mirror of
https://github.com/lcn2/calc.git
synced 2025-08-16 01:03:29 +03:00
Some folks might think: “you still use RCS”?!? And we will say, hey, at least we switched from SCCS to RCS back in … I think it was around 1994 ... at least we are keeping up! :-) :-) :-) Logs say that SCCS version 18 became RCS version 19 on 1994 March 18. RCS served us well. But now it is time to move on. And so we are switching to git. Calc releases produce a lot of file changes. In the 125 releases of calc since 1996, when I started managing calc releases, there have been 15473 file mods!
613 lines
12 KiB
Plaintext
613 lines
12 KiB
Plaintext
/*
|
|
* natnumset - functions for sets of natural numbers not exceeding a fixed bound
|
|
*
|
|
* Copyright (C) 1999 Ernest Bowen
|
|
*
|
|
* Calc is open software; you can redistribute it and/or modify it under
|
|
* the terms of the version 2.1 of the GNU Lesser General Public License
|
|
* as published by the Free Software Foundation.
|
|
*
|
|
* Calc is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General
|
|
* Public License for more details.
|
|
*
|
|
* A copy of version 2.1 of the GNU Lesser General Public License is
|
|
* distributed with calc under the filename COPYING-LGPL. You should have
|
|
* received a copy with calc; if not, write to Free Software Foundation, Inc.
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*
|
|
* Under source code control: 1997/09/07 23:53:51
|
|
* File existed as early as: 1997
|
|
*
|
|
* Share and enjoy! :-) http://www.isthe.com/chongo/tech/comp/calc/
|
|
*/
|
|
|
|
/*
|
|
* Functions for sets of natural numbers not exceeding a fixed bound B.
|
|
*
|
|
* The default value for B is 100; B may be assigned another
|
|
* value n by setbound(n); with no argument, setbound() returns the current
|
|
* upper bound.
|
|
*
|
|
* A set S is stored as an object with one element with one component S.s;
|
|
* This component is a string of just sufficient size to include m bits,
|
|
* where m is the maximum integer in S.
|
|
*
|
|
* With zero or more integer arguments, set(a, b, ...) returns the set
|
|
* whose elements are those of a, b, ... in [0, B]. Note that arguments
|
|
* < 0 or > B are ignored.
|
|
*
|
|
* In an assignment of a set-valued lvalue to an lvalue, as in
|
|
*
|
|
* A = set(1,2,3);
|
|
* B = A;
|
|
*
|
|
* the sets share the same data string, so a change to either has the effect
|
|
* of changing both. A set equal to A but with a different string can be
|
|
* created by
|
|
*
|
|
* B = A | set()
|
|
*
|
|
* The functions empty() and full() return the empty set and the set of all
|
|
* integers in [0,B] respectively.
|
|
*
|
|
* isset(A) returns 1 or 0 according as A is or is not a set
|
|
*
|
|
* test(A) returns 0 or 1 according as A is or is not the empty set
|
|
*
|
|
* isin(A, n) for set A and integer n returns 1 if n is in A, 0 if
|
|
* 0 <= n <= B and n is not in A, the null value if n < 0 or n > B.
|
|
*
|
|
* addmember(A, n) adds n as a member of A, provided n is in [0, B];
|
|
* this is also achieved by A |= n.
|
|
*
|
|
* rmmember(A, n) removes n from A if it is a member; this is also achieved
|
|
* by A \= n.
|
|
*
|
|
* The following unary and binary operations are defined for sets A, B.
|
|
* For binary operations with one argument a set and the other an
|
|
* integer n, the integer taken to represent set(n).
