Files
calc/zio.c
Landon Curt Noll a31078bbec Remove all RCS @(#) lines and RCS strings
Some folks might think: “you still use RCS”?!?  And we will say,
hey, at least we switched from SCCS to RCS back in … I think it was
around 1994 ... at least we are keeping up! :-) :-) :-)

Logs say that SCCS version 18 became RCS version 19 on 1994 March 18.

RCS served us well.  But now it is time to move on.   And so we are
switching to git.

Calc releases produce a lot of file changes.  In the 125 releases
of calc since 1996, when I started managing calc releases, there
have been 15473 file mods!
2017-05-23 01:33:23 -07:00

791 lines
18 KiB
C

/*
* zio - scanf and printf routines for arbitrary precision integers
*
* Copyright (C) 1999-2007 David I. Bell
*
* Calc is open software; you can redistribute it and/or modify it under
* the terms of the version 2.1 of the GNU Lesser General Public License
* as published by the Free Software Foundation.
*
* Calc is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General
* Public License for more details.
*
* A copy of version 2.1 of the GNU Lesser General Public License is
* distributed with calc under the filename COPYING-LGPL. You should have
* received a copy with calc; if not, write to Free Software Foundation, Inc.
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Under source code control: 1993/07/30 19:42:48
* File existed as early as: 1993
*
* Share and enjoy! :-) http://www.isthe.com/chongo/tech/comp/calc/
*/
#include <stdio.h>
#include "config.h"
#include "zmath.h"
#include "args.h"
#define OUTBUFSIZE 200 /* realloc size for output buffers */
#define PUTCHAR(ch) math_chr(ch)
#define PUTSTR(str) math_str(str)
#define PRINTF1(fmt, a1) math_fmt(fmt, a1)
#define PRINTF2(fmt, a1, a2) math_fmt(fmt, a1, a2)
#define PRINTF3(fmt, a1, a2, a3) math_fmt(fmt, a1, a2, a3)
#define PRINTF4(fmt, a1, a2, a3, a4) math_fmt(fmt, a1, a2, a3, a4)
/*
* Output state that has been saved when diversions are done.
*/
typedef struct iostate IOSTATE;
struct iostate {
IOSTATE *oldiostates; /* previous saved state */
long outdigits; /* digits for output */
int outmode; /* output mode */
int outmode2; /* secondary output mode */
FILE *outfp; /* file unit for output (if any) */
char *outbuf; /* output string buffer (if any) */
size_t outbufsize; /* current size of string buffer */
size_t outbufused; /* space used in string buffer */
BOOL outputisstring; /* TRUE if output is to string buffer */
};
STATIC IOSTATE *oldiostates = NULL; /* list of saved output states */
STATIC FILE *outfp = NULL; /* file unit for output */
STATIC char *outbuf = NULL; /* current diverted buffer */
STATIC BOOL outputisstring = FALSE;
STATIC size_t outbufsize;
STATIC size_t outbufused;
/*
* zio_init - perform needed initilization work
*
* On some systems, one cannot initialize a pointer to a FILE *.
* This routine, called once at startup is a work-a-round for
* systems with such bogons.
*/
void
zio_init(void)
{
STATIC int done = 0; /* 1 => routine already called */
if (!done) {
outfp = stdout;
done = 1;
}
}
/*
* Routine to output a character either to a FILE
* handle or into a string.
*/
void
math_chr(int ch)
{
char *cp;
if (!outputisstring) {
fputc(ch, outfp);
return;
}
if (outbufused >= outbufsize) {
cp = (char *)realloc(outbuf, outbufsize + OUTBUFSIZE + 1);
if (cp == NULL) {
math_error("Cannot realloc output string");
/*NOTREACHED*/
}
outbuf = cp;
outbufsize += OUTBUFSIZE;
}
outbuf[outbufused++] = (char)ch;
}
/*
* Routine to output a null-terminated string either
* to a FILE handle or into a string.
*/
void
math_str(char *str)
{
char *cp;
size_t len;
if (!outputisstring) {
fputs(str, outfp);
return;
}
len = strlen(str);
if ((outbufused + len) > outbufsize) {
cp = (char *)realloc(outbuf, outbufsize + len + OUTBUFSIZE + 1);
if (cp == NULL) {
math_error("Cannot realloc output string");
/*NOTREACHED*/
}
outbuf = cp;
outbufsize += (len + OUTBUFSIZE);
}
memcpy(&outbuf[outbufused], str, len);
outbufused += len;
}
/*
* Output a null-terminated string either to a FILE handle or into a string,
* padded with spaces as needed so as to fit within the specified width.
