Files
calc/qio.c
Landon Curt Noll a31078bbec Remove all RCS @(#) lines and RCS strings
Some folks might think: “you still use RCS”?!?  And we will say,
hey, at least we switched from SCCS to RCS back in … I think it was
around 1994 ... at least we are keeping up! :-) :-) :-)

Logs say that SCCS version 18 became RCS version 19 on 1994 March 18.

RCS served us well.  But now it is time to move on.   And so we are
switching to git.

Calc releases produce a lot of file changes.  In the 125 releases
of calc since 1996, when I started managing calc releases, there
have been 15473 file mods!
2017-05-23 01:33:23 -07:00

695 lines
14 KiB
C

/*
* qio - scanf and printf routines for arbitrary precision rational numbers
*
* Copyright (C) 1999-2007 David I. Bell
*
* Calc is open software; you can redistribute it and/or modify it under
* the terms of the version 2.1 of the GNU Lesser General Public License
* as published by the Free Software Foundation.
*
* Calc is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General
* Public License for more details.
*
* A copy of version 2.1 of the GNU Lesser General Public License is
* distributed with calc under the filename COPYING-LGPL. You should have
* received a copy with calc; if not, write to Free Software Foundation, Inc.
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Under source code control: 1993/07/30 19:42:46
* File existed as early as: 1993
*
* Share and enjoy! :-) http://www.isthe.com/chongo/tech/comp/calc/
*/
#include "qmath.h"
#include "config.h"
#include "args.h"
#include "have_unused.h"
#define PUTCHAR(ch) math_chr(ch)
#define PUTSTR(str) math_str(str)
#define PRINTF1(fmt, a1) math_fmt(fmt, a1)
#define PRINTF2(fmt, a1, a2) math_fmt(fmt, a1, a2)
STATIC long scalefactor;
STATIC ZVALUE scalenumber = { 0, 0, 0 };
/*
* Print a formatted string containing arbitrary numbers, similar to printf.
* ALL numeric arguments to this routine are rational NUMBERs.
* Various forms of printing such numbers are supplied, in addition
* to strings and characters. Output can actually be to any FILE
* stream or a string.
*/
void
qprintf(char *fmt, ...)
{
va_list ap;
NUMBER *q;
int ch, sign = 1;
long width = 0, precision = 0;
int trigger = 0;
va_start(ap, fmt);
while ((ch = *fmt++) != '\0') {
if (trigger == 0) {
if (ch == '\\') {
ch = *fmt++;
switch (ch) {
case 'n': ch = '\n'; break;
case 'r': ch = '\r'; break;
case 't': ch = '\t'; break;
case 'f': ch = '\f'; break;
case 'v': ch = '\v'; break;
case 'b': ch = '\b'; break;
case 0:
va_end(ap);
return;
}
PUTCHAR(ch);
continue;
}
if (ch != '%') {
PUTCHAR(ch);
continue;
}
ch = *fmt++;
width = 0; precision = 8; sign = 1;
trigger = 1;
}
switch (ch) {
case 'd':
q = va_arg(ap, NUMBER *);
qprintfd(q, width);
break;
case 'f':
q = va_arg(ap, NUMBER *);
qprintff(q, width, precision);
break;
case 'e':
q = va_arg(ap, NUMBER *);
qprintfe(q, width, precision);
break;
case 'r':
case 'R':
q = va_arg(ap, NUMBER *);
qprintfr(q, width, (BOOL) (ch == 'R'));
break;
case 'N':
q = va_arg(ap, NUMBER *);
zprintval(q->num, 0L, width);
break;
case 'D':
q = va_arg(ap, NUMBER *);
zprintval(q->den, 0L, width);
break;
case 'o':
q = va_arg(ap, NUMBER *);
qprintfo(q, width);
break;
case 'x':
q = va_arg(ap, NUMBER *);
qprintfx(q, width);
break;
case 'b':
q = va_arg(ap, NUMBER *);
qprintfb(q, width);
break;
case 's':
PUTSTR(va_arg(ap, char *));
break;
case 'c':
PUTCHAR(va_arg(ap, int));
break;
case 0:
va_end(ap);
return;
case '-':
sign = -1;
ch = *fmt++;
default:
if (('0' <= ch && ch <= '9') ||
ch == '.' || ch == '*') {
if (ch == '*') {
q = va_arg(ap, NUMBER *);
width = sign * qtoi(q);
ch = *fmt++;
} else if (ch != '.') {
width = ch - '0';
while ('0' <= (ch = *fmt++) &&
ch <= '9')
width = width * 10 + ch - '0';
width *= sign;
}
if (ch == '.') {
if ((ch = *fmt++) == '*') {
q = va_arg(ap, NUMBER *);
precision = qtoi(q);
ch = *fmt++;
} else {
precision = 0;
while ('0' <= (ch = *fmt++) &&
ch <= '9')
precision *= 10+ch-'0';
}
}
}
}
}
va_end(ap);
}
/*
* Print a number in the specified output mode.
