Files
calc/cal/lambertw.cal
Landon Curt Noll a31078bbec Remove all RCS @(#) lines and RCS strings
Some folks might think: “you still use RCS”?!?  And we will say,
hey, at least we switched from SCCS to RCS back in … I think it was
around 1994 ... at least we are keeping up! :-) :-) :-)

Logs say that SCCS version 18 became RCS version 19 on 1994 March 18.

RCS served us well.  But now it is time to move on.   And so we are
switching to git.

Calc releases produce a lot of file changes.  In the 125 releases
of calc since 1996, when I started managing calc releases, there
have been 15473 file mods!
2017-05-23 01:33:23 -07:00

285 lines
8.7 KiB
Plaintext

/*
* lambertw - Lambert's W-function
*
* Copyright (C) 2013 Christoph Zurnieden
*
* Calc is open software; you can redistribute it and/or modify it under
* the terms of the version 2.1 of the GNU Lesser General Public License
* as published by the Free Software Foundation.
*
* Calc is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General
* Public License for more details.
*
* A copy of version 2.1 of the GNU Lesser General Public License is
* distributed with calc under the filename COPYING-LGPL. You should have
* received a copy with calc; if not, write to Free Software Foundation, Inc.
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Under source code control: 2013/08/11 01:31:28
* File existed as early as: 2013
*/
static resource_debug_level;
resource_debug_level = config("resource_debug", 0);
/*
R. M. Corless and G. H. Gonnet and D. E. G. Hare and D. J. Jeffrey and
D. E. Knuth, "On the Lambert W Function", Advances n Computational
Mathematics, 329--359, (1996)
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.112.6117
D. J. Jeffrey, D. E. G. Hare, R. M. Corless, "Unwinding the branches of the
Lambert W function", The Mathematical Scientist, 21, pp 1-7, (1996)
http://www.apmaths.uwo.ca/~djeffrey/Offprints/wbranch.pdf
Darko Verebic, "Having Fun with Lambert W(x) Function"
arXiv:1003.1628v1, March 2010, http://arxiv.org/abs/1003.1628
Winitzki, S. "Uniform Approximations for Transcendental Functions",
In Part 1 of Computational Science and its Applications - ICCSA 2003,
Lecture Notes in Computer Science, Vol. 2667, Springer-Verlag,
Berlin, 2003, 780-789. DOI 10.1007/3-540-44839-X_82
A copy may be found by Google.
*/
static true = 1;
static false = 0;
/* Branch 0, Winitzki (2003) , the well known Taylor series*/
define __CZ__lambertw_0(z,eps){
local a=2.344e0, b=0.8842e0, c=0.9294e0, d=0.5106e0, e=-1.213e0;
local y=sqrt(2*exp(1)*z+2);
return (2*ln(1+b*y)-ln(1+c*ln(1+d*y))+e)/(1+1/(2*ln(1+b*y)+2*a));
}
/* branch -1 */
define __CZ__lambertw_m1(z,eps){
local wn k;
/* Cut-off found in Maxima */
if(z < 0.3) return __CZ__lambertw_app(z,eps);
wn = z;
/* Verebic (2010) eqs. 16-18*/
for(k=0;k<10;k++){
wn = ln(-z)-ln(-wn);
}
return wn;
}
/*
generic approximation
series for 1+W((z-2)/(2 e))
Corless et al (1996) (4.22)
Verebic (2010) eqs. 35-37; more coefficients given at the end of sect. 3.1
or online
http://www.wolframalpha.com/input/?
i=taylor+%28+1%2Bproductlog%28+%28z-2%29%2F%282*e%29+%29+%29
or by using the function lambertw_series_print() after running
lambertw_series(z,eps,branch,terms) at least once with the wanted number of
terms and z = 1 (which might throw an error because the series will not
converge in anybodies lifetime for something that far from the branchpoint).
*/
define __CZ__lambertw_app(z,eps){
local b0=-1, b1=1, b2=-1/3, b3=11/72;
local y=sqrt(2*exp(1)*z+2);
return b0 + ( y * (b1 + (y * (b2 + (b3 * y)))));
}
static __CZ__Ws_a;
static __CZ__Ws_c;
static __CZ__Ws_len=0;
define lambertw_series_print(){
local k;
for(k=0;k<__CZ__Ws_len;k++){
print num(__CZ__Ws_c[k]):"/":den(__CZ__Ws_c[k]):"*p^":k;
}
}
/*
The series is fast but only if _very_ close to the branchpoint
The exact branch must be given explicitly, e.g.:
; lambertw(-exp(-1)+.001)-lambertw_series(-exp(-1)+.001,epsilon()*1e-10,0)
-0.14758879113205794065490184399030194122136720202792-
0.00000000000000000000000000000000000000000000000000i
; lambertw(-exp(-1)+.001)-lambertw_series(-exp(-1)+.001,epsilon()*1e-10,1)
0.00000000000000000000000000000000000000000000000000-
0.00000000000000000000000000000000000000000000000000i
*/
define lambertw_series(z,eps,branch,terms){