* If width is positive, the spaces are added at the front of the string.
* If width is negative, the spaces are added at the end of the string.
* The complete string is always output, even if this overflows the width.
* No characters within the string are handled specially.
*/
void
math_fill(char *str, long width)
{
if (width > 0) {
width -= (long)strlen(str);
while (width-- > 0)
PUTCHAR(' ');
PUTSTR(str);
} else {
width += (long)strlen(str);
PUTSTR(str);
while (width++ < 0)
PUTCHAR(' ');
}
}
/*
* Routine to output a printf-style formatted string either
* to a FILE handle or into a string.
*/
void
math_fmt(char *fmt, ...)
{
va_list ap;
char buf[BUFSIZ+1];
va_start(ap, fmt);
vsnprintf(buf, BUFSIZ, fmt, ap);
va_end(ap);
buf[BUFSIZ] = '\0';
math_str(buf);
}
/*
* Flush the current output stream.
*/
void
math_flush(void)
{
if (!outputisstring)
fflush(outfp);
}
/*
* Divert further output so that it is saved into a string that will be
* returned later when the diversion is completed. The current state of
* output is remembered for later restoration. Diversions can be nested.
* Output diversion is only intended for saving output to "stdout".
*/
void
math_divertio(void)
{
register IOSTATE *sp;
sp = (IOSTATE *) malloc(sizeof(IOSTATE));
if (sp == NULL) {
math_error("No memory for diverting output");
/*NOTREACHED*/
}
sp->oldiostates = oldiostates;
sp->outdigits = conf->outdigits;
sp->outmode = conf->outmode;
sp->outmode2 = conf->outmode2;
sp->outfp = outfp;
sp->outbuf = outbuf;
sp->outbufsize = outbufsize;
sp->outbufused = outbufused;
sp->outputisstring = outputisstring;
outbufused = 0;
outbufsize = 0;
outbuf = (char *) malloc(OUTBUFSIZE + 1);
if (outbuf == NULL) {
math_error("Cannot allocate divert string");
/*NOTREACHED*/
}
outbufsize = OUTBUFSIZE;
outputisstring = TRUE;
oldiostates = sp;
}
/*
* Undivert output and return the saved output as a string. This also
* restores the output state to what it was before the diversion began.
* The string needs freeing by the caller when it is no longer needed.
*/
char *
math_getdivertedio(void)
{
register IOSTATE *sp;
char *cp;
sp = oldiostates;
if (sp == NULL) {
math_error("No diverted state to restore");
/*NOTREACHED*/
}
cp = outbuf;
cp[outbufused] = '\0';
oldiostates = sp->oldiostates;
conf->outdigits = sp->outdigits;
conf->outmode = sp->outmode;
conf->outmode2 = sp->outmode2;
outfp = sp->outfp;
outbuf = sp->outbuf;
outbufsize = sp->outbufsize;
outbufused = sp->outbufused;
outbuf = sp->outbuf;
outputisstring = sp->outputisstring;
free(sp);
return cp;
}
/*
* Clear all diversions and set output back to the original destination.
* This is called when resetting the global state of the program.
*/
void
math_cleardiversions(void)
{
while (oldiostates)
free(math_getdivertedio());
}
/*
* Set the output routines to output to the specified FILE stream.
* This interacts with output diversion in the following manner.
* STDOUT diversion action
* ---- --------- ------
* yes yes set output to diversion string again.
* yes no set output to stdout.
* no yes set output to specified file.
* no no set output to specified file.
*/
void
math_setfp(FILE *newfp)
{
outfp = newfp;
outputisstring = (oldiostates && (newfp == stdout));
}
/*
* Set the output mode for numeric output.
* This also returns the previous mode.
*/
int
math_setmode(int newmode)
{
int oldmode;
if ((newmode <= MODE_DEFAULT) || (newmode > MODE_MAX)) {
math_error("Setting illegal output mode");
/*NOTREACHED*/
}
oldmode = conf->outmode;
conf->outmode = newmode;
return oldmode;
}
/*
* Set the secondary output mode for numeric output.
* This also returns the previous mode.
