Files
calc/cal/test2700.cal
Landon Curt Noll a31078bbec Remove all RCS @(#) lines and RCS strings
Some folks might think: “you still use RCS”?!?  And we will say,
hey, at least we switched from SCCS to RCS back in … I think it was
around 1994 ... at least we are keeping up! :-) :-) :-)

Logs say that SCCS version 18 became RCS version 19 on 1994 March 18.

RCS served us well.  But now it is time to move on.   And so we are
switching to git.

Calc releases produce a lot of file changes.  In the 125 releases
of calc since 1996, when I started managing calc releases, there
have been 15473 file mods!
2017-05-23 01:33:23 -07:00

328 lines
7.1 KiB
Plaintext

/*
* test2700 - 2700 series of the regress.cal test suite
*
* Copyright (C) 1999 Ernest Bowen and Landon Curt Noll
*
* Primary author: Ernest Bowen
*
* Calc is open software; you can redistribute it and/or modify it under
* the terms of the version 2.1 of the GNU Lesser General Public License
* as published by the Free Software Foundation.
*
* Calc is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General
* Public License for more details.
*
* A copy of version 2.1 of the GNU Lesser General Public License is
* distributed with calc under the filename COPYING-LGPL. You should have
* received a copy with calc; if not, write to Free Software Foundation, Inc.
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Under source code control: 1995/11/01 22:52:25
* File existed as early as: 1995
*
* Share and enjoy! :-) http://www.isthe.com/chongo/tech/comp/calc/
*/
/*
* The following resource file gives a severe test of sqrt(x,y,z) for
* all 128 values of z, randomly produced real and complex x, and randomly
* produced nonzero values for y. After loading it, testcsqrt(n) will
* test n combinations of x and y; testcsqrt(str,n,2) will print 1 2 3 ...
* indicating work in process; testcsqrt(str,n,3) will give information about
* errors detected and will print values of x and y used.
* I've also defined a function iscomsq(x) which does for complex as well
* as real x what issq(x) currently does for real x.
*/
defaultverbose = 1;
define mknonnegreal() {
switch(rand(8)) {
case 0: return rand(20);
case 1: return rand(20,1000);
case 2: return rand(1,10000)/rand(1,100);
case 3: return scale(mkposreal(), rand(1,100));
case 4: return scale(mkposreal(), -rand(1,100));
case 5: return rand(1, 1000) + scale(mkfrac(),-rand(1,100));
case 6: return mkposreal()^2;
case 7: return mkposreal() * (1+scale(mkfrac(),-rand(1,100)));
}
}
define mkposreal() {
local x;
x = mknonnegreal();
while (x == 0)
x = mknonnegreal();
return x;
}
define mkreal_2700() = rand(2) ? mknonnegreal() : -mknonnegreal();
define mknonzeroreal() = rand(2) ? mkposreal() : -mkposreal();
/* Number > 0 and < 1, almost uniformly distributed */
define mkposfrac() {
local x,y;
x = rand(1,1000);
do
y = rand(1,1000);
while (y == x);
if (x > y)
swap(x,y);
return x/y;
}
/* Nonzero > -1 and < 1 */
define mkfrac() = rand(2) ? mkposfrac() : -mkposfrac();
define mksquarereal() = mknonnegreal()^2;
/*
* We might be able to do better than the following. For nonsquare
* positive integer less than 1e6, could use:
* x = rand(1, 1000);
* return rand(x^2 + 1, (x + 1)^2);
* Maybe could do:
* do
* x = mkreal_2700();
* while
* (issq(x));
* This would of course not be satisfactory for testing issq().
*/
define mknonsquarereal() = 22 * mkposreal()^2/7;
define mkcomplex_2700() = mkreal_2700() + 1i * mkreal_2700();
define testcsqrt(str, n, verbose)
{
local x, y, z, m, i, p, v;
if (isnull(verbose))
verbose = defaultverbose;
if (verbose > 0) {
print str:":",:;
}
m = 0;
for (i = 1; i <= n; i++) {
if (verbose > 1) print i,:;
