Files
calc/lib/randrun.cal
2017-05-21 15:38:25 -07:00

128 lines
3.6 KiB
Plaintext

/*
* randrun - perform a run test on rand()
*
* If X(j) < X(j+1) < ... X(j+k) >= X(j+k+1), then we have a run of 'k'.
* We ignore the run breaker, X(j+k+1), and start with X(j+k+2) when
* considering a new run in order to make our runs chi independent.
*
* See Knuth's "Art of Computer Programming - 2nd edition",
* Volume 2 ("Seminumerical Algorithms"), Section 3.3.2.
* "G. Run test", pp. 65-68,
* "problem #14", pp. 74, 536.
*
* We use the suggestion in problem #14 to allow an application of the
* chi-square test and to make estimating the run length probs easy.
*/
/*
* Copyright 1995 by Landon Curt Noll. All Rights Reserved.
*
* Permission to use, copy, modify, and distribute this software and
* its documentation for any purpose and without fee is hereby granted,
* provided that the above copyright, this permission notice, and the
* disclaimer below appear in all of the following:
*
* * supporting documentation
* * source copies
* * source works derived from this source
* * binaries derived from this source or from derived source
*
* LANDON CURT NOLL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
* INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
* EVENT SHALL LANDON CURT NOLL BE LIABLE FOR ANY SPECIAL, INDIRECT OR
* CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
* USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
* OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
define randrun(run_cnt)
{
local i; /* index */
local max_run; /* longest run */
local long_run_cnt; /* number of runs longer than MAX_RUN */
local run; /* current run length */
local tally_sum; /* sum of all tally values */
local last; /* last random number */
local current; /* current random number */
local MAX_RUN = 9; /* max run we will keep track of */
local mat tally[1:MAX_RUN]; /* tally of length of a rise run of 'x' */
local mat prob[1:MAX_RUN]; /* prob[x] = probability of 'x' length run */
/*
* parse args
*/
if (param(0) == 0) {
run_cnt = 65536;
}
/*
* run setup
*/
max_run = 0; /* no runs yet */
long_run_cnt = 0; /* no long runs set */
current = rand(); /* our first number */
run = 1;
/*
* compute the run length probabilities
*
* A run length of 'r' occurs with a probability of:
*
* 1/r! - 1/(r+1)!
*/
for (i=1; i <= MAX_RUN; ++i) {
prob[i] = 1.0/fact(i) - 1.0/fact(i+1);
}
/*
* look at a number of random number trials
*/
for (i=0; i < run_cnt; ++i) {
/* get our current number */
last = current;
current = rand();
/* look for a run break */
if (current < last) {
/* record the stats */
if (run > max_run) {
max_run = run;
}
if (run > MAX_RUN) {
++long_run_cnt;
} else {
++tally[run];
}
/* start a new run */
current = rand();
run = 1;
/* note the continuing run */
} else {
++run;
}
}
/* determine the number of runs found */
tally_sum = matsum(tally) + long_run_cnt;
/*
* print the stats
*/
printf("rand run test used %d values to produce %d runs\n",
run_cnt, tally_sum);
for (i=1; i <= MAX_RUN; ++i) {
printf("length=%d\tprob=%9.7f\texpect=%d \tcount=%d \terr=%9.7f\n",
i, prob[i], round(tally_sum*prob[i]), tally[i],
(tally[i] - round(tally_sum*prob[i]))/tally_sum);
}
printf("length>%d\t\t\t\t\tcount=%d\n", MAX_RUN, long_run_cnt);
printf("max length=%d\n", max_run);
}
if (config("lib_debug") >= 0) {
print "randrun([run_length]) defined";
}