*/
int
math_setmode2(int newmode)
{
int oldmode;
if (newmode != MODE2_OFF && ((newmode <= MODE_DEFAULT) ||
(newmode > MODE_MAX))) {
math_error("Setting illegal secondary output mode");
/*NOTREACHED*/
}
oldmode = conf->outmode2;
conf->outmode2 = newmode;
return oldmode;
}
/*
* Set the number of digits for float or exponential output.
* This also returns the previous number of digits.
*/
LEN
math_setdigits(LEN newdigits)
{
LEN olddigits;
if (newdigits < 0) {
math_error("Setting illegal number of digits");
/*NOTREACHED*/
}
olddigits = conf->outdigits;
conf->outdigits = newdigits;
return olddigits;
}
/*
* Print an integer value as a hex number.
* Width is the number of columns to print the number in, including the
* sign if required. If zero, no extra output is done. If positive,
* leading spaces are typed if necessary. If negative, trailing spaces are
* typed if necessary. The special characters 0x appear to indicate the
* number is hex.
*/
/*ARGSUSED*/
void
zprintx(ZVALUE z, long width)
{
register HALF *hp; /* current word to print */
int len; /* number of halfwords to type */
char *str;
if (width) {
math_divertio();
zprintx(z, 0L);
str = math_getdivertedio();
math_fill(str, width);
free(str);
return;
}
len = z.len - 1;
if (zisneg(z))
PUTCHAR('-');
if ((len == 0) && (*z.v <= (HALF) 9)) {
len = '0' + (int)(*z.v);
PUTCHAR(len & 0xff);
return;
}
hp = z.v + len;
#if BASEB == 32
PRINTF1("0x%lx", (PRINT) *hp--);
while (--len >= 0) {
PRINTF1("%08lx", (PRINT) *hp--);
}
#else /* BASEB == 32 */
PRINTF1("0x%lx", (FULL) *hp--);
while (--len >= 0) {
PRINTF1("%04lx", (FULL) *hp--);
}
#endif /* BASEB == 32 */
}
/*
* Print an integer value as a binary number.
* The special characters 0b appear to indicate the number is binary.
*/
/*ARGSUSED*/
void
zprintb(ZVALUE z, long width)
{
register HALF *hp; /* current word to print */
int len; /* number of halfwords to type */
HALF val; /* current value */
HALF mask; /* current mask */
int didprint; /* nonzero if printed some digits */
int ch; /* current char */
char *str;
if (width) {
math_divertio();
zprintb(z, 0L);
str = math_getdivertedio();
math_fill(str, width);
free(str);
return;
}
len = z.len - 1;
if (zisneg(z))
PUTCHAR('-');
if ((len == 0) && (*z.v <= (FULL) 1)) {
len = '0' + (int)(*z.v);
PUTCHAR(len & 0xff);
return;
}
hp = z.v + len;
didprint = 0;
PUTSTR("0b");
while (len-- >= 0) {
val = ((len >= 0) ? *hp-- : *hp);
mask = ((HALF)1 << (BASEB - 1));
while (mask) {
ch = '0' + ((mask & val) != 0);
if (didprint || (ch != '0')) {
PUTCHAR(ch & 0xff);
didprint = 1;
}
mask >>= 1;
}
}
}
/*
* Print an integer value as an octal number.
* The number begins with a leading 0 to indicate that it is octal.
