Files
calc/lib/pell.cal
2017-05-21 15:38:25 -07:00

74 lines
1.2 KiB
Plaintext

/*
* Copyright (c) 1995 David I. Bell
* Permission is granted to use, distribute, or modify this source,
* provided that this copyright notice remains intact.
*
* Solve Pell's equation; Returns the solution X to: X^2 - D * Y^2 = 1.
* Type the solution to pells equation for a particular D.
*/
define pell(D)
{
local X, Y;
X = pellx(D);
if (isnull(X)) {
print "D=":D:" is square";
return;
}
Y = isqrt((X^2 - 1) / D);
print X : "^2 - " : D : "*" : Y : "^2 = " : X^2 - D*Y^2;
}
/*
* Function to solve Pell's equation
* Returns the solution X to:
* X^2 - D * Y^2 = 1
*/
define pellx(D)
{
local R, Rp, U, Up, V, Vp, A, T, Q1, Q2, n;
local mat ans[2,2];
local mat tmp[2,2];
R = isqrt(D);
Vp = D - R^2;
if (Vp == 0)
return;
Rp = R + R;
U = Rp;
Up = U;
V = 1;
A = 0;
n = 0;
ans[0,0] = 1;
ans[1,1] = 1;
tmp[0,1] = 1;
tmp[1,0] = 1;
do {
T = V;
V = A * (Up - U) + Vp;
Vp = T;
A = U // V;
Up = U;
U = Rp - U % V;
tmp[0,0] = A;
ans *= tmp;
n++;
} while (A != Rp);
Q2 = ans[[1]];
Q1 = isqrt(Q2^2 * D + 1);
if (isodd(n)) {
T = Q1^2 + D * Q2^2;
Q2 = Q1 * Q2 * 2;
Q1 = T;
}
return Q1;
}
if (config("lib_debug") >= 0) {
print "pell(D) defined";
print "pellx(D) defined";
}