mirror of
https://github.com/lcn2/calc.git
synced 2025-08-16 01:03:29 +03:00
Some folks might think: “you still use RCS”?!? And we will say, hey, at least we switched from SCCS to RCS back in … I think it was around 1994 ... at least we are keeping up! :-) :-) :-) Logs say that SCCS version 18 became RCS version 19 on 1994 March 18. RCS served us well. But now it is time to move on. And so we are switching to git. Calc releases produce a lot of file changes. In the 125 releases of calc since 1996, when I started managing calc releases, there have been 15473 file mods!
1813 lines
37 KiB
C
1813 lines
37 KiB
C
/*
|
|
* matfunc - extended precision rational arithmetic matrix functions
|
|
*
|
|
* Copyright (C) 1999-2007 David I. Bell
|
|
*
|
|
* Calc is open software; you can redistribute it and/or modify it under
|
|
* the terms of the version 2.1 of the GNU Lesser General Public License
|
|
* as published by the Free Software Foundation.
|
|
*
|
|
* Calc is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General
|
|
* Public License for more details.
|
|
*
|
|
* A copy of version 2.1 of the GNU Lesser General Public License is
|
|
* distributed with calc under the filename COPYING-LGPL. You should have
|
|
* received a copy with calc; if not, write to Free Software Foundation, Inc.
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*
|
|
* Under source code control: 1990/02/15 01:48:18
|
|
* File existed as early as: before 1990
|
|
*
|
|
* Share and enjoy! :-) http://www.isthe.com/chongo/tech/comp/calc/
|
|
*/
|
|
|
|
/*
|
|
* Extended precision rational arithmetic matrix functions.
|
|
* Matrices can contain arbitrary types of elements.
|
|
*/
|
|
|
|
#include "value.h"
|
|
#include "zrand.h"
|
|
#include "calcerr.h"
|
|
|
|
#include "have_unused.h"
|
|
|
|
E_FUNC long irand(long s);
|
|
|
|
S_FUNC void matswaprow(MATRIX *m, long r1, long r2);
|
|
S_FUNC void matsubrow(MATRIX *m, long oprow, long baserow, VALUE *mulval);
|
|
S_FUNC void matmulrow(MATRIX *m, long row, VALUE *mulval);
|
|
S_FUNC MATRIX *matident(MATRIX *m);
|
|
|
|
|
|
|
|
/*
|
|
* Add two compatible matrices.
|
|
*/
|
|
MATRIX *
|
|
matadd(MATRIX *m1, MATRIX *m2)
|
|
{
|
|
int dim;
|
|
|
|
long min1, min2, max1, max2, index;
|
|
VALUE *v1, *v2, *vres;
|
|
MATRIX *res;
|
|
MATRIX tmp;
|
|
|
|
if (m1->m_dim != m2->m_dim) {
|
|
math_error("Incompatible matrix dimensions for add");
|
|
/*NOTREACHED*/
|
|
}
|
|
tmp.m_dim = m1->m_dim;
|
|
tmp.m_size = m1->m_size;
|
|
for (dim = 0; dim < m1->m_dim; dim++) {
|
|
min1 = m1->m_min[dim];
|
|
max1 = m1->m_max[dim];
|
|
min2 = m2->m_min[dim];
|
|
max2 = m2->m_max[dim];
|
|
if ((min1 && min2 && (min1 != min2)) ||
|
|
((max1-min1) != (max2-min2))) {
|
|
math_error("Incompatible matrix bounds for add");
|
|
/*NOTREACHED*/
|
|
}
|
|
tmp.m_min[dim] = (min1 ? min1 : min2);
|
|
tmp.m_max[dim] = tmp.m_min[dim] + (max1 - min1);
|
|
}
|
|
res = matalloc(m1->m_size);
|
|
*res = tmp;
|
|
v1 = m1->m_table;
|
|
v2 = m2->m_table;
|
|
vres = res->m_table;
|
|
for (index = m1->m_size; index > 0; index--)
|
|
addvalue(v1++, v2++, vres++);
|
|
return res;
|
|
}
|
|
|
|
|
|
/*
|
|
* Subtract two compatible matrices.
|
|
*/
|
|
MATRIX *
|
|
matsub(MATRIX *m1, MATRIX *m2)
|
|
{
|
|
int dim;
|
|
long min1, min2, max1, max2, index;
|
|
VALUE *v1, *v2, *vres;
|
|
MATRIX *res;
|
|
MATRIX tmp;
|
|
|
|
if (m1->m_dim != m2->m_dim) {
|
|
math_error("Incompatible matrix dimensions for sub");
|
|
/*NOTREACHED*/
|
|
}
|
|
tmp.m_dim = m1->m_dim;
|
|
tmp.m_size = m1->m_size;
|
|
for (dim = 0; dim < m1->m_dim; dim++) {
|
|
min1 = m1->m_min[dim];
|
|
max1 = m1->m_max[dim];
|
|
min2 = m2->m_min[dim];
|
|
max2 = m2->m_max[dim];
|
|
if ((min1 && min2 && (min1 != min2)) ||
|
|
((max1-min1) != (max2-min2))) {
|
|
math_error("Incompatible matrix bounds for sub");
|
|
/*NOTREACHED*/
|
|
}
|
|
tmp.m_min[dim] = (min1 ? min1 : min2);
|
|
tmp.m_max[dim] = tmp.m_min[dim] + (max1 - min1);
|
|
}
|
|
res = matalloc(m1->m_size);
|
|
*res = tmp;
|
|
v1 = m1->m_table;
|
|
v2 = m2->m_table;
|
|
vres = res->m_table;
|
|
for (index = m1->m_size; index > 0; index--)
|
|
subvalue(v1++, v2++, vres++);
|
|
return res;
|
|
}
|
|
|
|
|
|
/*
|
|
* Produce the negative of a matrix.
|
|
*/
|
|
MATRIX *
|
|
matneg(MATRIX *m)
|
|
{
|
|
register VALUE *val, *vres;
|
|
long index;
|
|
MATRIX *res;
|
|
|
|
res = matalloc(m->m_size);
|
|
*res = *m;
|
|
val = m->m_table;
|
|
vres = res->m_table;
|
|
for (index = m->m_size; index > 0; index--)
|
|
negvalue(val++, vres++);
|
|
return res;
|
|
}
|
|
|
|
|
|
/*
|
|
* Multiply two compatible matrices.