|
|
*
|
|
* A | B = union of A and B, integers in at least one of A and B
|
|
* A & B = intersection of A and B, integers in both A and B
|
|
* A ~ B = symmetric difference (boolean sum) of A and Bi, integers
|
|
* in exactly one of A and B
|
|
* A \ B = set difference, integers in A but not in B
|
|
*
|
|
* ~A = complement of A, integers not in A
|
|
* #A = number ofintegers in A
|
|
* !A = 1 or 0 according as A is empty or not empty
|
|
* +A = sum of the members of A
|
|
*
|
|
* min(A) = least member of A, -1 for empty set
|
|
* max(A) = greatest member of A, -1 for empty set
|
|
* sum(A) = sum of the members of A
|
|
*
|
|
* In the following a and b denote arbitrary members of A and B:
|
|
*
|
|
* A + B = set of sums a + b
|
|
* A - B = set of differences a - b
|
|
* A * B = set of products a * b
|
|
* A ^ n = set of powers a ^ n
|
|
* A % m = set of integers congruent to a mod m
|
|
*
|
|
* A == B returns 1 or not according as A and B are equal or not
|
|
* A != B = !(A == B)
|
|
* A <= B returns 1 if A is a subset of B, i.e. every member of A is
|
|
* a member of B
|
|
* A < B = ((A <= B) && (A != B))
|
|
* A >= B = (B <= A)
|
|
* A > B = (B < A)
|
|
*
|
|
* Expresssions may be formed from the above "arithmetic" operations in
|
|
* the usual way, with parentheses for variations from the usual precedence
|
|
* rules. For example
|
|
*
|
|
* A + 3 * A ^ 2 + (A - B) ^ 3
|
|
*
|
|
* returns the set of integers expressible as
|
|
*
|
|
* a_1 + 3 * a_2 ^ 2 + (a_3 - b) ^3
|
|
*
|
|
* where a_1, a_2, a_3 are in A, and b is in B.
|
|
*
|
|
* primes(a, b) returns the set of primes between a and b inclusive.
|
|
*
|
|
* interval(a, b) returns the integers between a and b inclusive
|
|
*
|
|
* isinterval(A) returns 1 if A is a non-empty interval, 0 otherwise.
|
|
*
|
|
* randset(n, a, b) returns a random set of n integers between a and b
|
|
* inclusive; a defaults to 0, b to N-1. An error occurs if
|
|
* n is too large.
|
|
*
|
|
* polyvals(L, A) for L = list(c_0, c_1, c_2, ...) returns the set of
|
|
* values of
|
|
*
|
|
* c_0 + c_1 * a + c_2 * a^2 + ...
|
|
*
|
|
* for a in the set A.
|
|
*
|
|
* polyvals2(L, A, B) returns the set of values of poly(L, i, j) for i in
|
|
* A and j in B. Here L is a list whose members are integers or
|
|
* lists of integers, the latter representing polynomials in the
|
|
* second variable. For example, with L = list(0, list(0, 1), 1),
|
|
* polyvals2(L, A, B) will return the values of i^2 + i * j for
|
|
* i in A, j in B.
|
|
*
|
|
*/
|
|
|
|
|
|
static N; /* Number of integers in [0,B], = B + 1 */
|
|
static M; /* Maximum string size required, = N // 8 */
|
|
|
|
obj set {s};
|
|
|
|
define isset(a) = istype(a, obj set);
|
|
|
|
define setbound(n)
|
|
{
|
|
local v;
|
|
|
|
v = N - 1;
|
|
if (isnull(n))
|
|
return v;
|
|
if (!isint(n) || n < 0)
|
|