*/
/*ARGSUSED*/
void
zprinto(ZVALUE z, long width)
{
register HALF *hp; /* current word to print */
int len; /* number of halfwords to type */
#if BASEB == 32 /* Yes, the larger base needs a smaller type! */
HALF num1='0'; /* numbers to type */
HALF num2=(HALF)0; /* numbers to type */
HALF num3; /* numbers to type */
HALF num4; /* numbers to type */
#else
FULL num1='0'; /* numbers to type */
FULL num2=(FULL)0; /* numbers to type */
#endif
int rem; /* remainder number of halfwords */
char *str;
if (width) {
math_divertio();
zprinto(z, 0L);
str = math_getdivertedio();
math_fill(str, width);
free(str);
return;
}
if (zisneg(z))
PUTCHAR('-');
len = z.len;
if ((len == 1) && (*z.v <= (FULL) 7)) {
num1 = '0' + (int)(*z.v);
PUTCHAR((int)(num1 & 0xff));
return;
}
hp = z.v + len - 1;
rem = len % 3;
#if BASEB == 32
switch (rem) { /* handle odd amounts first */
case 0:
num1 = ((hp[0]) >> 8);
num2 = (((hp[0] & 0xff) << 16) + (hp[-1] >> 16));
num3 = (((hp[-1] & 0xffff) << 8) + (hp[-2] >> 24));
num4 = (hp[-2] & 0xffffff);
if (num1) {
PRINTF4("0%lo%08lo%08lo%08lo",
(PRINT) num1, (PRINT) num2,
(PRINT) num3, (PRINT) num4);
} else {
PRINTF3("0%lo%08lo%08lo",
(PRINT) num2, (PRINT) num3, (PRINT) num4);
}
rem = 3;
break;
case 1:
PRINTF1("0%lo", (PRINT) hp[0]);
break;
case 2:
num1 = ((hp[0]) >> 16);
num2 = (((hp[0] & 0xffff) << 8) + (hp[-1] >> 24));
num3 = (hp[-1] & 0xffffff);
if (num1) {
PRINTF3("0%lo%08lo%08lo",
(PRINT) num1, (PRINT) num2, (PRINT) num3);
} else {
PRINTF2("0%lo%08lo", (PRINT) num2, (PRINT) num3);
}
break;
}
len -= rem;
if (len > 0) {
hp -= rem;
while (len > 0) { /* finish in groups of 3 words */
PRINTF4("%08lo%08lo%08lo%08lo",
(PRINT) ((hp[0]) >> 8),
(PRINT) (((hp[0] & 0xff) << 16) + (hp[-1] >> 16)),
(PRINT) (((hp[-1] & 0xffff) << 8) + (hp[-2] >> 24)),
(PRINT) (hp[-2] & 0xffffff));
hp -= 3;
len -= 3;
}
}
#else
switch (rem) { /* handle odd amounts first */
case 0:
num1 = ((((FULL) hp[0]) << 8) + (((FULL) hp[-1]) >> 8));
num2 = ((((FULL) (hp[-1] & 0xff)) << 16) + ((FULL) hp[-2]));
rem = 3;
break;
case 1:
num1 = 0;
num2 = (FULL) hp[0];
break;
case 2:
num1 = (((FULL) hp[0]) >> 8);
num2 = ((((FULL) (hp[0] & 0xff)) << 16) + ((FULL) hp[-1]));
break;
}
if (num1) {
PRINTF2("0%lo%08lo", num1, num2);
} else {
PRINTF1("0%lo", num2);
}
len -= rem;
if (len > 0) {
hp -= rem;
while (len > 0) { /* finish in groups of 3 halfwords */
PRINTF2("%08lo%08lo",
((((FULL) hp[0]) << 8) + (((FULL) hp[-1]) >> 8)),
((((FULL) (hp[-1] & 0xff))<<16) + ((FULL) hp[-2])));
hp -= 3;
len -= 3;
}
}
#endif
}
/*
* Print a decimal integer to the terminal.
* This works by dividing the number by 10^2^N for some N, and
* then doing this recursively on the quotient and remainder.
* Decimals supplies number of decimal places to print, with a decimal
* point at the right location, with zero meaning no decimal point.
* Width is the number of columns to print the number in, including the
* decimal point and sign if required. If zero, no extra output is done.
* If positive, leading spaces are typed if necessary. If negative, trailing
* spaces are typed if necessary. As examples of the effects of these values,
* (345,0,0) = "345", (345,2,0) = "3.45", (345,5,8) = " .00345".
*
* given:
* z number to be printed
* decimals number of decimal places
* width number of columns to print in
*/
void
zprintval(ZVALUE z, long decimals, long width)
{
int depth; /* maximum depth */
int n; /* current index into array */
long i; /* number to print */
long leadspaces; /* number of leading spaces to print */
long putpoint; /* digits until print decimal point */
long digits; /* number of digits of raw number */
BOOL output; /* TRUE if have output something */
BOOL neg; /* TRUE if negative */
ZVALUE quo, rem; /* quotient and remainder */
ZVALUE leftnums[32]; /* left parts of the number */
ZVALUE rightnums[32]; /* right parts of the number */
if (decimals < 0)
decimals = 0;
if (width < 0)
width = 0;
neg = (z.sign != 0);
leadspaces = width - neg - (decimals > 0);
z.sign = 0;
/*
* Find the 2^N power of ten which is greater than or equal
* to the number, calculating it the first time if necessary.