|
|
*/
|
|
MATRIX *
|
|
matmul(MATRIX *m1, MATRIX *m2)
|
|
{
|
|
register MATRIX *res;
|
|
long i1, i2, max1, max2, index, maxindex;
|
|
VALUE *v1, *v2, *vres;
|
|
VALUE sum, tmp1, tmp2;
|
|
|
|
if (m1->m_dim == 0) {
|
|
i2 = m2->m_size;
|
|
v2 = m2->m_table;
|
|
res = matalloc(i2);
|
|
*res = *m2;
|
|
vres = res->m_table;
|
|
while (i2-- > 0)
|
|
mulvalue(m1->m_table, v2++, vres++);
|
|
return res;
|
|
}
|
|
if (m2->m_dim == 0) {
|
|
i1 = m1->m_size;
|
|
v1 = m1->m_table;
|
|
res = matalloc(i1);
|
|
*res = *m1;
|
|
vres = res->m_table;
|
|
while (i1-- > 0)
|
|
mulvalue(v1++, m2->m_table, vres++);
|
|
return res;
|
|
}
|
|
if (m1->m_dim == 1 && m2->m_dim == 1) {
|
|
if (m1->m_max[0]-m1->m_min[0] != m2->m_max[0]-m2->m_min[0]) {
|
|
math_error("Incompatible bounds for 1D * 1D matmul");
|
|
/*NOTREACHED*/
|
|
}
|
|
res = matalloc(m1->m_size);
|
|
*res = *m1;
|
|
v1 = m1->m_table;
|
|
v2 = m2->m_table;
|
|
vres = res->m_table;
|
|
for (index = m1->m_size; index > 0; index--)
|
|
mulvalue(v1++, v2++, vres++);
|
|
return res;
|
|
}
|
|
if (m1->m_dim == 1 && m2->m_dim == 2) {
|
|
if (m1->m_max[0]-m1->m_min[0] != m2->m_max[0]-m2->m_min[0]) {
|
|
math_error("Incompatible bounds for 1D * 2D matmul");
|
|
/*NOTREACHED*/
|
|
}
|
|
res = matalloc(m2->m_size);
|
|
*res = *m2;
|
|
i1 = m1->m_max[0] - m1->m_min[0] + 1;
|
|
max2 = m2->m_max[1] - m2->m_min[1] + 1;
|
|
v1 = m1->m_table;
|
|
v2 = m2->m_table;
|
|
vres = res->m_table;
|
|
while (i1-- > 0) {
|
|
i2 = max2;
|
|
while (i2-- > 0)
|
|
mulvalue(v1, v2++, vres++);
|
|
v1++;
|
|
}
|
|
return res;
|
|
}
|
|
if (m1->m_dim == 2 && m2->m_dim == 1) {
|
|
if (m1->m_max[1]-m1->m_min[1] != m2->m_max[0]-m2->m_min[0]) {
|
|
math_error("Incompatible bounds for 2D * 1D matmul");
|
|
/*NOTREACHED*/
|
|
}
|
|
res = matalloc(m1->m_size);
|
|
*res = *m1;
|
|
i1 = m1->m_max[0] - m1->m_min[0] + 1;
|
|
max1 = m1->m_max[1] - m1->m_min[1] + 1;
|
|
v1 = m1->m_table;
|
|
vres = res->m_table;
|
|
while (i1-- > 0) {
|
|
v2 = m2->m_table;
|
|
i2 = max1;
|
|
while (i2-- > 0)
|
|
mulvalue(v1++, v2++, vres++);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
if ((m1->m_dim != 2) || (m2->m_dim != 2)) {
|
|
math_error("Matrix dimensions not compatible for mul");
|
|
/*NOTREACHED*/
|
|
}
|
|
if ((m1->m_max[1]-m1->m_min[1]) != (m2->m_max[0]-m2->m_min[0])) {
|
|
math_error("Incompatible bounds for 2D * 2D matrix mul");
|
|
/*NOTREACHED*/
|
|
}
|
|
max1 = (m1->m_max[0] - m1->m_min[0] + 1);
|
|
max2 = (m2->m_max[1] - m2->m_min[1] + 1);
|
|
maxindex = (m1->m_max[1] - m1->m_min[1] + 1);
|
|
res = matalloc(max1 * max2);
|
|
res->m_dim = 2;
|
|
res->m_min[0] = m1->m_min[0];
|
|
res->m_max[0] = m1->m_max[0];
|
|
res->m_min[1] = m2->m_min[1];
|
|
res->m_max[1] = m2->m_max[1];
|
|
for (i1 = 0; i1 < max1; i1++) {
|
|
for (i2 = 0; i2 < max2; i2++) {
|
|
sum.v_type = V_NULL;
|
|
sum.v_subtype = V_NOSUBTYPE;
|
|
v1 = &m1->m_table[i1 * maxindex];
|
|
v2 = &m2->m_table[i2];
|
|
for (index = 0; index < maxindex; index++) {
|
|
mulvalue(v1, v2, &tmp1);
|
|
addvalue(&sum, &tmp1, &tmp2);
|
|
freevalue(&tmp1);
|
|
freevalue(&sum);
|
|
sum = tmp2;
|
|
v1++;
|
|
if (index+1 < maxindex)
|
|
v2 += max2;
|
|
}
|
|
index = (i1 * max2) + i2;
|
|
res->m_table[index] = sum;
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
|
|
/*
|
|
* Square a matrix.
|
|
*/
|
|
MATRIX *
|
|
matsquare(MATRIX *m)
|
|
{
|
|
register MATRIX *res;
|
|
long i1, i2, max, index;
|
|
VALUE *v1, *v2;
|
|
VALUE sum, tmp1, tmp2;
|
|
|
|
if (m->m_dim < 2) {
|
|
res = matalloc(m->m_size);
|
|
*res = *m;
|
|
v1 = m->m_table;
|
|
v2 = res->m_table;
|
|
for (index = m->m_size; index > 0; index--)
|
|
squarevalue(v1++, v2++);
|
|
return res;
|
|
}
|
|
if (m->m_dim != 2) {
|
|
math_error("Matrix dimension exceeds two for square");
|
|
/*NOTREACHED*/
|
|
}
|
|
if ((m->m_max[0] - m->m_min[0]) != (m->m_max[1] - m->m_min[1])) {
|
|
math_error("Squaring non-square matrix");
|
|
/*NOTREACHED*/
|
|
}
|
|
max = (m->m_max[0] - m->m_min[0] + 1);
|
|
res = matalloc(max * max);
|
|
res->m_dim = 2;
|
|
res->m_min[0] = m->m_min[0];
|
|
res->m_max[0] = m->m_max[0];
|
|
res->m_min[1] = m->m_min[1];
|
|
res->m_max[1] = m->m_max[1];
|
|
for (i1 = 0; i1 < max; i1++) {
|
|
for (i2 = 0; i2 < max; i2++) {
|
|
sum.v_type = V_NULL;
|
|
sum.v_subtype = V_NOSUBTYPE;
|
|
v1 = &m->m_table[i1 * max];
|
|
v2 = &m->m_table[i2];
|
|
for (index = 0; index < max; index++) {
|
|
mulvalue(v1, v2, &tmp1);
|
|
addvalue(&sum, &tmp1, &tmp2);
|
|
freevalue(&tmp1);
|
|
freevalue(&sum);
|
|
sum = tmp2;
|
|
v1++;
|
|
v2 += max;
|
|
}
|
|
index = (i1 * max) + i2;
|
|
res->m_table[index] = sum;
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
|
|
/*
|
|
* Compute the result of raising a matrix to an integer power if
|
|
* dimension <= 2 and for dimension == 2, the matrix is square.
|
|
* Negative powers mean the positive power of the inverse.
|
|
* Note: This calculation could someday be improved for large powers
|
|
* by using the characteristic polynomial of the matrix.
|
|
*
|
|
* given:
|
|
* m matrix to be raised
|
|
* q power to raise it to
|
|
*/
|
|
MATRIX *
|
|
matpowi(MATRIX *m, NUMBER *q)
|
|
{
|
|
MATRIX *res, *tmp;
|
|
long power; /* power to raise to */
|
|
FULL bit; /* current bit value */
|
|
|
|
if (m->m_dim > 2) {
|
|
math_error("Matrix dimension greater than 2 for power");
|
|
/*NOTREACHED*/
|
|
}
|
|
if (m->m_dim == 2 && (m->m_max[0] - m->m_min[0] !=
|
|
m->m_max[1] - m->m_min[1])) {
|
|
math_error("Raising non-square 2D matrix to a power");
|
|
/*NOTREACHED*/
|
|
}
|
|
if (qisfrac(q)) {
|
|
math_error("Raising matrix to non-integral power");
|
|
/*NOTREACHED*/
|
|
}
|
|
if (zge31b(q->num)) {
|
|
math_error("Raising matrix to very large power");
|
|
/*NOTREACHED*/
|
|
}
|
|
power = ztolong(q->num);
|
|
if (qisneg(q))
|
|
power = -power;
|
|
/*
|
|
* Handle some low powers specially
|
|
*/
|
|
if ((power <= 4) && (power >= -2)) {
|
|
switch ((int) power) {
|
|
case 0:
|
|
return matident(m);
|
|
case 1:
|
|
return matcopy(m);
|
|
case -1:
|
|
return matinv(m);
|
|
case 2:
|
|
return matsquare(m);
|
|
case -2:
|
|
tmp = matinv(m);
|
|
res = matsquare(tmp);
|
|
matfree(tmp);
|
|
return res;
|
|
case 3:
|
|
tmp = matsquare(m);
|
|
res = matmul(m, tmp);
|
|
matfree(tmp);
|
|
return res;
|
|
case 4:
|
|
tmp = matsquare(m);
|
|
res = matsquare(tmp);
|
|
matfree(tmp);
|
|
return res;
|
|
}
|
|
}
|
|
if (power < 0) {
|
|
m = matinv(m);
|
|
power = -power;
|
|
}
|
|
/*
|
|
* Compute the power by squaring and multiplying.