quit "Bad argument for setbound";
|
|
N = n + 1;
|
|
M = quo(N, 8, 1); /* M // 8 rounded up */
|
|
if (v >= 0)
|
|
return v;
|
|
}
|
|
|
|
setbound(100);
|
|
|
|
define empty() = obj set = {""};
|
|
|
|
define full()
|
|
{
|
|
local v;
|
|
|
|
obj set v;
|
|
v.s = M * char(-1);
|
|
if (!ismult(N, 8)) v.s[M-1] = 255 >> (8 - N & 7);
|
|
return v;
|
|
}
|
|
|
|
define isin(a, b)
|
|
{
|
|
if (!isset(a) || !isint(b))
|
|
quit "Bad argument for isin";
|
|
return bit(a.s, b);
|
|
}
|
|
|
|
define addmember(a, n)
|
|
{
|
|
if (!isset(a) || !isint(n))
|
|
quit "Bad argument for addmember";
|
|
if (n < N && n >= 0)
|
|
setbit(a.s, n);
|
|
}
|
|
|
|
define rmmember(a, n)
|
|
{
|
|
if (n < N && n >= 0)
|
|
setbit(a.s, n, 0);
|
|
}
|
|
|
|
define set()
|
|
{
|
|
local i, v, s;
|
|
|
|
s = M * char(0);
|
|
for (i = 1; i <= param(0); i++) {
|
|
v = param(i);
|
|
if (!isint(v))
|
|
quit "Non-integral argument for set";
|
|
if (v >= 0 && v < N)
|
|
setbit(s, v);
|
|
}
|
|
return mkset(s);
|
|
}
|
|
|
|
|
|
define mkset(s)
|
|
{
|
|
local h, m;
|
|
|
|
if (!isstr(s))
|
|
quit "Non-string argument for mkset";
|
|
h = highbit(s);
|
|
if (h >= N)
|
|
quit "Too-long string for mkset";
|
|
m = quo(h + 1, 8, 1);
|
|
return obj set = {head(s, m)};
|
|
}
|
|
|
|
|
|
define primes(a,b)
|
|
{
|
|
local i, s, m;
|
|
|
|
if (isnull(b)) {
|
|
if (isnull(a)) {
|
|
a = 0;
|
|
b = N - 1;
|
|
}
|
|
else b = 0;
|
|
}
|
|
|
|
if (!isint(a) || !isint(b))
|
|
quit "Non-integer argument for primes";
|
|
if (a > b)
|
|
swap(a,b);
|
|
if (b < 0 || a >= N)
|
|
return empty();
|
|
a = max(a, 0);
|
|
b = min(b, N-1);
|
|
s = M * char(0);
|
|
for (i = a; i <= b; i++)
|
|
if (isprime(i))
|
|
setbit(s, i);
|
|
return mkset(s);
|
|
}
|
|
|
|
define set_max(a) = highbit(a.s);
|
|
|
|
define set_min(a) = lowbit(a.s);
|
|
|
|
define set_not(a) = !a.s;
|
|
|
|
define set_cmp(a,b)
|
|
{
|
|
if (isset(a) && isset(b))
|
|
return a.s != b.s;
|
|
return 1;
|
|
}
|
|
|
|
define set_rel(a,b)
|
|
{
|
|
local c;
|
|
|
|
if (a == b)
|
|
return 0;
|
|
if (isset(a)) {
|
|
if (isset(b)) {
|
|
c = a & b;
|
|
if (c == a)
|
|
return -1;
|
|
if (c == b)
|
|
return 1;
|
|
return;
|
|
}
|
|
if (!isint(b))
|
|
return set_rel(a, set(b));
|
|
}
|
|
if (isint(a))
|
|
return set_rel(set(a), b);
|
|
}
|
|
|
|
|
|
define set_or(a, b)
|
|
{
|
|
if (isset(a)) {
|
|
if (isset(b))
|
|
return obj set = {a.s | b.s};
|
|
if (isint(b))
|
|
return a | set(b);
|
|
}
|
|
if (isint(a))
|
|
return set(a) | b;
|
|
return newerror("Bad argument for set_or");
|
|
}
|
|
|
|
define set_and(a, b)
|
|
{
|
|
if (isint(a))
|
|
return set(a) & b;
|
|
if (isint(b))
|
|
return a & set(b);
|
|
if (!isset(a) || !isset(b))
|
|
return newerror("Bad argument for set_and");
|
|
return mkset(a.s & b.s);
|
|
}
|
|
|
|
|
|
define set_comp(a) = full() \ a;
|
|
|
|
define set_setminus(a,b)
|
|
{
|
|
if (isint(a))
|
|
