf(val);
digit = half % 10;
half //= 10;
return (val == mkpalmiddigit(half, digit));
}
}
/*
* palnextpal - return next palindrome from a known palindrome
*
* NOTE: We assume base 10 digits and place 1 is the units digit.
*
* given:
* pal a palindrome
*
* returns:
* next palindrome > pal
*/
define palnextpal(pal)
{
local paldigits; /* digits in pal */
local half; /* upper half of newval */
local newhalf; /* half+1 */
local newpal; /* new palindrome */
/* case: negative palindrome */
if (pal < 0) {
return -(palprevpal(-pal));
}
/*
* start with upper half
*/
half = upperhalf(pal);
/*
* prep to find a larger palindrome
*/
newhalf = half+1;
/*
* form palindrome from new upper half
*
* We need to watch for the corner case where changing the
* half changes the number of digits as this will impact
* or even/odd number of digits processing.
*/
paldigits = digits(pal);
if (digits(newhalf) == digits(half)) {
/* no change in half digits: process as normal */
if (iseven(paldigits)) {
newpal = mkpal(newhalf);
} else {
newpal = mkpalmiddigit(newhalf // 10, newhalf % 10);
}
} else {
/* change in half digits: process as opposite */
if (iseven(paldigits)) {
newpal = mkpalmiddigit(newhalf // 10, newhalf % 10);
} else {
newpal = mkpal(newhalf);
}
}
/*
* return the new palindrome
*/
return newpal;
}
/*
* nextpal - return next palindrome from a value
*
* NOTE: We assume base 10 digits and place 1 is the units digit.
*
* given:
* val a value
*
* returns:
* next palindrome > val
*/
define nextpal(val)
{
local newval; /* val+1 */
local newvaldigits; /* digits in newval */
local half; /* upper half of newval */
local pal; /* palindrome test value */
local newpal; /* new palindrome */
/* case: negative value */
if (val < 0) {
return -(prevpal(-val));
}
/*
* start looking from a larger value
*/
newval = val+1;
newvaldigits = digits(newval);
/* case: single digit palindrome */
if (newvaldigits < 2) {
return newval;
}
/*
* start with next upper half
*/
half = upperhalf(newval);
/*
* form palindrome from upper half
*
* We need to deal with even vs. odd digit counts
* when forming a palindrome from a half as the
* half may not or may include the middle digit.
*/
if (iseven(newvaldigits)) {
pal = mkpal(half);
} else {
pal = mkpalmiddigit(half // 10, half % 10);
}
/*
* case: we found a larger palindrome, we are done
*/
if (pal > val) {
return pal;
}
/*
* we need to find an even larger palindrome
*/
newpal = palnextpal(pal);
/*
* return the new palindrome
*/
return newpal;
}
/*
* palprevpal - return previous palindrome from a palindrome
*
* NOTE: We assume base 10 digits and place 1 is the units digit.
*
* given:
* pal a palindrome
*
* returns:
* previous palindrome < pal
*/
define palprevpal(pal)
{
local paldigits; /* digits in pal */
local half; /* upper half of newval */
local newhalf; /* half+1 */
local newpal; /* new palindrome */
/* case: negative value */
if (pal < 0) {
return -(palnextpal(-pal));
}
/* case: single digit palindrome */
if (pal < 10) {
newpal = pal-1;
return newpal;
}
/* case: 10 or 11 */
if (pal < 12) {
newpal = 9;
return newpal;
}
/*
* start with upper half
*/
half = upperhalf(pal);
/*
* prep to find a smaller palindrome
*/
newhalf = half-1;
/*
* form palindrome from new upper half
*
* We need to watch for the corner case where changing the
* half changes the number of digits as this will impact
* or even/odd number of digits processing.
*/
paldigits = digits(pal);
if (digits(newhalf) == digits(half)) {
/* no change in half digits: process as normal */
if (iseven(paldigits)) {
newpal = mkpal(newhalf);
} else {
newpal = mkpalmiddigit(newhalf // 10, newhalf % 10);
}
} else {
/* change in half digits: process as opposite */
if (iseven(paldigits)) {
newpal = mkpalmiddigit(newhalf // 10, newhalf % 10);
} else {
newpal = mkpal(newhalf);
}
}
/*
* return the new palindrome
*/
return newpal;
}
/*
* prevpal - return previous palindrome from a value
*
* NOTE: We assume base 10 digits and place 1 is the units digit.