|
|
* This uses the left to right method of power raising.
|
|
*/
|
|
bit = TOPFULL;
|
|
while ((bit & power) == 0)
|
|
bit >>= 1L;
|
|
bit >>= 1L;
|
|
res = matsquare(m);
|
|
if (bit & power) {
|
|
tmp = matmul(res, m);
|
|
matfree(res);
|
|
res = tmp;
|
|
}
|
|
bit >>= 1L;
|
|
while (bit) {
|
|
tmp = matsquare(res);
|
|
matfree(res);
|
|
res = tmp;
|
|
if (bit & power) {
|
|
tmp = matmul(res, m);
|
|
matfree(res);
|
|
res = tmp;
|
|
}
|
|
bit >>= 1L;
|
|
}
|
|
if (qisneg(q))
|
|
matfree(m);
|
|
return res;
|
|
}
|
|
|
|
|
|
/*
|
|
* Calculate the cross product of two one dimensional matrices each
|
|
* with three components.
|
|
* m3 = matcross(m1, m2);
|
|
*/
|
|
MATRIX *
|
|
matcross(MATRIX *m1, MATRIX *m2)
|
|
{
|
|
MATRIX *res;
|
|
VALUE *v1, *v2, *vr;
|
|
VALUE tmp1, tmp2;
|
|
|
|
res = matalloc(3L);
|
|
res->m_dim = 1;
|
|
res->m_min[0] = 0;
|
|
res->m_max[0] = 2;
|
|
v1 = m1->m_table;
|
|
v2 = m2->m_table;
|
|
vr = res->m_table;
|
|
mulvalue(v1 + 1, v2 + 2, &tmp1);
|
|
mulvalue(v1 + 2, v2 + 1, &tmp2);
|
|
subvalue(&tmp1, &tmp2, vr + 0);
|
|
freevalue(&tmp1);
|
|
freevalue(&tmp2);
|
|
mulvalue(v1 + 2, v2 + 0, &tmp1);
|
|
mulvalue(v1 + 0, v2 + 2, &tmp2);
|
|
subvalue(&tmp1, &tmp2, vr + 1);
|
|
freevalue(&tmp1);
|
|
freevalue(&tmp2);
|
|
mulvalue(v1 + 0, v2 + 1, &tmp1);
|
|
mulvalue(v1 + 1, v2 + 0, &tmp2);
|
|
subvalue(&tmp1, &tmp2, vr + 2);
|
|
freevalue(&tmp1);
|
|
freevalue(&tmp2);
|
|
return res;
|
|
}
|
|
|
|
|
|
/*
|
|
* Return the dot product of two matrices.
|
|
* result = matdot(m1, m2);
|
|
*/
|
|
VALUE
|
|
matdot(MATRIX *m1, MATRIX *m2)
|
|
{
|
|
VALUE *v1, *v2;
|
|
VALUE result, tmp1, tmp2;
|
|
long len;
|
|
|
|
v1 = m1->m_table;
|
|
v2 = m2->m_table;
|
|
mulvalue(v1, v2, &result);
|
|
len = m1->m_size;
|
|
while (--len > 0) {
|
|
mulvalue(++v1, ++v2, &tmp1);
|
|
addvalue(&result, &tmp1, &tmp2);
|
|
freevalue(&tmp1);
|
|
freevalue(&result);
|
|
result = tmp2;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
/*
|
|
* Scale the elements of a matrix by a specified power of two.
|
|
*
|
|
* given:
|
|
* m matrix to be scaled
|
|
* n scale factor
|
|
*/
|
|
MATRIX *
|
|
matscale(MATRIX *m, long n)
|
|
{
|
|
register VALUE *val, *vres;
|
|
VALUE temp;
|
|
long index;
|
|
MATRIX *res; /* resulting matrix */
|
|
|
|
if (n == 0)
|
|
return matcopy(m);
|
|
temp.v_type = V_NUM;
|
|
temp.v_subtype = V_NOSUBTYPE;
|
|
temp.v_num = itoq(n);
|
|
res = matalloc(m->m_size);
|
|
*res = *m;
|
|
val = m->m_table;
|
|
vres = res->m_table;
|
|
for (index = m->m_size; index > 0; index--)
|
|
scalevalue(val++, &temp, vres++);
|
|
qfree(temp.v_num);
|
|
return res;
|
|
}
|
|
|
|
|
|
/*
|
|
* Shift the elements of a matrix by the specified number of bits.
|
|
* Positive shift means leftwards, negative shift rightwards.
|
|
*
|
|
* given:
|
|
* m matrix to be shifted
|
|
* n shift count
|
|
*/
|
|
MATRIX *
|
|
matshift(MATRIX *m, long n)
|
|
{
|
|
register VALUE *val, *vres;
|
|
VALUE temp;
|
|
long index;
|
|
MATRIX *res; /* resulting matrix */
|
|
|
|
if (n == 0)
|
|
return matcopy(m);
|
|
temp.v_type = V_NUM;
|
|
temp.v_subtype = V_NOSUBTYPE;
|
|
temp.v_num = itoq(n);
|
|
res = matalloc(m->m_size);
|
|
*res = *m;
|
|
val = m->m_table;
|
|
vres = res->m_table;
|
|
for (index = m->m_size; index > 0; index--)
|
|
shiftvalue(val++, &temp, FALSE, vres++);
|
|
qfree(temp.v_num);
|
|
return res;
|
|
}
|
|
|
|
|
|
/*
|
|
* Multiply the elements of a matrix by a specified value.
|
|
*
|
|
* given:
|
|
* m matrix to be multiplied
|
|
* vp value to multiply by
|
|
*/
|
|
MATRIX *
|
|
matmulval(MATRIX *m, VALUE *vp)
|
|
{
|
|
register VALUE *val, *vres;
|
|
long index;
|
|
MATRIX *res;
|
|
|
|
res = matalloc(m->m_size);
|
|
*res = *m;
|
|
val = m->m_table;
|
|
vres = res->m_table;
|
|
for (index = m->m_size; index > 0; index--)
|
|
mulvalue(val++, vp, vres++);
|
|
return res;
|
|
}
|
|
|
|
|
|
/*
|
|
* Divide the elements of a matrix by a specified value, keeping
|
|
* only the integer quotient.
|
|
*
|
|
* given:
|
|
* m matrix to be divided
|
|
* vp value to divide by
|
|
* v3 rounding type parameter
|
|
*/
|
|
MATRIX *
|
|
matquoval(MATRIX *m, VALUE *vp, VALUE *v3)
|
|
{
|
|
register VALUE *val, *vres;
|
|
long index;
|
|
MATRIX *res;
|
|
|
|
if ((vp->v_type == V_NUM) && qiszero(vp->v_num)) {
|
|
math_error("Division by zero");
|
|
/*NOTREACHED*/
|
|
}
|
|
res = matalloc(m->m_size);
|
|
*res = *m;
|
|
val = m->m_table;
|
|
vres = res->m_table;
|
|
for (index = m->m_size; index > 0; index--)
|
|
quovalue(val++, vp, v3, vres++);
|
|
return res;
|
|
}
|
|
|
|
|
|
/*
|
|
* Divide the elements of a matrix by a specified value, keeping
|
|
* only the remainder of the division.