return set(a) \ b;
|
|
if (isint(b))
|
|
return a \ set(b);
|
|
if (!isset(a) || !isset(b))
|
|
return newerror("Bad argument for set_setminus");
|
|
return mkset(a.s \ b.s);
|
|
}
|
|
|
|
|
|
define set_xor(a,b)
|
|
{
|
|
if (isint(a))
|
|
return set(a) ~ b;
|
|
if (isint(b))
|
|
return a ~ set(b);
|
|
if (!isset(a) || !isset(b))
|
|
return newerror("Bad argument for set_xor");
|
|
return mkset(a.s ~ b.s);
|
|
}
|
|
|
|
define set_content(a) = #a.s;
|
|
|
|
define set_add(a, b)
|
|
{
|
|
local s, i, j, m, n;
|
|
|
|
if (isint(a))
|
|
return set(a) + b;
|
|
if (isint(b))
|
|
return a + set(b);
|
|
if (!isset(a) || !isset(b))
|
|
return newerror("Bad argument for set_add");
|
|
if (!a || !b)
|
|
return empty();
|
|
m = highbit(a.s);
|
|
n = highbit(b.s);
|
|
s = M * char(0);
|
|
for (i = 0; i <= m; i++)
|
|
if (isin(a, i))
|
|
for (j = 0; j <= n && i + j < N; j++)
|
|
if (isin(b, j))
|
|
setbit(s, i + j);
|
|
return mkset(s);
|
|
}
|
|
|
|
define set_sub(a,b)
|
|
{
|
|
local s, i, j, m, n;
|
|
|
|
if (isint(b))
|
|
return a - set(b);
|
|
if (isint(a))
|
|
return set(a) - b;
|
|
if (isset(a) && isset(b)) {
|
|
if (!a || !b)
|
|
return empty();
|
|
m = highbit(a.s);
|
|
n = highbit(b.s);
|
|
s = M * char(0);
|
|
for (i = 0; i <= m; i++)
|
|
if (isin(a, i))
|
|
for (j = 0; j <= n && j <= i; j++)
|
|
if (isin(b, j))
|
|
setbit(s, i - j);
|
|
return mkset(s);
|
|
}
|
|
return newerror("Bad argument for set_sub");
|
|
}
|
|
|
|
define set_mul(a, b)
|
|
{
|
|
local s, i, j, m, n;
|
|
|
|
if (isset(a)) {
|
|
s = M * char(0);
|
|
m = highbit(a.s);
|
|
if (isset(b)) {
|
|
if (!a || !b)
|
|
return empty();
|
|
n = highbit(b.s);
|
|
for (i = 0; i <= m; ++i)
|
|
if (isin(a, i))
|
|
for (j = 1; j <= n && i * j < N; ++j)
|
|
if (isin(b, j))
|
|
setbit(s, i * j);
|
|
return mkset(s);
|
|
}
|
|
if (isint(b)) {
|
|
if (b == 0) {
|
|
if (a)
|
|
return set(0);
|
|
return empty();
|
|
}
|
|
s = M * char(0);
|
|
for (i = 0; i <= m && b * i < N; ++i)
|
|
if (isin(a, i))
|
|
setbit(s, b * i);
|
|
return mkset(s);
|
|
}
|
|
}
|
|
if (isint(a))
|
|
return b * a;
|
|
return newerror("Bad argument for set_mul");
|
|
}
|
|
|
|
define set_square(a)
|
|
{
|
|
local s, i, m;
|
|
|
|
s = M * char(0);
|
|
m = highbit(a.s);
|
|
for (i = 0; i <= m && i^2 < N; ++i)
|
|
if (bit(a.s, i))
|
|
setbit(s, i^2);
|
|
return mkset(s);
|
|
}
|
|
|
|
define set_pow(a, n)
|
|
{
|
|
local s, i, m;
|
|
|
|
if (!isint(n) || n < 0)
|
|
quit "Bad exponent for set_power";
|
|
s = M * char(0);
|
|
m = highbit(a.s);
|
|
for (i = 0; i <= m && i^n < N; ++i)
|
|
if (bit(a.s, i))
|
|
setbit(s, i^n);
|
|
return mkset(s);
|
|
}
|
|
|
|
define set_sum(a)
|
|
{
|
|
local v, m, i;
|
|
|
|
v = 0;
|
|
m = highbit(a.s);
|
|
for (i = 0; i <= m; ++i)
|
|
if (bit(a.s, i))
|
|
v += i;
|
|
return v;
|
|
}
|
|
|
|
define set_plus(a) = set_sum(a);
|
|
|
|
define interval(a, b)