*
* given:
* val a value
*
* returns:
* previous palindrome < val
*/
define prevpal(val)
{
local newval; /* val-1 */
local newvaldigits; /* digits in newval */
local half; /* upper half of newval */
local pal; /* palindrome test value */
local newpal; /* new palindrome */
/* case: negative value */
if (val < 0) {
return -(nextpal(-val));
}
/*
* start looking from a smaller value
*/
newval = val-1;
newvaldigits = digits(newval);
/* case: single digit palindrome */
if (newvaldigits < 2) {
return newval;
}
/*
* start with previous upper half
*/
half = upperhalf(newval);
/*
* form palindrome from upper half
*
* We need to deal with even vs. odd digit counts
* when forming a palindrome from a half as the
* half may not or may include the middle digit.
*/
if (iseven(newvaldigits)) {
pal = mkpal(half);
} else {
pal = mkpalmiddigit(half // 10, half % 10);
}
/*
* case: we found a smaller palindrome, we are done
*/
if (pal < val) {
return pal;
}
/*
* we need to find an even smaller palindrome
*/
newpal = palprevpal(pal);
/*
* return the new palindrome
*/
return newpal;
}
/*
* nextprimepal - return next palindrome that is a (highly probable) prime
*
* NOTE: We assume base 10 digits and place 1 is the units digit.
*
* given:
* val a value
*
* returns:
* next palindrome (highly probable) prime > val
*/
define nextprimepal(val)
{
local pal; /* palindrome test value */
local dpal; /* digits in pal */
/*
* pre-start under the next palindrome
*/
pal = nextpal(val-1);
/*
* loop until we find a (highly probable) prime or 0
*/
do {
/* case: negative values and tiny values */
if (pal < 2) {
return 2;
}
/*
* compute the next palindrome
*/
pal = palnextpal(pal);
dpal = digits(pal);
/* case: 11 is the only prime palindrome with even digit count */
if (pal == 11) {
return 11;
}
/* case: even number of digits and not 11 */
if (iseven(dpal)) {
/*
* Except for 11 (which is handled above already), there are
* no prime palindrome with even digits. So we need to
* increase the digit count and work with that larger palindrome.
*/
pal = nextpal(10^dpal);
}
/* case: palindrome is even or ends in 5 */
if (iseven(pal % 10) || (pal%10 == 10/2)) {
/*
* we need to increase the bottom and top digits
* so that we have a chance to be prime
*/
pal += (1 + 10^(dpal-1));
}
if (config("resource_debug") & 0x8) {
print "DEBUG: nextprimepal:", pal;
}
} while (ptest(pal) == 0 && pal > 0);
/* return palindrome that his (highly probable) prime or 0 */
return pal;
}
/*
* prevprimepal - return prev palindrome that is a (highly probable) prime
*
* NOTE: We assume base 10 digits and place 1 is the units digit.
*
* given:
* val a value
*
* returns:
* prev palindrome (highly probable) prime < val or 0
*/
define prevprimepal(val)
{
local pal; /* palindrome test value */
local dpal; /* digits in pal */
/*
* pre-start over the previous palindrome
*/
pal = prevpal(val+1);
/*
* loop until we find a (highly probable) prime or 0
*/
do {
/*
* case: single digit values are always palindromes
*/
if (val < 10) {
/*
* Prevcand will return 0 if there is no previous prime
* such as the case when val < 2.
*/
return prevcand(pal);
}
/*
* compute the previous palindrome
*/
pal = palprevpal(pal);
dpal = digits(pal);
/* case: 11 is the only prime palindrome with even digit count */
if (pal == 11) {
return 11;
}
/* case: 2 digit palindrome and not 11 */
if (dpal == 2) {
return 7;
}
/* case: even number of digits */
if (iseven(dpal)) {
/*
* Except for 11 (which is handled above already), there are
* no prime palindrome with even digits. So we need to
* decrease the digit count and work with that smaller palindrome.
*/
pal = prevpal(10^(dpal-1));
}
/* case: palindrome is even or ends in 5 */
if (iseven(pal % 10) || (pal%10 == 10/2)) {
/*
* we need to decrease the bottom and top digits
* so that we have a chance to be prime
*/
pal -= (1 + 10^(dpal-1));
}
if (config("resource_debug") & 0x8) {
print "DEBUG: prevprimepal:", pal;
}
} while (ptest(pal) == 0 && pal > 0);
/* return palindrome that his (highly probable) prime or 0 */
return pal;
}