|
|
*
|
|
* given:
|
|
* m matrix to be divided
|
|
* vp value to divide by
|
|
* v3 rounding type parameter
|
|
*/
|
|
MATRIX *
|
|
matmodval(MATRIX *m, VALUE *vp, VALUE *v3)
|
|
{
|
|
register VALUE *val, *vres;
|
|
long index;
|
|
MATRIX *res;
|
|
|
|
if ((vp->v_type == V_NUM) && qiszero(vp->v_num)) {
|
|
math_error("Division by zero");
|
|
/*NOTREACHED*/
|
|
}
|
|
res = matalloc(m->m_size);
|
|
*res = *m;
|
|
val = m->m_table;
|
|
vres = res->m_table;
|
|
for (index = m->m_size; index > 0; index--)
|
|
modvalue(val++, vp, v3, vres++);
|
|
return res;
|
|
}
|
|
|
|
|
|
VALUE
|
|
mattrace(MATRIX *m)
|
|
{
|
|
VALUE *vp;
|
|
VALUE sum;
|
|
VALUE tmp;
|
|
long i, j;
|
|
|
|
if (m->m_dim < 2) {
|
|
matsum(m, &sum);
|
|
return sum;
|
|
}
|
|
if (m->m_dim != 2)
|
|
return error_value(E_MATTRACE2);
|
|
i = (m->m_max[0] - m->m_min[0] + 1);
|
|
j = (m->m_max[1] - m->m_min[1] + 1);
|
|
if (i != j)
|
|
return error_value(E_MATTRACE3);
|
|
vp = m->m_table;
|
|
copyvalue(vp, &sum);
|
|
j++;
|
|
while (--i > 0) {
|
|
vp += j;
|
|
addvalue(&sum, vp, &tmp);
|
|
freevalue(&sum);
|
|
sum = tmp;
|
|
}
|
|
return sum;
|
|
}
|
|
|
|
|
|
/*
|
|
* Transpose a 2-dimensional matrix
|
|
*/
|
|
MATRIX *
|
|
mattrans(MATRIX *m)
|
|
{
|
|
register VALUE *v1, *v2; /* current values */
|
|
long rows, cols; /* rows and columns in new matrix */
|
|
long row, col; /* current row and column */
|
|
MATRIX *res;
|
|
|
|
if (m->m_dim < 2)
|
|
return matcopy(m);
|
|
res = matalloc(m->m_size);
|
|
res->m_dim = 2;
|
|
res->m_min[0] = m->m_min[1];
|
|
res->m_max[0] = m->m_max[1];
|
|
res->m_min[1] = m->m_min[0];
|
|
res->m_max[1] = m->m_max[0];
|
|
rows = (m->m_max[1] - m->m_min[1] + 1);
|
|
cols = (m->m_max[0] - m->m_min[0] + 1);
|
|
v1 = res->m_table;
|
|
for (row = 0; row < rows; row++) {
|
|
v2 = &m->m_table[row];
|
|
for (col = 0; col < cols; col++) {
|
|
copyvalue(v2, v1);
|
|
v1++;
|
|
v2 += rows;
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
|
|
/*
|
|
* Produce a matrix with values all of which are conjugated.
|
|
*/
|
|
MATRIX *
|
|
matconj(MATRIX *m)
|
|
{
|
|
register VALUE *val, *vres;
|
|
long index;
|
|
MATRIX *res;
|
|
|
|
res = matalloc(m->m_size);
|
|
*res = *m;
|
|
val = m->m_table;
|
|
vres = res->m_table;
|
|
for (index = m->m_size; index > 0; index--)
|
|
conjvalue(val++, vres++);
|
|
return res;
|
|
}
|
|
|
|
|
|
/*
|
|
* Round elements of a matrix to specified number of decimal digits
|
|
*/
|
|
MATRIX *
|
|
matround(MATRIX *m, VALUE *v2, VALUE *v3)
|
|
{
|
|
VALUE *p, *q;
|
|
long s;
|
|
MATRIX *res;
|
|
|
|
s = m->m_size;
|
|
res = matalloc(s);
|
|
*res = *m;
|
|
p = m->m_table;
|
|
q = res->m_table;
|
|
while (s-- > 0)
|
|
roundvalue(p++, v2, v3, q++);
|
|
return res;
|
|
}
|
|
|
|
|
|
/*
|
|
* Round elements of a matrix to specified number of binary digits
|
|
*/
|
|
MATRIX *
|
|
matbround(MATRIX *m, VALUE *v2, VALUE *v3)
|
|
{
|
|
VALUE *p, *q;
|
|
long s;
|
|
MATRIX *res;
|
|
|
|
s = m->m_size;
|
|
res = matalloc(s);
|
|
*res = *m;
|
|
p = m->m_table;
|
|
q = res->m_table;
|
|
while (s-- > 0)
|
|
broundvalue(p++, v2, v3, q++);
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
* Approximate a matrix by approximating elemenbs to be multiples of
|
|
* v2, rounding type determined by v3.
|
|
*/
|
|
MATRIX *
|
|
matappr(MATRIX *m, VALUE *v2, VALUE *v3)
|
|
{
|
|
VALUE *p, *q;
|
|
long s;
|
|
MATRIX *res;
|
|
|
|
s = m->m_size;
|
|
res = matalloc(s);
|
|
*res = *m;
|
|
p = m->m_table;
|
|
q = res->m_table;
|
|
while (s-- > 0)
|
|
apprvalue(p++, v2, v3, q++);
|
|
return res;
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
* Produce a matrix with values all of which have been truncated to integers.
|
|
*/
|
|
MATRIX *
|
|
matint(MATRIX *m)
|
|
{
|
|
register VALUE *val, *vres;
|
|
long index;
|
|
MATRIX *res;
|
|
|
|
res = matalloc(m->m_size);
|
|
*res = *m;
|
|
val = m->m_table;
|
|
vres = res->m_table;
|
|
for (index = m->m_size; index > 0; index--)
|
|
intvalue(val++, vres++);
|
|
return res;
|
|
}
|
|
|
|
|
|
/*
|
|
* Produce a matrix with values all of which have only the fraction part left.
|
|
*/
|
|
MATRIX *
|
|
matfrac(MATRIX *m)
|
|
{
|
|
register VALUE *val, *vres;
|
|
long index;
|
|
MATRIX *res;
|
|
|
|
res = matalloc(m->m_size);
|
|
*res = *m;
|
|
val = m->m_table;
|
|
vres = res->m_table;
|
|
for (index = m->m_size; index > 0; index--)
|
|
fracvalue(val++, vres++);
|
|
return res;
|
|
}
|
|
|
|
|
|
/*
|
|
* Index a matrix normally by the specified set of index values.
|
|
* Returns the address of the matrix element if it is valid, or generates
|
|
* an error if the index values are out of range. The create flag is TRUE
|
|
* if the element is to be written, but this is ignored here.