* If MODE_DEFAULT is given, then the default output mode is used.
* Any approximate output is flagged with a leading tilde.
* Integers are always printed as themselves.
*/
void
qprintnum(NUMBER *q, int outmode)
{
NUMBER tmpval;
long prec, exp;
int outmode2 = MODE2_OFF;
if (outmode == MODE_DEFAULT) {
outmode = conf->outmode;
outmode2 = conf->outmode2;
}
switch (outmode) {
case MODE_INT:
if (conf->tilde_ok && qisfrac(q))
PUTCHAR('~');
qprintfd(q, 0L);
break;
case MODE_REAL:
prec = qdecplaces(q);
if ((prec < 0) || (prec > conf->outdigits)) {
if (conf->tilde_ok)
PUTCHAR('~');
}
if (conf->fullzero || (prec < 0) ||
(prec > conf->outdigits))
prec = conf->outdigits;
qprintff(q, 0L, prec);
break;
case MODE_FRAC:
qprintfr(q, 0L, FALSE);
break;
case MODE_EXP:
if (qiszero(q)) {
PUTCHAR('0');
return;
}
tmpval = *q;
tmpval.num.sign = 0;
exp = qilog10(&tmpval);
if (exp == 0) { /* in range to output as real */
qprintnum(q, MODE_REAL);
return;
}
tmpval.num = _one_;
tmpval.den = _one_;
if (exp > 0)
ztenpow(exp, &tmpval.den);
else
ztenpow(-exp, &tmpval.num);
q = qmul(q, &tmpval);
zfree(tmpval.num);
zfree(tmpval.den);
qprintnum(q, MODE_REAL);
qfree(q);
PRINTF1("e%ld", exp);
break;
case MODE_HEX:
qprintfx(q, 0L);
break;
case MODE_OCTAL:
qprintfo(q, 0L);
break;
case MODE_BINARY:
qprintfb(q, 0L);
break;
default:
math_error("Bad mode for print");
/*NOTREACHED*/
}
if (outmode2 != MODE2_OFF) {
PUTSTR(" /* ");
qprintnum(q, outmode2);
PUTSTR(" */");
}
}
/*
* Print a number in floating point representation.
* Example: 193.784
*/
void
qprintff(NUMBER *q, long width, long precision)
{
ZVALUE z, z1;
if (precision != scalefactor) {
if (scalenumber.v)
zfree(scalenumber);
ztenpow(precision, &scalenumber);
scalefactor = precision;
}
if (scalenumber.v)
zmul(q->num, scalenumber, &z);
else
z = q->num;
if (qisfrac(q)) {
zquo(z, q->den, &z1, conf->outround);
if (z.v != q->num.v)
zfree(z);
z = z1;
}
if (qisneg(q) && ziszero(z))
PUTCHAR('-');
zprintval(z, precision, width);
if (z.v != q->num.v)
zfree(z);
}
/*
* Print a number in exponential notation.
* Example: 4.1856e34
*/
/*ARGSUSED*/
void
qprintfe(NUMBER *q, long UNUSED width, long precision)
{
long exponent;
NUMBER q2;
ZVALUE num, zden, tenpow, tmp;
if (qiszero(q)) {
PUTSTR("0.0");
return;
}
num = q->num;
zden = q->den;
num.sign = 0;
exponent = zdigits(num) - zdigits(zden);
if (exponent > 0) {
ztenpow(exponent, &tenpow);
zmul(zden, tenpow, &tmp);
zfree(tenpow);
zden = tmp;
}
if (exponent < 0) {
ztenpow(-exponent, &tenpow);
zmul(num, tenpow, &tmp);
zfree(tenpow);
num = tmp;
}
if (zrel(num, zden) < 0) {
zmuli(num, 10L, &tmp);
if (num.v != q->num.v)
zfree(num);
num = tmp;
exponent--;
}
q2.num = num;
q2.den = zden;
q2.num.sign = q->num.sign;
qprintff(&q2, 0L, precision);
if (exponent)
PRINTF1("e%ld", exponent);
if (num.v != q->num.v)
zfree(num);
if (zden.v != q->den.v)
zfree(zden);
}
/*
* Print a number in rational representation.
* Example: 397/37
*/
void
qprintfr(NUMBER *q, long width, BOOL force)
{
zprintval(q->num, 0L, width);
if (force || qisfrac(q)) {
PUTCHAR('/');
zprintval(q->den, 0L, width);
}
}
/*
* Print a number as an integer (truncating fractional part).