|
|
{
|
|
local i, j, s;
|
|
static tail = "\0\1\3\7\17\37\77\177\377";
|
|
|
|
if (!isint(a) || !isint(b))
|
|
quit "Non-integer argument for interval";
|
|
if (a > b)
|
|
swap(a, b);
|
|
if (b < 0 || a >= N)
|
|
return empty();
|
|
a = max(a, 0);
|
|
b = min(b, N-1);
|
|
i = quo(a, 8, 0);
|
|
j = quo(b, 8, 0);
|
|
s = M * char(0);
|
|
if (i == j) {
|
|
s[i] = tail[b + 1 - 8 * i] \ tail[a - 8 * i];
|
|
return mkset(s);
|
|
}
|
|
s[i] = ~tail[a - 8 * i];
|
|
while (++i < j)
|
|
s[i] = -1;
|
|
s[j] = tail[b + 1 - 8 * j];
|
|
return mkset(s);
|
|
}
|
|
|
|
define isinterval(a)
|
|
{
|
|
local i, max, s;
|
|
|
|
if (!isset(a))
|
|
quit "Non-set argument for isinterval";
|
|
|
|
s = a.s;
|
|
if (!s)
|
|
return 0;
|
|
for (i = lowbit(s) + 1, max = highbit(s); i < max; i++)
|
|
if (!bit(s, i))
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
define set_mod(a, b)
|
|
{
|
|
local s, m, i, j;
|
|
|
|
if (isset(a) && isint(b)) {
|
|
s = M * char(0);
|
|
m = highbit(a.s);
|
|
for (i = 0; i <= m; i++)
|
|
if (bit(a.s, i))
|
|
for (j = 0; j < N; j++)
|
|
if (meq(i, j, b))
|
|
setbit(s, j);
|
|
return mkset(s);
|
|
}
|
|
return newerror("Bad argument for set_mod");
|
|
}
|
|
|
|
define randset(n, a, b)
|
|
{
|
|
local m, s, i;
|
|
|
|
if (isnull(a))
|
|
a = 0;
|
|
if (isnull(b))
|
|
b = N - 1;
|
|
if (!isint(n) || !isint(a) || !isint(b) || n < 0 || a < 0 || b < 0)
|
|
quit "Bad argument for randset";
|
|
if (a > b)
|
|
swap(a, b);
|
|
m = b - a + 1;
|
|
if (n > m)
|
|
return newerror("Too many numbers specified for randset");
|
|
if (2 * n > m)
|
|
return interval(a,b) \ randset(m - n, a, b);
|
|
++b;
|
|
s = M * char(0);
|
|
while (n-- > 0) {
|
|
do
|
|
i = rand(a, b);
|
|
while
|
|
(bit(s, i));
|
|
setbit(s, i);
|
|
}
|
|
return mkset(s);
|
|
}
|
|
|
|
define polyvals(L, A)
|
|
{
|
|
local s, m, v, i;
|
|
|
|
if (!islist(L))
|
|
quit "Non-list first argument for polyvals";
|
|
if (!isset(A))
|
|
quit "Non-set second argument for polyvals";
|
|
m = highbit(A.s);
|
|
s = M * char(0);
|
|
for (i = 0; i <= m; i++)
|
|
if (bit(A.s, i)) {
|
|
v = poly(L,i);
|
|
if (v >> 0 && v < N)
|
|
setbit(s, v);
|
|
}
|
|
return mkset(s);
|
|
}
|
|
|
|
define polyvals2(L, A, B)
|
|
{
|
|
local s1, s2, s, m, n, i, j, v;
|
|
|
|
s1 = A.s;
|
|
s2 = B.s;
|
|
m = highbit(s1);
|
|
n = highbit(s2);
|
|
s = M * char(0);
|
|
for (i = 0; i <= m; i++)
|
|
if (bit(s1, i))
|
|
for (j = 0; j <= n; j++)
|
|
if (bit(s2, j)) {
|
|
v = poly(L, i, j);
|
|
if (v >= 0 && v < N)
|
|
setbit(s, v);
|
|
}
|
|
return mkset(s);
|
|
}
|
|
|
|
define set_print(a)
|
|
{
|
|
local i, s, m;
|
|
|
|
s = a.s;
|
|
i = lowbit(s);
|
|
print "set(":;
|
|
if (i >= 0) {
|
|
print i:;
|
|
m = highbit(s);
|
|
while (++i <= m)
|
|
if (bit(s, i))
|
|
print ",":i:;
|
|
}
|
|
print ")",;
|
|
}
|
|
|
|
local N, M; /* End scope of static variables N, M */
|