|
|
*
|
|
* given:
|
|
* mp matrix to operate on
|
|
* create TRUE => create if element does not exist
|
|
* dim dimension of the indexing
|
|
* indices table of values being indexed by
|
|
*/
|
|
/*ARGSUSED*/
|
|
VALUE *
|
|
matindex(MATRIX *mp, BOOL UNUSED create, long dim, VALUE *indices)
|
|
{
|
|
NUMBER *q; /* index value */
|
|
VALUE *vp;
|
|
long index; /* index value as an integer */
|
|
long offset; /* current offset into array */
|
|
int i; /* loop counter */
|
|
|
|
if (dim < 0) {
|
|
math_error("Negative dimension %ld for matrix", dim);
|
|
/*NOTREACHED*/
|
|
}
|
|
for (;;) {
|
|
if (dim < mp->m_dim) {
|
|
math_error(
|
|
"Indexing a %ldd matrix as a %ldd matrix",
|
|
mp->m_dim, dim);
|
|
/*NOTREACHED*/
|
|
}
|
|
offset = 0;
|
|
for (i = 0; i < mp->m_dim; i++) {
|
|
if (indices->v_type != V_NUM) {
|
|
math_error("Non-numeric index for matrix");
|
|
/*NOTREACHED*/
|
|
}
|
|
q = indices->v_num;
|
|
if (qisfrac(q)) {
|
|
math_error("Non-integral index for matrix");
|
|
/*NOTREACHED*/
|
|
}
|
|
index = qtoi(q);
|
|
if (zge31b(q->num) || (index < mp->m_min[i]) ||
|
|
(index > mp->m_max[i])) {
|
|
math_error("Index out of bounds for matrix");
|
|
/*NOTREACHED*/
|
|
}
|
|
offset *= (mp->m_max[i] - mp->m_min[i] + 1);
|
|
offset += (index - mp->m_min[i]);
|
|
indices++;
|
|
}
|
|
vp = mp->m_table + offset;
|
|
dim -= mp->m_dim;
|
|
if (dim == 0)
|
|
break;
|
|
if (vp->v_type != V_MAT) {
|
|
math_error("Non-matrix argument for matindex");
|
|
/*NOTREACHED*/
|
|
}
|
|
mp = vp->v_mat;
|
|
}
|
|
return vp;
|
|
}
|
|
|
|
|
|
/*
|
|
* Returns the list of indices for a matrix element with specified
|
|
* double-bracket index.
|
|
*/
|
|
LIST *
|
|
matindices(MATRIX *mp, long index)
|
|
{
|
|
LIST *lp;
|
|
int j;
|
|
long d;
|
|
VALUE val;
|
|
|
|
if (index < 0 || index >= mp->m_size)
|
|
return NULL;
|
|
|
|
lp = listalloc();
|
|
val.v_type = V_NUM;
|
|
j = mp->m_dim;
|
|
|
|
while (--j >= 0) {
|
|
d = mp->m_max[j] - mp->m_min[j] + 1;
|
|
val.v_num = itoq(index % d + mp->m_min[j]);
|
|
insertlistfirst(lp, &val);
|
|
qfree(val.v_num);
|
|
index /= d;
|
|
}
|
|
return lp;
|
|
}
|
|
|
|
|
|
/*
|
|
* Search a matrix for the specified value, starting with the specified index.
|
|
* Returns 0 and stores index if value found; otherwise returns 1.
|
|
*/
|
|
int
|
|
matsearch(MATRIX *m, VALUE *vp, long i, long j, ZVALUE *index)
|
|
{
|
|
register VALUE *val;
|
|
|
|
val = &m->m_table[i];
|
|
if (i < 0 || j > m->m_size) {
|
|
math_error("This should not happen in call to matsearch");
|
|
/*NOTREACHED*/
|
|
}
|
|
while (i < j) {
|
|
if (acceptvalue(val++, vp)) {
|
|
utoz(i, index);
|
|
return 0;
|
|
}
|
|
i++;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
|
|
/*
|
|
* Search a matrix backwards for the specified value, starting with the
|
|
* specified index. Returns 0 and stores index if value found; otherwise
|
|
* returns 1.
|
|
*/
|
|
int
|
|
matrsearch(MATRIX *m, VALUE *vp, long i, long j, ZVALUE *index)
|
|
{
|
|
register VALUE *val;
|
|
|
|
if (i < 0 || j > m->m_size) {
|
|
math_error("This should not happen in call to matrsearch");
|
|
/*NOTREACHED*/
|
|
}
|
|
val = &m->m_table[--j];
|
|
while (j >= i) {
|
|
if (acceptvalue(val--, vp)) {
|
|
utoz(j, index);
|
|
return 0;
|
|
}
|
|
j--;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Fill all of the elements of a matrix with one of two specified values.
|
|
* All entries are filled with the first specified value, except that if
|
|
* the matrix is w-dimensional and the second value pointer is non-NULL, then
|
|
* all diagonal entries are filled with the second value. This routine
|
|
* affects the supplied matrix directly, and doesn't return a copy.
|
|
*
|
|
* given:
|
|
* m matrix to be filled
|
|
* v1 value to fill most of matrix with
|
|
* v2 value for diagonal entries or null
|
|
*/
|
|
void
|
|
matfill(MATRIX *m, VALUE *v1, VALUE *v2)
|
|
{
|
|
register VALUE *val;
|
|
VALUE temp1, temp2;
|
|
long rows, cols;
|
|
long i, j;
|
|
|
|
copyvalue(v1, &temp1);
|
|
|
|
val = m->m_table;
|
|
if (m->m_dim != 2 || v2 == NULL) {
|
|
for (i = m->m_size; i > 0; i--) {
|
|
freevalue(val);
|
|
copyvalue(&temp1, val++);
|
|
}
|
|
freevalue(&temp1);
|
|
return;
|
|
}
|
|
|
|
copyvalue(v2, &temp2);
|
|
rows = m->m_max[0] - m->m_min[0] + 1;
|
|
cols = m->m_max[1] - m->m_min[1] + 1;
|
|
|
|
for (i = 0; i < rows; i++) {
|
|
for (j = 0; j < cols; j++) {
|
|
freevalue(val);
|
|
if (i == j)
|
|
copyvalue(&temp2, val++);
|
|
else
|
|
copyvalue(&temp1, val++);
|
|
}
|
|
}
|
|
freevalue(&temp1);
|
|
freevalue(&temp2);
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
* Set a copy of a square matrix to the identity matrix.
|
|
*/
|
|
S_FUNC MATRIX *
|
|
matident(MATRIX *m)
|
|
{
|
|
register VALUE *val; /* current value */
|
|
long row, col; /* current row and column */
|
|
long rows; /* number of rows */
|
|
MATRIX *res; /* resulting matrix */
|
|
|
|
if (m->m_dim != 2) {
|
|
math_error(
|
|
"Matrix dimension must be two for setting to identity");
|
|
/*NOTREACHED*/
|
|
}
|
|
if ((m->m_max[0] - m->m_min[0]) != (m->m_max[1] - m->m_min[1])) {
|
|
math_error("Matrix must be square for setting to identity");
|
|
/*NOTREACHED*/
|
|
}
|
|
res = matalloc(m->m_size);
|
|
*res = *m;
|
|
val = res->m_table;
|
|
rows = (res->m_max[0] - res->m_min[0] + 1);
|
|
for (row = 0; row < rows; row++) {
|
|
for (col = 0; col < rows; col++) {
|
|
val->v_type = V_NUM;
|
|
val->v_num = ((row == col) ? qlink(&_qone_) :
|
|
qlink(&_qzero_));
|
|
val++;
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
|
|
/*
|
|
* Calculate the inverse of a matrix if it exists.
|
|
* This is done by using transformations on the supplied matrix to convert
|
|
* it to the identity matrix, and simultaneously applying the same set of
|
|
* transformations to the identity matrix.
|
|
*/
|
|
MATRIX *
|
|
matinv(MATRIX *m)
|
|
{
|
|
MATRIX *res; /* matrix to become the inverse */
|
|
long rows; /* number of rows */
|
|
long cur; /* current row being worked on */
|
|
long row, col; /* temp row and column values */
|
|
VALUE *val; /* current value in matrix*/
|
|
VALUE *vres; /* current value in result for dim < 2 */
|
|
VALUE mulval; /* value to multiply rows by */
|
|
VALUE tmpval; /* temporary value */
|
|
|
|
if (m->m_dim < 2) {
|
|
res = matalloc(m->m_size);
|
|
*res = *m;
|
|
val = m->m_table;
|
|
vres = res->m_table;
|
|
for (cur = m->m_size; cur > 0; cur--)
|
|
invertvalue(val++, vres++);
|
|
return res;
|
|
}
|
|
if (m->m_dim != 2) {
|
|
math_error("Matrix dimension exceeds two for inverse");
|
|
/*NOTREACHED*/
|
|
}
|
|
if ((m->m_max[0] - m->m_min[0]) != (m->m_max[1] - m->m_min[1])) {
|
|
math_error("Inverting non-square matrix");
|
|
/*NOTREACHED*/
|
|
}
|
|
/*
|
|
* Begin by creating the identity matrix with the same attributes.
