Files
calc/cal/brentsolve.cal
2021-02-12 22:09:47 -08:00

255 lines
5.8 KiB
Plaintext

/*
* brentsolve - Root finding with the Brent-Dekker trick
*
* Copyright (C) 2013 Christoph Zurnieden
*
* Calc is open software; you can redistribute it and/or modify it under
* the terms of the version 2.1 of the GNU Lesser General Public License
* as published by the Free Software Foundation.
*
* Calc is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General
* Public License for more details.
*
* A copy of version 2.1 of the GNU Lesser General Public License is
* distributed with calc under the filename COPYING-LGPL. You should have
* received a copy with calc; if not, write to Free Software Foundation, Inc.
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Under source code control: 2013/08/11 01:31:28
* File existed as early as: 2013
*/
static resource_debug_level;
resource_debug_level = config("resource_debug", 0);
/*
A short explanation is at http://en.wikipedia.org/wiki/Brent%27s_method
I tried to follow the description at wikipedia as much as possible to make
the slight changes I did more visible.
You may give http://people.sc.fsu.edu/~jburkardt/cpp_src/brent/brent.html a
short glimpse (Brent's originl Fortran77 versions and some translations of
it).
*/
static true = 1;
static false = 0;
define brentsolve(low, high,eps){
local a b c d fa fb fc fa2 fb2 fc2 s fs tmp tmp2 mflag i places;
a = low;
b = high;
c = 0;
if(isnull(eps))
eps = epsilon(epsilon()*1e-3);
places = highbit(1 + int( 1/epsilon() ) ) + 1;
d = 1/eps;
fa = f(a);
fb = f(b);
fc = 0;
s = 0;
fs = 0;
if(fa * fb >= 0){
if(fa < fb){
epsilon(eps);
return a;
}
else{
epsilon(eps);
return b;
}
}
if(abs(fa) < abs(fb)){
tmp = a; a = b; b = tmp;
tmp = fa; fa = fb; fb = tmp;
}
c = a;
fc = fa;
mflag = 1;
i = 0;
while(!(fb==0) && (abs(a-b) > eps)){
if((fa != fc) && (fb != fc)){
/* Inverse quadratic interpolation*/
fc2 = fc^2;
fa2 = fa^2;
s = bround(((fb^2*((fc*a)-(c*fa)))+(fb*((c*fa2)-(fc2*a)))+(b*((fc2*fa)
-(fc*fa2))))/((fc - fb)*(fa - fb)*(fc - fa)),places++);
}
else{
/* Secant Rule*/
s =bround( b - fb * (b - a) / (fb - fa),places++);
}
tmp2 = (3 * a + b) / 4;
if( (!( ((s > tmp2) && (s < b))||((s < tmp2) && (s > b))))
|| (mflag && (abs(s - b) >= (abs(b - c) / 2)))
|| (!mflag && (abs(s - b) >= (abs(c - d) / 2)))) {
s = (a + b) / 2;
mflag = true;
}
else{
if( (mflag && (abs(b - c) < eps))
|| (!mflag && (abs(c - d) < eps))) {
s = (a + b) / 2;
mflag = true;
}
else
mflag = false;
}
fs = f(s);
c = b;
fc = fb;
if (fa * fs < 0){
b = s;
fb = fs;
}
else {
a = s;
fa = fs;
}
if (abs(fa) < abs(fb)){
tmp = a; a = b; b = tmp;
tmp = fa; fa = fb; fb = tmp;
}
i++;
if (i > 1000){
epsilon(eps);
return newerror("brentsolve: does not converge");
}
}
epsilon(eps);
return b;
}
/*
A variation of the solver to accept functions named differently from "f". The
code should explain it.
*/
define brentsolve2(low, high,which,eps){
local a b c d fa fb fc fa2 fb2 fc2 s fs tmp tmp2 mflag i places;
a = low;
b = high;
c = 0;
switch(param(0)){
case 0:
case 1: return newerror("brentsolve2: not enough arguments");
case 2: eps = epsilon(epsilon()*1e-2);
which = 0;break;
case 3: eps = epsilon(epsilon()*1e-2);break;
default: break;
};
places = highbit(1 + int(1/epsilon())) + 1;
d = 1/eps;
switch(which){
case 1: fa = __CZ__invbeta(a);
fb = __CZ__invbeta(b); break;
case 2: fa = __CZ__invincgamma(a);
fb = __CZ__invincgamma(b); break;
default: fa = f(a);fb = f(b); break;
};
fc = 0;
s = 0;
fs = 0;
if(fa * fb >= 0){
if(fa < fb)
return a;
else
return b;
}
if(abs(fa) < abs(fb)){
tmp = a; a = b; b = tmp;
tmp = fa; fa = fb; fb = tmp;
}
c = a;
fc = fa;
mflag = 1;
i = 0;
while(!(fb==0) && (abs(a-b) > eps)){
if((fa != fc) && (fb != fc)){
/* Inverse quadratic interpolation*/
fc2 = fc^2;
fa2 = fa^2;
s = bround(((fb^2*((fc*a)-(c*fa)))+(fb*((c*fa2)-(fc2*a)))+(b*((fc2*fa)
-(fc*fa2))))/((fc - fb)*(fa - fb)*(fc - fa)),places);
places++;
}
else{
/* Secant Rule*/
s =bround( b - fb * (b - a) / (fb - fa),places);
places++;
}
tmp2 = (3 * a + b) / 4;
if( (!( ((s > tmp2) && (s < b))||((s < tmp2) && (s > b))))
|| (mflag && (abs(s - b) >= (abs(b - c) / 2)))
|| (!mflag && (abs(s - b) >= (abs(c - d) / 2)))) {
s = (a + b) / 2;
mflag = true;
}
else{
if( (mflag && (abs(b - c) < eps))
|| (!mflag && (abs(c - d) < eps))) {
s = (a + b) / 2;
mflag = true;
}
else
mflag = false;
}
switch(which){
case 1: fs = __CZ__invbeta(s); break;
case 2: fs = __CZ__invincgamma(s); break;
default: fs = f(s); break;
};
c = b;
fc = fb;
if (fa * fs < 0){
b = s;
fb = fs;
}
else {
a = s;
fa = fs;
}
if (abs(fa) < abs(fb)){
tmp = a; a = b; b = tmp;
tmp = fa; fa = fb; fb = tmp;
}
i++;
if (i > 1000){
return newerror("brentsolve2: does not converge");
}
}
return b;
}
/*
* restore internal function from resource debugging
*/
config("resource_debug", resource_debug_level),;
if (config("resource_debug") & 3) {
print "brentsolve(low, high,eps)";
print "brentsolve2(low, high,which,eps)";
}