x = rand(3) ? mkreal_2700(): mkcomplex_2700();
y = scale(mknonzeroreal(), -100);
if (verbose > 2)
printf("%d: x = %d, y = %d\n", i, x, y);
for (z = 0; z < 128; z++) {
v = sqrt(x,y,z);
p = checksqrt(x,y,z,v);
if (p) {
if (verbose > 0)
printf(
"*** Type %d failure for x = %r, "
"y = %r, z = %d\n",
p, x, y, z);
m++;
}
}
}
if (verbose > 0) {
if (m) {
printf("*** %d error(s)\n", m);
} else {
printf("no errors\n");
}
}
return m;
}
define checksqrt(x,y,z,v) /* Returns >0 if an error is detected */
{
local A, B, X, Y, t1, t2, eps, u, n, f, s;
A = re(x);
B = im(x);
X = re(v);
Y = im(v);
/* checking signs of X and Y */
if (B == 0 && A <= 0) /* t1 = sgn(re(tvsqrt)) */
t1 = 0;
else
t1 = (z & 64) ? -1 : 1;
t2 = B ? sgn(B) : (A < 0); /* t2 = sgn(im(tvsqrt)) */
if (z & 64)
t2 = -t2;
if (t1 == 0 && X != 0)
return 1;
if (t2 == 0 && Y != 0) {
printf("x = %d, Y = %d, t2 = %d\n", x, Y, t2);
return 2;
}
if (X && sgn(X) != t1)
return 3;
if (Y && sgn(Y) != t2)
return 4;
if (z & 32 && iscomsq(x))
return 5 * (x != v^2);
eps = (z & 16) ? abs(y)/2 : abs(y);
u = sgn(y);
/* Checking X */
n = X/y;
if (!isint(n))
return 6;
if (t1) {
f = checkavrem(A, B, abs(X), eps);
if (z & 16 && f < 0)
return 7;
if (!(z & 16) && f <= 0)
return 8;
if (!(z & 16) || f == 0) {
s = X ? t1 * sgn(A - X^2 + B^2/4/X^2) : t1;
if (s && !checkrounding(s,n,t1,u,z))
return 9;
}
}
/* Checking Y */
n = Y/y;
if (!isint(n))
return 10;
if (t2) {
f = checkavrem(-A, B, abs(Y), eps);
if (z & 16 && f < 0)
return 11;
if (!(z & 16) && f <= 0)
return 12;
if (!(z & 16) || f == 0) {
s = Y ? t2 * sgn(-A - Y^2 + B^2/4/Y^2) : t2;
if (s && !checkrounding(s,n,t2,u,z))
return 13;
}
}
return 0;
}
/*
* Check that the calculated absolute value X of the real part of
* sqrt(A + Bi) is between (true value - eps) and (true value + eps).
* Returns -1 if it is outside, 0 if on boundary, 1 if between.
*/
define checkavrem(A, B, X, eps)
{
local f;
f = sgn(A - (X + eps)^2 + B^2/4/(X + eps)^2);
if (f > 0)
return -1; /* X < tv - eps */
if (f == 0)
return 0; /* X = tv - eps */
if (X > eps) {
f = sgn(A - (X - eps)^2 + B^2/4/(X - eps)^2);
if (f < 0)
return -1; /* X > tv + eps */
if (f == 0)
return 0; /* X = tv + eps */
}
return 1; /* tv - eps < X < tv + eps */
}
define checkrounding(s,n,t,u,z)
{
local w;
switch (z & 15) {
case 0: w = (s == u); break;
case 1: w = (s == -u); break;
case 2: w = (s == t); break;
case 3: w = (s == -t); break;
case 4: w = (s > 0); break;
case 5: w = (s < 0); break;
case 6: w = (s == u/t); break;
case 7: w = (s == -u/t); break;
case 8: w = iseven(n); break;
case 9: w = isodd(n); break;
case 10: w = (u/t > 0) ? iseven(n) : isodd(n); break;
case 11: w = (u/t > 0) ? isodd(n) : iseven(n); break;
case 12: w = (u > 0) ? iseven(n) : isodd(n); break;
case 13: w = (u > 0) ? isodd(n) : iseven(n); break;
case 14: w = (t > 0) ? iseven(n) : isodd(n); break;
case 15: w = (t > 0) ? isodd(n) : iseven(n); break;
}
return w;
}
define iscomsq(x)
{
local c;
if (isreal(x))
return issq(abs(x));
c = norm(x);
if (!issq(c))
return 0;
return issq((re(x) + sqrt(c,1,32))/2);
}
/*
* test2700 - perform all of the above tests a bunch of times
*/
define test2700(verbose, tnum)
{
local n; /* test parameter */
local ep; /* test parameter */
local i;
/* set test parameters */
n = 32; /* internal test loop count */
if (isnull(verbose)) {
verbose = defaultverbose;
}
if (isnull(tnum)) {
tnum = 1; /* initial test number */
}
/*
* test a lot of stuff
*/
srand(2700e2700);
for (i=0; i < n; ++i) {
err += testcsqrt(strcat(str(tnum++),": complex sqrt",str(i)),
1, verbose);
}
if (verbose > 1) {
if (err) {
print "***", err, "error(s) found in testall";
} else {
print "no errors in testall";
}
}
return tnum;
}