|
|
*/
|
|
res = matalloc(m->m_size);
|
|
*res = *m;
|
|
rows = (m->m_max[0] - m->m_min[0] + 1);
|
|
val = res->m_table;
|
|
for (row = 0; row < rows; row++) {
|
|
for (col = 0; col < rows; col++) {
|
|
if (row == col)
|
|
val->v_num = qlink(&_qone_);
|
|
else
|
|
val->v_num = qlink(&_qzero_);
|
|
val->v_type = V_NUM;
|
|
val++;
|
|
}
|
|
}
|
|
/*
|
|
* Now loop over each row, and eliminate all entries in the
|
|
* corresponding column by using row operations. Do the same
|
|
* operations on the resulting matrix. Copy the original matrix
|
|
* so that we don't destroy it.
|
|
*/
|
|
m = matcopy(m);
|
|
for (cur = 0; cur < rows; cur++) {
|
|
/*
|
|
* Find the first nonzero value in the rest of the column
|
|
* downwards from [cur,cur]. If there is no such value, then
|
|
* the matrix is not invertible. If the first nonzero entry
|
|
* is not the current row, then swap the two rows to make the
|
|
* current one nonzero.
|
|
*/
|
|
row = cur;
|
|
val = &m->m_table[(row * rows) + row];
|
|
while (testvalue(val) == 0) {
|
|
if (++row >= rows) {
|
|
matfree(m);
|
|
matfree(res);
|
|
math_error("Matrix is not invertible");
|
|
/*NOTREACHED*/
|
|
}
|
|
val += rows;
|
|
}
|
|
invertvalue(val, &mulval);
|
|
if (row != cur) {
|
|
matswaprow(m, row, cur);
|
|
matswaprow(res, row, cur);
|
|
}
|
|
/*
|
|
* Now for every other nonzero entry in the current column,
|
|
* subtract the appropriate multiple of the current row to
|
|
* force that entry to become zero.
|
|
*/
|
|
val = &m->m_table[cur];
|
|
for (row = 0; row < rows; row++) {
|
|
if ((row == cur) || (testvalue(val) == 0)) {
|
|
if (row+1 < rows)
|
|
val += rows;
|
|
continue;
|
|
}
|
|
mulvalue(val, &mulval, &tmpval);
|
|
matsubrow(m, row, cur, &tmpval);
|
|
matsubrow(res, row, cur, &tmpval);
|
|
freevalue(&tmpval);
|
|
if (row+1 < rows)
|
|
val += rows;
|
|
}
|
|
freevalue(&mulval);
|
|
}
|
|
/*
|
|
* Now the original matrix has nonzero entries only on its main
|
|
* diagonal. Scale the rows of the result matrix by the inverse
|
|
* of those entries.
|
|
*/
|
|
val = m->m_table;
|
|
for (row = 0; row < rows; row++) {
|
|
if ((val->v_type != V_NUM) || !qisone(val->v_num)) {
|
|
invertvalue(val, &mulval);
|
|
matmulrow(res, row, &mulval);
|
|
freevalue(&mulval);
|
|
}
|
|
if (row+1 < rows)
|
|
val += (rows + 1);
|
|
}
|
|
matfree(m);
|
|
return res;
|
|
}
|
|
|
|
|
|
/*
|
|
* Calculate the determinant of a square matrix.
|
|
* This uses the fraction-free Gauss-Bareiss algorithm.
|
|
*/
|
|
VALUE
|
|
matdet(MATRIX *m)
|
|
{
|
|
long n; /* original matrix is n x n */
|
|
long k; /* working submatrix is k x k */
|
|
long i, j;
|
|
VALUE *pivot, *div, *val;
|
|
VALUE *vp, *vv;
|
|
VALUE tmp1, tmp2, tmp3;
|
|
BOOL neg; /* whether to negate determinant */
|
|
|
|
if (m->m_dim < 2) {
|
|
vp = m->m_table;
|
|
i = m->m_size;
|
|
copyvalue(vp, &tmp1);
|
|
|
|
while (--i > 0) {
|
|
mulvalue(&tmp1, ++vp, &tmp2);
|
|
freevalue(&tmp1);
|
|
tmp1 = tmp2;
|
|
}
|
|
return tmp1;
|
|
}
|
|
|
|
if (m->m_dim != 2)
|
|
return error_value(E_DET2);
|
|
if ((m->m_max[0] - m->m_min[0]) != (m->m_max[1] - m->m_min[1]))
|
|
return error_value(E_DET3);
|
|
|
|
/*
|
|
* Loop over each row, and eliminate all lower entries in the
|
|
* corresponding column by using row operations. Copy the original
|
|
* matrix so that we don't destroy it.
|
|
*/
|
|
neg = FALSE;
|
|
m = matcopy(m);
|
|
n = (m->m_max[0] - m->m_min[0] + 1);
|
|
pivot = div = m->m_table;
|
|
for (k = n; k > 0; k--) {
|
|
/*
|
|
* Find the first nonzero value in the rest of the column
|
|
* downwards from pivot. If there is no such value, then
|
|
* the determinant is zero. If the first nonzero entry is not
|
|
* the pivot, then swap rows in the k * k submatrix, and
|
|
* remember that the determinant changes sign.
|
|
*/
|
|
val = pivot;
|
|
i = k;
|
|
while (!testvalue(val)) {
|
|
if (--i <= 0) {
|
|
tmp1.v_type = V_NUM;
|
|
tmp1.v_subtype = V_NOSUBTYPE;
|
|
tmp1.v_num = qlink(&_qzero_);
|
|
matfree(m);
|
|
return tmp1;
|
|
}
|
|
val += n;
|
|
}
|
|
if (i < k) {
|
|
vp = pivot;
|
|
vv = val;
|
|
j = k;
|
|
while (j-- > 0) {
|
|
tmp1 = *vp;
|
|
*vp++ = *vv;
|
|
*vv++ = tmp1;
|
|
}
|
|
neg = !neg;
|
|
}
|
|
/*
|
|
* Now for every val below the pivot, for each entry to
|
|
* the right of val, calculate the 2 x 2 determinant
|
|
* with corners at the pivot and the entry. If
|
|
* k < n, divide by div (the previous pivot value).
|
|
*/
|
|
val = pivot;
|
|
i = k;
|
|
while (--i > 0) {
|
|
val += n;
|
|
vp = pivot;
|
|
vv = val;
|
|
j = k;
|
|
while (--j > 0) {
|
|
mulvalue(pivot, ++vv, &tmp1);
|
|
mulvalue(val, ++vp, &tmp2);
|
|
subvalue(&tmp1, &tmp2, &tmp3);
|
|
freevalue(&tmp1);
|
|
freevalue(&tmp2);
|
|
freevalue(vv);
|
|
if (k < n) {
|
|
divvalue(&tmp3, div, vv);
|
|
freevalue(&tmp3);
|
|
}
|
|
else
|
|
*vv = tmp3;
|
|
}
|
|
}
|
|
div = pivot;
|
|
if (k > 0)
|
|
pivot += n + 1;
|
|
}
|
|
if (neg)
|
|
negvalue(div, &tmp1);
|
|
else
|
|
copyvalue(div, &tmp1);
|
|
matfree(m);
|
|
return tmp1;
|
|
}
|
|
|
|
|
|
/*
|
|
* Local utility routine to swap two rows of a square matrix.