* Example: 958421
*/
void
qprintfd(NUMBER *q, long width)
{
ZVALUE z;
if (qisfrac(q)) {
zquo(q->num, q->den, &z, conf->outround);
zprintval(z, 0L, width);
zfree(z);
} else {
zprintval(q->num, 0L, width);
}
}
/*
* Print a number in hex.
* This prints the numerator and denominator in hex.
*/
void
qprintfx(NUMBER *q, long width)
{
zprintx(q->num, width);
if (qisfrac(q)) {
PUTCHAR('/');
zprintx(q->den, 0L);
}
}
/*
* Print a number in binary.
* This prints the numerator and denominator in binary.
*/
void
qprintfb(NUMBER *q, long width)
{
zprintb(q->num, width);
if (qisfrac(q)) {
PUTCHAR('/');
zprintb(q->den, 0L);
}
}
/*
* Print a number in octal.
* This prints the numerator and denominator in octal.
*/
void
qprintfo(NUMBER *q, long width)
{
zprinto(q->num, width);
if (qisfrac(q)) {
PUTCHAR('/');
zprinto(q->den, 0L);
}
}
/*
* Convert a string to a number in rational, floating point,
* exponential notation, hex, or octal.
* q = str2q(string);
*/
NUMBER *
str2q(char *s)
{
register NUMBER *q;
register char *t;
ZVALUE div, newnum, newden, tmp;
long decimals, exp;
BOOL hex, negexp;
q = qalloc();
decimals = 0;
exp = 0;
negexp = FALSE;
hex = FALSE;
t = s;
if ((*t == '+') || (*t == '-'))
t++;
if ((*t == '0') && ((t[1] == 'x') || (t[1] == 'X'))) {
hex = TRUE;
t += 2;
}
while (((*t >= '0') && (*t <= '9')) || (hex &&
(((*t >= 'a') && (*t <= 'f')) || ((*t >= 'A') && (*t <= 'F')))))
t++;
if (*t == '/') {
t++;
str2z(t, &q->den);
} else if ((*t == '.') || (*t == 'e') || (*t == 'E')) {
if (*t == '.') {
t++;
while ((*t >= '0') && (*t <= '9')) {
t++;
decimals++;
}
}
/*
* Parse exponent if any
*/
if ((*t == 'e') || (*t == 'E')) {
t++;
if (*t == '+')
t++;
else if (*t == '-') {
negexp = TRUE;
t++;
}
while ((*t >= '0') && (*t <= '9')) {
exp = (exp * 10) + *t++ - '0';
if (exp > (MAXLONG/10L)) {
math_error("Exponent too large");
/*NOTREACHED*/
}
}
}
ztenpow(decimals, &q->den);
}
str2z(s, &q->num);
if (qiszero(q)) {
qfree(q);
return qlink(&_qzero_);
}
/*
* Apply the exponential if any
*/
if (exp) {
ztenpow(exp, &tmp);
if (negexp) {
zmul(q->den, tmp, &newden);
zfree(q->den);
q->den = newden;
} else {
zmul(q->num, tmp, &newnum);
zfree(q->num);
q->num = newnum;
}
zfree(tmp);
}
/*
* Reduce the fraction to lowest terms
*/
if (!zisunit(q->num) && !zisunit(q->den)) {
zgcd(q->num, q->den, &div);
if (!zisunit(div)) {
zequo(q->num, div, &newnum);
zfree(q->num);
zequo(q->den, div, &newden);
zfree(q->den);
q->num = newnum;
q->den = newden;
}
zfree(div);
}
return q;
}
/*
* Parse a number in any of the various legal forms, and return the count
* of characters that are part of a legal number. Numbers can be either a
* decimal integer, possibly two decimal integers separated with a slash, a
* floating point or exponential number, a hex number beginning with "0x",
* a binary number beginning with "0b", or an octal number beginning with "0".
* The flags argument modifies the end of number testing for ease in handling
* fractions or complex numbers. Minus one is returned if the number format
* is definitely illegal.