*/
_tenpowers_[0] = _ten_;
depth = 0;
while ((_tenpowers_[depth].len < z.len) ||
(zrel(_tenpowers_[depth], z) <= 0)) {
depth++;
if (_tenpowers_[depth].len == 0) {
if (depth <= TEN_MAX) {
zsquare(_tenpowers_[depth-1],
&_tenpowers_[depth]);
} else {
math_error("cannot compute 10^2^(TEN_MAX+1)");
/*NOTREACHED*/
}
}
}
/*
* Divide by smaller 2^N powers of ten until the parts are small
* enough to output. This algorithm walks through a binary tree
* where each node is a piece of the number to print, and such that
* we visit left nodes first. We do the needed recursion in line.
*/
digits = 1;
output = FALSE;
n = 0;
putpoint = 0;
rightnums[0].len = 0;
leftnums[0] = z;
for (;;) {
while (n < depth) {
i = depth - n - 1;
zdiv(leftnums[n], _tenpowers_[i], &quo, &rem, 0);
if (!ziszero(quo))
digits += (1L << i);
n++;
leftnums[n] = quo;
rightnums[n] = rem;
}
i = (long)(leftnums[n].v[0]);
if (output || i || (n == 0)) {
if (!output) {
output = TRUE;
if (decimals < digits)
leadspaces -= digits;
else
leadspaces -= decimals+conf->leadzero;
while (--leadspaces >= 0)
PUTCHAR(' ');
if (neg)
PUTCHAR('-');
if (decimals) {
putpoint = (digits - decimals);
if (putpoint <= 0) {
if (conf->leadzero)
PUTCHAR('0');
PUTCHAR('.');
while (++putpoint <= 0)
PUTCHAR('0');
putpoint = 0;
}
}
}
i += '0';
PUTCHAR((int)(i & 0xff));
if (--putpoint == 0)
PUTCHAR('.');
}
while (rightnums[n].len == 0) {
if (n <= 0)
return;
if (leftnums[n].len)
zfree(leftnums[n]);
n--;
}
zfree(leftnums[n]);
leftnums[n] = rightnums[n];
rightnums[n].len = 0;
}
}
/*
* Read an integer value in decimal, hex, octal, or binary.
* Hex numbers are indicated by a leading "0x", binary with a leading "0b",
* and octal by a leading "0". Periods are skipped over, but any other
* extraneous character stops the scan.
*/
void
str2z(char *s, ZVALUE *res)
{
ZVALUE z, ztmp, digit;
HALF digval;
BOOL minus;
long shift;
minus = FALSE;
shift = 0;
if (*s == '+')
s++;
else if (*s == '-') {
minus = TRUE;
s++;
}
if (*s == '0') { /* possibly hex, octal, or binary */
s++;
if ((*s >= '0') && (*s <= '7')) {
shift = 3;
} else if ((*s == 'x') || (*s == 'X')) {
shift = 4;
s++;
} else if ((*s == 'b') || (*s == 'B')) {
shift = 1;
s++;
}
}
digit.v = &digval;
digit.len = 1;
digit.sign = 0;
z = _zero_;
while (*s) {
digval = *s++;
if ((digval >= '0') && (digval <= '9'))
digval -= '0';
else if ((digval >= 'a') && (digval <= 'f') && shift)
digval -= ('a' - 10);
else if ((digval >= 'A') && (digval <= 'F') && shift)
digval -= ('A' - 10);
else if (digval == '.')
continue;
else
break;
if (shift)
zshift(z, shift, &ztmp);
else
zmuli(z, 10L, &ztmp);
zfree(z);
zadd(ztmp, digit, &z);
zfree(ztmp);
}
ztrim(&z);
if (minus && !ziszero(z))
z.sign = 1;
*res = z;
}
void
fitzprint(ZVALUE z, long digits, long show)
{
ZVALUE ztmp1, ztmp2;
long i;
if (digits <= show) {
zprintval(z, 0, 0);
return;
}
show /= 2;
ztenpow(digits - show, &ztmp1);
(void) zquo(z, ztmp1, &ztmp2, 1);
zprintval(ztmp2, 0, 0);
zfree(ztmp1);
zfree(ztmp2);
printf("...");
ztenpow(show, &ztmp1);
(void) zmod(z, ztmp1, &ztmp2, 0);
i = zdigits(ztmp2);
while (i++ < show)
printf("0");
zprintval(ztmp2, 0, 0);
zfree(ztmp1);
zfree(ztmp2);
}
/* END CODE */