|
|
* No checks are made to verify the legality of the arguments.
|
|
*/
|
|
S_FUNC void
|
|
matswaprow(MATRIX *m, long r1, long r2)
|
|
{
|
|
register VALUE *v1, *v2;
|
|
register long rows;
|
|
VALUE tmp;
|
|
|
|
if (r1 == r2)
|
|
return;
|
|
rows = (m->m_max[0] - m->m_min[0] + 1);
|
|
v1 = &m->m_table[r1 * rows];
|
|
v2 = &m->m_table[r2 * rows];
|
|
while (rows-- > 0) {
|
|
tmp = *v1;
|
|
*v1 = *v2;
|
|
*v2 = tmp;
|
|
v1++;
|
|
v2++;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Local utility routine to subtract a multiple of one row to another one.
|
|
* The row to be changed is oprow, the row to be subtracted is baserow.
|
|
* No checks are made to verify the legality of the arguments.
|
|
*/
|
|
S_FUNC void
|
|
matsubrow(MATRIX *m, long oprow, long baserow, VALUE *mulval)
|
|
{
|
|
register VALUE *vop, *vbase;
|
|
register long entries;
|
|
VALUE tmp1, tmp2;
|
|
|
|
entries = (m->m_max[0] - m->m_min[0] + 1);
|
|
vop = &m->m_table[oprow * entries];
|
|
vbase = &m->m_table[baserow * entries];
|
|
while (entries-- > 0) {
|
|
mulvalue(vbase, mulval, &tmp1);
|
|
subvalue(vop, &tmp1, &tmp2);
|
|
freevalue(&tmp1);
|
|
freevalue(vop);
|
|
*vop = tmp2;
|
|
vop++;
|
|
vbase++;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Local utility routine to multiply a row by a specified number.
|
|
* No checks are made to verify the legality of the arguments.
|
|
*/
|
|
S_FUNC void
|
|
matmulrow(MATRIX *m, long row, VALUE *mulval)
|
|
{
|
|
register VALUE *val;
|
|
register long rows;
|
|
VALUE tmp;
|
|
|
|
rows = (m->m_max[0] - m->m_min[0] + 1);
|
|
val = &m->m_table[row * rows];
|
|
while (rows-- > 0) {
|
|
mulvalue(val, mulval, &tmp);
|
|
freevalue(val);
|
|
*val = tmp;
|
|
val++;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Make a full copy of a matrix.
|
|
*/
|
|
MATRIX *
|
|
matcopy(MATRIX *m)
|
|
{
|
|
MATRIX *res;
|
|
register VALUE *v1, *v2;
|
|
register long i;
|
|
|
|
res = matalloc(m->m_size);
|
|
*res = *m;
|
|
v1 = m->m_table;
|
|
v2 = res->m_table;
|
|
i = m->m_size;
|
|
while (i-- > 0) {
|
|
copyvalue(v1, v2);
|
|
v1++;
|
|
v2++;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
|
|
/*
|
|
* Make a matrix the same size as another and filled with a fixed value.
|
|
*
|
|
* given:
|
|
* m matrix to initialize
|
|
* v1 value to fill most of matrix with
|
|
* v2 value for diagonal entries (or NULL)
|
|
*/
|
|
MATRIX *
|
|
matinit(MATRIX *m, VALUE *v1, VALUE *v2)
|
|
{
|
|
MATRIX *res;
|
|
register VALUE *v;
|
|
register long i;
|
|
long row;
|
|
long rows;
|
|
|
|
/*
|
|
* clone matrix size
|
|
*/
|
|
res = matalloc(m->m_size);
|
|
*res = *m;
|
|
|
|
/*
|
|
* firewall
|
|
*/
|
|
if (v2 && ((res->m_dim != 2) ||
|
|
((res->m_max[0] - res->m_min[0]) !=
|
|
(res->m_max[1] - res->m_min[1])))) {
|
|
math_error("Filling diagonals of non-square matrix");
|
|
/*NOTREACHED*/
|
|
}
|
|
|
|
/*
|
|
* fill the bulk of the matrix
|
|
*/
|
|
v = res->m_table;
|
|
if (v2 == NULL) {
|
|
i = m->m_size;
|
|
while (i-- > 0) {
|
|
copyvalue(v1, v++);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
* fill the diaginal of a square matrix if requested
|
|
*/
|
|
rows = res->m_max[0] - res->m_min[0] + 1;
|
|
v = res->m_table;
|
|
for (row = 0; row < rows; row++) {
|
|
copyvalue(v2, v+row);
|
|
v += rows;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
|
|
/*
|
|
* Allocate a matrix with the specified number of elements.
|
|
*/
|
|
MATRIX *
|
|
matalloc(long size)
|
|
{
|
|
MATRIX *m;
|
|
long i;
|
|
VALUE *vp;
|
|
|
|
m = (MATRIX *) malloc(matsize(size));
|
|
if (m == NULL) {
|
|
math_error("Cannot get memory to allocate matrix of size %ld",
|
|
size);
|
|
/*NOTREACHED*/
|
|
}
|
|
m->m_size = size;
|
|
for (i = size, vp = m->m_table; i > 0; i--, vp++)
|
|
vp->v_subtype = V_NOSUBTYPE;
|
|
return m;
|
|
}
|
|
|
|
|
|
/*
|
|
* Free a matrix, along with all of its element values.
|
|
*/
|
|
void
|
|
matfree(MATRIX *m)
|
|
{
|
|
register VALUE *vp;
|
|
register long i;
|
|
|
|
vp = m->m_table;
|
|
i = m->m_size;
|
|
while (i-- > 0)
|
|
freevalue(vp++);
|
|
free(m);
|
|
}
|
|
|
|
|
|
/*
|
|
* Test whether a matrix has any "nonzero" values.
|
|
* Returns TRUE if so.
|
|
*/
|
|
BOOL
|
|
mattest(MATRIX *m)
|
|
{
|
|
register VALUE *vp;
|
|
register long i;
|
|
|
|
vp = m->m_table;
|
|
i = m->m_size;
|
|
while (i-- > 0) {
|
|
if (testvalue(vp++))
|
|
return TRUE;
|
|
}
|
|
return FALSE;
|
|
}
|
|
|
|
/*
|
|
* Sum the elements in a matrix.
|
|
*/
|
|
void
|
|
matsum(MATRIX *m, VALUE *vres)
|
|
{
|
|
VALUE *vp;
|
|
VALUE tmp; /* first sum value */
|
|
VALUE sum; /* final sum value */
|
|
long i;
|
|
|
|
vp = m->m_table;
|
|
i = m->m_size;
|
|
copyvalue(vp, &sum);
|
|
|
|
while (--i > 0) {
|
|
addvalue(&sum, ++vp, &tmp);
|
|
freevalue(&sum);
|
|
sum = tmp;
|
|
}
|
|
*vres = sum;
|
|
}
|
|
|
|
|
|
/*
|
|
* Test whether or not two matrices are equal.
|
|
* Equality is determined by the shape and values of the matrices,
|
|
* but not by their index bounds. Returns TRUE if they differ.