*/
long
qparse(char *cp, int flags)
{
char *oldcp;
oldcp = cp;
if ((*cp == '+') || (*cp == '-'))
cp++;
if ((*cp == '+') || (*cp == '-'))
return -1;
/* hex */
if ((*cp == '0') && ((cp[1] == 'x') || (cp[1] == 'X'))) {
cp += 2;
while (((*cp >= '0') && (*cp <= '9')) ||
((*cp >= 'a') && (*cp <= 'f')) ||
((*cp >= 'A') && (*cp <= 'F')))
cp++;
if (((*cp == 'i') || (*cp == 'I')) && (flags & QPF_IMAG))
cp++;
if ((*cp == '.') || ((*cp == '/') && (flags & QPF_SLASH)) ||
((*cp >= '0') && (*cp <= '9')) ||
((*cp >= 'a') && (*cp <= 'z')) ||
((*cp >= 'A') && (*cp <= 'Z')))
return -1;
return (cp - oldcp);
}
/* binary */
if ((*cp == '0') && ((cp[1] == 'b') || (cp[1] == 'B'))) {
cp += 2;
while ((*cp == '0') || (*cp == '1'))
cp++;
if (((*cp == 'i') || (*cp == 'I')) && (flags & QPF_IMAG))
cp++;
if ((*cp == '.') || ((*cp == '/') && (flags & QPF_SLASH)) ||
((*cp >= '0') && (*cp <= '9')) ||
((*cp >= 'a') && (*cp <= 'z')) ||
((*cp >= 'A') && (*cp <= 'Z')))
return -1;
return (cp - oldcp);
}
/* octal */
if ((*cp == '0') && (cp[1] >= '0') && (cp[1] <= '9')) {
while ((*cp >= '0') && (*cp <= '7'))
cp++;
if (((*cp == 'i') || (*cp == 'I')) && (flags & QPF_IMAG))
cp++;
if ((*cp == '.') || ((*cp == '/') && (flags & QPF_SLASH)) ||
((*cp >= '0') && (*cp <= '9')) ||
((*cp >= 'a') && (*cp <= 'z')) ||
((*cp >= 'A') && (*cp <= 'Z')))
return -1;
return (cp - oldcp);
}
/*
* Number is decimal but can still be a fraction or real or exponential
*/
while ((*cp >= '0') && (*cp <= '9'))
cp++;
if (*cp == '/' && flags & QPF_SLASH) { /* fraction */
cp++;
while ((*cp >= '0') && (*cp <= '9'))
cp++;
if (((*cp == 'i') || (*cp == 'I')) && (flags & QPF_IMAG))
cp++;
if ((*cp == '.') || ((*cp == '/') && (flags & QPF_SLASH)) ||
((*cp >= '0') && (*cp <= '9')) ||
((*cp >= 'a') && (*cp <= 'z')) ||
((*cp >= 'A') && (*cp <= 'Z')))
return -1;
return (cp - oldcp);
}
if (*cp == '.') { /* floating point */
cp++;
while ((*cp >= '0') && (*cp <= '9'))
cp++;
}
if ((*cp == 'e') || (*cp == 'E')) { /* exponential */
cp++;
if ((*cp == '+') || (*cp == '-'))
cp++;
if ((*cp == '+') || (*cp == '-'))
return -1;
while ((*cp >= '0') && (*cp <= '9'))
cp++;
}
if (((*cp == 'i') || (*cp == 'I')) && (flags & QPF_IMAG))
cp++;
if ((*cp == '.') || ((*cp == '/') && (flags & QPF_SLASH)) ||
((*cp >= '0') && (*cp <= '9')) ||
((*cp >= 'a') && (*cp <= 'z')) ||
((*cp >= 'A') && (*cp <= 'Z')))
return -1;
return (cp - oldcp);
}
/*
* Print an integer which is guaranteed to fit in the specified number
* of columns, using embedded '...' characters if numerator and/or
* denominator is too large.
*/
void
fitprint(NUMBER *q, long width)
{
long numdigits, dendigits, digits;
long width1, width2;
long n, k;
if (width < 8)
width = 8;
numdigits = zdigits(q->num);
n = numdigits;
k = 0;
while (++k, n)
n /= 10;
if (qisint(q)) {
width -= k;
k = 16 - k;
if (k < 2)
k = 2;
PRINTF1("(%ld)", numdigits);
while (k-- > 0)
PUTCHAR(' ');
fitzprint(q->num, numdigits, width);
return;
}
dendigits = zdigits(q->den);
PRINTF2("(%ld/%ld)", numdigits, dendigits);
digits = numdigits + dendigits;
n = dendigits;
while (++k, n)
n /= 10;
width -= k;
k = 16 - k;
if (k < 2)
k = 2;
while (k-- > 0)
PUTCHAR(' ');
if (digits <= width) {
qprintf("%r", q);
return;
}
width1 = (width * numdigits)/digits;
if (width1 < 8)
width1 = 8;
width2 = width - width1;
if (width2 < 8) {
width2 = 8;
width1 = width - width2;
}
fitzprint(q->num, numdigits, width1);
PUTCHAR('/');
fitzprint(q->den, dendigits, width2);
}