local k l limit tmp sum A C P PP epslocal;
if(!isnull(terms))
limit = terms;
else
limit = 100;
if(isnull(eps))
eps = epsilon(epsilon()*1e-10);
epslocal = epsilon(eps);
P = sqrt(2*(exp(1)*z+1));
if(branch != 0) P = -P;
tmp=0;sum=0;PP=P;
__CZ__Ws_a = mat[limit+1];
__CZ__Ws_c = mat[limit+1];
__CZ__Ws_len = limit;
/*
c0 = -1; c1 = 1
a0 = 2; a1 =-1
*/
__CZ__Ws_c[0] = -1; __CZ__Ws_c[1] = 1;
__CZ__Ws_a[0] = 2; __CZ__Ws_a[1] = -1;
sum += __CZ__Ws_c[0];
sum += __CZ__Ws_c[1] * P;
PP *= P;
for(k=2;k<limit;k++){
for(l=2;l<k;l++){
__CZ__Ws_a[k] += __CZ__Ws_c[l]*__CZ__Ws_c[k+1-l];
}
__CZ__Ws_c[k] = (k-1) * ( __CZ__Ws_c[k-2]/2
+__CZ__Ws_a[k-2]/4)/
(k+1)-__CZ__Ws_a[k]/2-__CZ__Ws_c[k-1]/(k+1);
tmp = __CZ__Ws_c[k] * PP;
sum += tmp;
if(abs(tmp) <= eps){
epsilon(epslocal);
return sum;
}
PP *= P;
}
epsilon(epslocal);
return
newerror(strcat("lambertw_series: does not converge in ",
str(limit)," terms" ));
}
/* */
define lambertw(z,branch){
local eps epslarge ret branchpoint bparea w we ew w1e wn k places m1e;
local closeness;
eps = epsilon();
if(branch == 0){
if(!im(z)){
if(abs(z) <= eps) return 0;
if(abs(z-exp(1)) <= eps) return 1;
if(abs(z - (-ln(2)/2)) <= eps ) return -ln(2);
if(abs(z - (-pi()/2)) <= eps ) return 1i*pi()/2;
}
}
branchpoint = -exp(-1);
bparea = .2;
if(branch == 0){
if(!im(z) && abs(z-branchpoint) == 0) return -1;
ret = __CZ__lambertw_0(z,eps);
/* Yeah, C&P, I know, sorry */
##ret = ln(z) + 2*pi()*1i*branch - ln(ln(z)+2*pi()*1i*branch);
}
else if(branch == 1){
if(im(z)<0 && abs(z-branchpoint) <= bparea)
ret = __CZ__lambertw_app(z,eps);
/* Does calc have a goto? Oh, it does! */
ret =ln(z) + 2*pi()*1i*branch - ln(ln(z)+2*pi()*1i*branch);
}
else if(branch == -1){##print "-1";
if(!im(z) && abs(z-branchpoint) == 0) return -1;
if(!im(z) && z>branchpoint && z < 0){##print "0";
ret = __CZ__lambertw_m1(z,eps);}
if(im(z)>=0 && abs(z-branchpoint) <= bparea){##print "1";
ret = __CZ__lambertw_app(z,eps);}
ret =ln(z) + 2*pi()*1i*branch - ln(ln(z)+2*pi()*1i*branch);
}
else
ret = ln(z) + 2*pi()*1i*branch - ln(ln(z)+2*pi()*1i*branch);
/*
Such a high precision is only needed _very_ close to the branchpoint
and might even be insufficient if z has not been computed with
sufficient precision itself (M below was calculated by Mathematica and also
with the series above with epsilon(1e-200)):
; epsilon(1e-50)
0.00000000000000000001
; display(50)
20
; M=-0.9999999999999999999999997668356018402875796636464119050387
; lambertw(-exp(-1)+1e-50,0)-M
-0.00000000000000000000000002678416515423276355643684
; epsilon(1e-60)
0.0000000000000000000000000000000000000000000000000
; A=-exp(-1)+1e-50
; epsilon(1e-50)
0.00000000000000000000000000000000000000000000000000
; lambertw(A,0)-M
-0.00000000000000000000000000000000000231185460220585
; lambertw_series(A,epsilon(),0)-M
-0.00000000000000000000000000000000000132145133161626
; epsilon(1e-100)
0.00000000000000000000000000000000000000000000000001
; A=-exp(-1)+1e-50
; epsilon(1e-65)
0.00000000000000000000000000000000000000000000000000
; lambertw_series(A,epsilon(),0)-M
0.00000000000000000000000000000000000000000000000000
; lambertw_series(-exp(-1)+1e-50,epsilon(),0)-M
-0.00000000000000000000000000000000000000002959444084
; epsilon(1e-74)
0.00000000000000000000000000000000000000000000000000
; lambertw_series(-exp(-1)+1e-50,epsilon(),0)-M
-0.00000000000000000000000000000000000000000000000006
*/
closeness = abs(z-branchpoint);
if( closeness< 1){
if(closeness != 0)
eps = epsilon(epsilon()*( closeness));
else
eps = epsilon(epsilon()^2);
}
else
eps = epsilon(epsilon()*1e-2);
epslarge =epsilon();
places = highbit(1 + int(1/epslarge)) + 1;
w = ret;
for(k=0;k<100;k++){
ew = exp(w);
we = w*ew;
if(abs(we-z)<= 4*epslarge*abs(z))break;
w1e = (1+w)*ew;
wn = bround(w- ((we - z) / ( w1e - ( (w+2)*(we-z) )/(2*w+2) ) ),places++) ;
if( abs(wn - w) <= epslarge*abs(wn)) break;
else w = wn;
}
if(k==100){
epsilon(eps);
return newerror("lambertw: Halley iteration does not converge");
}
/* The Maxima coders added a check if the iteration converged to the correct
branch. This coder deems it superfluous. */
epsilon(eps);
return wn;
}
config("resource_debug", resource_debug_level),;
if (config("resource_debug") & 3) {
print "lambertw(z,branch)";
print "lambertw_series(z,eps,branch,terms)";
print "lambertw_series_print()";
}