|
|
*/
|
|
BOOL
|
|
matcmp(MATRIX *m1, MATRIX *m2)
|
|
{
|
|
VALUE *v1, *v2;
|
|
long i;
|
|
|
|
if (m1 == m2)
|
|
return FALSE;
|
|
if ((m1->m_dim != m2->m_dim) || (m1->m_size != m2->m_size))
|
|
return TRUE;
|
|
for (i = 0; i < m1->m_dim; i++) {
|
|
if ((m1->m_max[i] - m1->m_min[i]) !=
|
|
(m2->m_max[i] - m2->m_min[i]))
|
|
return TRUE;
|
|
}
|
|
v1 = m1->m_table;
|
|
v2 = m2->m_table;
|
|
i = m1->m_size;
|
|
while (i-- > 0) {
|
|
if (comparevalue(v1++, v2++))
|
|
return TRUE;
|
|
}
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
void
|
|
matreverse(MATRIX *m)
|
|
{
|
|
VALUE *p, *q;
|
|
VALUE tmp;
|
|
|
|
p = m->m_table;
|
|
q = m->m_table + m->m_size - 1;
|
|
while (q > p) {
|
|
tmp = *p;
|
|
*p++ = *q;
|
|
*q-- = tmp;
|
|
}
|
|
}
|
|
|
|
|
|
void
|
|
matsort(MATRIX *m)
|
|
{
|
|
VALUE *a, *b, *next, *end;
|
|
VALUE *buf, *p;
|
|
VALUE *S[LONG_BITS];
|
|
long len[LONG_BITS];
|
|
long i, j, k;
|
|
|
|
buf = (VALUE *) malloc(m->m_size * sizeof(VALUE));
|
|
if (buf == NULL) {
|
|
math_error("Not enough memory for matsort");
|
|
/*NOTREACHED*/
|
|
}
|
|
next = m->m_table;
|
|
end = next + m->m_size;
|
|
for (k = 0; next && k < LONG_BITS; k++) {
|
|
S[k] = next++; /* S[k] is start of a run */
|
|
len[k] = 1;
|
|
if (next == end)
|
|
next = NULL;
|
|
while (k > 0 && (!next || len[k] >= len[k - 1])) {/* merging */
|
|
j = len[k];
|
|
b = S[k--];
|
|
i = len[k];
|
|
a = S[k];
|
|
len[k] += j;
|
|
p = buf;
|
|
if (precvalue(b, a)) {
|
|
do {
|
|
*p++ = *b++;
|
|
j--;
|
|
} while (j > 0 && precvalue(b,a));
|
|
if (j == 0) {
|
|
memcpy(p, a, i * sizeof(VALUE));
|
|
memcpy(S[k], buf,
|
|
len[k] * sizeof(VALUE));
|
|
continue;
|
|
}
|
|
}
|
|
|
|
do {
|
|
do {
|
|
*p++ = *a++;
|
|
i--;
|
|
} while (i > 0 && !precvalue(b,a));
|
|
if (i == 0) {
|
|
break;
|
|
}
|
|
do {
|
|
*p++ = *b++;
|
|
j--;
|
|
} while (j > 0 && precvalue(b,a));
|
|
} while (j != 0);
|
|
|
|
if (i == 0) {
|
|
memcpy(S[k], buf, (p - buf) * sizeof(VALUE));
|
|
} else if (j == 0) {
|
|
memcpy(p, a, i * sizeof(VALUE));
|
|
memcpy(S[k], buf, len[k] * sizeof(VALUE));
|
|
}
|
|
}
|
|
}
|
|
free(buf);
|
|
if (k >= LONG_BITS) {
|
|
/* this should never happen */
|
|
math_error("impossible k overflow in matsort!");
|
|
/*NOTREACHED*/
|
|
}
|
|
}
|
|
|
|
void
|
|
matrandperm(MATRIX *m)
|
|
{
|
|
VALUE *vp;
|
|
long s, i;
|
|
VALUE val;
|
|
|
|
s = m->m_size;
|
|
for (vp = m->m_table; s > 1; vp++, s--) {
|
|
i = irand(s);
|
|
if (i > 0) {
|
|
val = *vp;
|
|
*vp = vp[i];
|
|
vp[i] = val;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Test whether or not a matrix is the identity matrix.
|
|
* Returns TRUE if so.
|
|
*/
|
|
BOOL
|
|
matisident(MATRIX *m)
|
|
{
|
|
register VALUE *val; /* current value */
|
|
long row, col; /* row and column numbers */
|
|
|
|
val = m->m_table;
|
|
if (m->m_dim == 0) {
|
|
return (val->v_type == V_NUM && qisone(val->v_num));
|
|
}
|
|
if (m->m_dim == 1) {
|
|
for (row = m->m_min[0]; row <= m->m_max[0]; row++, val++) {
|
|
if (val->v_type != V_NUM || !qisone(val->v_num))
|
|
return FALSE;
|
|
}
|
|
return TRUE;
|
|
}
|
|
if ((m->m_dim != 2) ||
|
|
((m->m_max[0] - m->m_min[0]) != (m->m_max[1] - m->m_min[1])))
|
|
return FALSE;
|
|
for (row = m->m_min[0]; row <= m->m_max[0]; row++) {
|
|
/*
|
|
* We could use col = m->m_min[1]; col < m->m_max[1]
|
|
* but if m->m_min[0] != m->m_min[1] this won't work.
|
|
* We know that we have a square 2-dimensional matrix
|
|
* so we will pretend that m->m_min[0] == m->m_min[1].
|
|
*/
|
|
for (col = m->m_min[0]; col <= m->m_max[0]; col++) {
|
|
if (val->v_type != V_NUM)
|
|
return FALSE;
|
|
if (row == col) {
|
|
if (!qisone(val->v_num))
|
|
return FALSE;
|
|
} else {
|
|
if (!qiszero(val->v_num))
|
|
return FALSE;
|
|
}
|
|
val++;
|
|
}
|
|
}
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/*
|
|
* Print a matrix and possibly few of its elements.
|
|
* The argument supplied specifies how many elements to allow printing.
|
|
* If any elements are printed, they are printed in short form.
|
|
*/
|
|
void
|
|
matprint(MATRIX *m, long max_print)
|
|
{
|
|
VALUE *vp;
|
|
long fullsize, count, index;
|
|
long dim, i, j;
|
|
char *msg;
|
|
long sizes[MAXDIM];
|
|
|
|
dim = m->m_dim;
|
|
fullsize = 1;
|
|
for (i = dim - 1; i >= 0; i--) {
|
|
sizes[i] = fullsize;
|
|
fullsize *= (m->m_max[i] - m->m_min[i] + 1);
|
|
}
|
|
msg = ((max_print > 0) ? "\nmat [" : "mat [");
|
|
if (dim) {
|
|
for (i = 0; i < dim; i++) {
|
|
if (m->m_min[i]) {
|
|
math_fmt("%s%ld:%ld", msg,
|
|
m->m_min[i], m->m_max[i]);
|
|
} else {
|
|
math_fmt("%s%ld", msg, m->m_max[i] + 1);
|
|
}
|
|
msg = ",";
|
|
}
|
|
} else {
|
|
math_str("mat [");
|
|
}
|
|
if (max_print > fullsize) {
|
|
max_print = fullsize;
|
|
}
|
|
vp = m->m_table;
|
|
count = 0;
|
|
for (index = 0; index < fullsize; index++) {
|
|
if ((vp->v_type != V_NUM) || !qiszero(vp->v_num))
|
|
count++;
|
|
vp++;
|
|
}
|
|
math_fmt("] (%ld element%s, %ld nonzero)",
|
|
fullsize, (fullsize == 1) ? "" : "s", count);
|
|
if (max_print <= 0)
|
|
return;
|
|
|
|
/*
|
|
* Now print the first few elements of the matrix in short
|
|
* and unambigous format.
|
|
*/
|
|
math_str(":\n");
|
|
vp = m->m_table;
|
|
for (index = 0; index < max_print; index++) {
|
|
msg = " [";
|
|
j = index;
|
|
if (dim) {
|
|
for (i = 0; i < dim; i++) {
|
|
math_fmt("%s%ld", msg,
|
|
m->m_min[i] + (j / sizes[i]));
|
|
j %= sizes[i];
|
|
msg = ",";
|
|
}
|
|
} else {
|
|
math_str(msg);
|
|
}
|
|
math_str("] = ");
|
|
printvalue(vp++, PRINT_SHORT | PRINT_UNAMBIG);
|
|
math_str("\n");
|
|
}
|
|
if (max_print < fullsize)
|
|
math_str(" ...\n");
|
|
}
|