Files
calc/cal/factorial.cal
Landon Curt Noll a31078bbec Remove all RCS @(#) lines and RCS strings
Some folks might think: “you still use RCS”?!?  And we will say,
hey, at least we switched from SCCS to RCS back in … I think it was
around 1994 ... at least we are keeping up! :-) :-) :-)

Logs say that SCCS version 18 became RCS version 19 on 1994 March 18.

RCS served us well.  But now it is time to move on.   And so we are
switching to git.

Calc releases produce a lot of file changes.  In the 125 releases
of calc since 1996, when I started managing calc releases, there
have been 15473 file mods!
2017-05-23 01:33:23 -07:00

201 lines
5.3 KiB
Plaintext

/*
* factorial - implementation of different algorithms for the factorial
*
* Copyright (C) 2013 Christoph Zurnieden
*
* Calc is open software; you can redistribute it and/or modify it under
* the terms of the version 2.1 of the GNU Lesser General Public License
* as published by the Free Software Foundation.
*
* Calc is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General
* Public License for more details.
*
* A copy of version 2.1 of the GNU Lesser General Public License is
* distributed with calc under the filename COPYING-LGPL. You should have
* received a copy with calc; if not, write to Free Software Foundation, Inc.
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Under source code control: 2013/08/11 01:31:28
* File existed as early as: 2013
*/
/*
* hide internal function from resource debugging
*/
static resource_debug_level;
resource_debug_level = config("resource_debug", 0);
/*
get dependencies
*/
read -once toomcook;
/* A simple list to keep things...uhm...simple?*/
static __CZ__primelist = list();
/* Helper for primorial: fill list with primes in range a,b */
define __CZ__fill_prime_list(a,b)
{
local k;
k=a;
if(isprime(k))k--;
while(1){
k = nextprime(k);
if(k > b) break;
append(__CZ__primelist,k );
}
}
/* Helper for factorial: how often prime p divides the factorial of n */
define __CZ__prime_divisors(n,p)
{
local q,m;
q = n;
m = 0;
if (p > n) return 0;
if (p > n/2) return 1;
while (q >= p) {
q = q//p;
m += q;
}
return m;
}
/*
Wrapper. Please set cut-offs to own taste and hardware.
*/
define factorial(n){
local prime result shift prime_list k k1 k2 expo_list pix cut primorial;
result = 1;
prime = 2;
if(!isint(n)) {
return newerror("factorial(n): n is not an integer"); ## or gamma(n)?
}
if(n < 0) return newerror("factorial(n): n < 0");
if(n < 9000 && !isdefined("test8900")) {
## builtin is implemented with splitting but only with
## Toom-Cook 2 (by Karatsuba (the father))
return n!;
}
shift = __CZ__prime_divisors(n,prime);
prime = 3;
cut = n//2;
pix = pix(cut);
prime_list = mat[pix];
expo_list = mat[pix];
k = 0;
/*
Peter Borwein's algorithm
@Article{journals/jal/Borwein85,
author = {Borwein, Peter B.},
title = {On the Complexity of Calculating Factorials.},
journal = {J. Algorithms},
year = {1985},
number = {3},
url = {http://dblp.uni-trier.de/db/journals/jal/jal6.html#Borwein85}
*/
do {
prime_list[k] = prime;
expo_list[k++] = __CZ__prime_divisors(n,prime);
prime = nextprime(prime);
}while(prime <= cut);
/* size of the largest exponent in bits */
k1 = highbit(expo_list[0]);
k2 = size(prime_list)-1;
for(;k1>=0;k1--){
/*
the cut-off for T-C-4 ist still to low, using T-C-3 here
TODO: check cutoffs
*/
result = toomcook3square(result);
/*
almost all time is spend in this loop, so cutting of the
upper half of the primes makes sense
*/
for(k=0; k<=k2; k++) {
if((expo_list[k] & (1 << k1)) != 0) {
result *= prime_list[k];
}
}
}
primorial = primorial( cut, n);
result *= primorial;
result <<= shift;
return result;
}
/*
Helper for primorial: do the product with binary splitting
TODO: do it without the intermediate list
*/
define __CZ__primorial__lowlevel( a, b ,p)
{
local c;
if( b == a) return p ;
if( b-a > 1){
c= (b + a) >> 1;
return __CZ__primorial__lowlevel( a , c , __CZ__primelist[a] )
* __CZ__primorial__lowlevel( c+1 , b , __CZ__primelist[b] ) ;
}
return __CZ__primelist[a] * __CZ__primelist[b];
}
/*
Primorial, Product of consecutive primes in range a,b
Originally meant to do primorials with a start different from 2, but
found out that this is faster at about a=1,b>=10^5 than the builtin
function pfact(). With the moderately small list a=1,b=10^6 (78498
primes) it is 3 times faster. A quick look-up showed what was already
guessed: pfact() does it linearly. (BTW: what is the time complexity
of the primorial with the naive algorithm?)
*/
define primorial(a,b)
{
local C1 C2;
if(!isint(a)) return newerror("primorial(a,b): a is not an integer");
else if(!isint(b)) return newerror("primorial(a,b): b is not an integer");
else if(a < 0) return newerror("primorial(a,b): a < 0");
else if( b < 2 ) return newerror("primorial(a,b): b < 2");
else if( b < a) return newerror("primorial(a,b): b < a");
else{
/* last prime < 2^32 is also max. prime for nextprime()*/
if(b >= 4294967291) return newerror("primorial(a,b): max. prime exceeded");
if(b == 2) return 2;
/*
Can be extended by way of pfact(b)/pfact(floor(a-1/2)) for small a
*/
if(a<=2 && b < 10^5) return pfact(b);
/* TODO: use pix() and a simple array (mat[])instead*/
__CZ__primelist = list();
__CZ__fill_prime_list(a,b);
C1 = size(__CZ__primelist)-1;
return __CZ__primorial__lowlevel( 0, C1,1)
}
}
/*
* restore internal function from resource debugging
* report important interface functions
*/
config("resource_debug", resource_debug_level),;
if (config("resource_debug") & 3) {
print "factorial(n)";
print "primorial(a, b)";
}