Files
calc/value.c
2017-05-21 15:38:25 -07:00

2007 lines
39 KiB
C

/*
* Copyright (c) 1996 David I. Bell
* Permission is granted to use, distribute, or modify this source,
* provided that this copyright notice remains intact.
*
* Generic value manipulation routines.
*/
#include "value.h"
#include "opcodes.h"
#include "func.h"
#include "symbol.h"
#include "string.h"
#include "zrand.h"
#include "cmath.h"
/*
* Free a value and set its type to undefined.
*
* given:
* vp value to be freed
*/
void
freevalue(VALUE *vp)
{
int type; /* type of value being freed */
type = vp->v_type;
vp->v_type = V_NULL;
if (type < 0)
return;
switch (type) {
case V_NULL:
case V_ADDR:
case V_FILE:
break;
case V_STR:
if (vp->v_subtype == V_STRALLOC)
free(vp->v_str);
break;
case V_NUM:
qfree(vp->v_num);
break;
case V_COM:
comfree(vp->v_com);
break;
case V_MAT:
matfree(vp->v_mat);
break;
case V_LIST:
listfree(vp->v_list);
break;
case V_ASSOC:
assocfree(vp->v_assoc);
break;
case V_OBJ:
objfree(vp->v_obj);
break;
case V_RAND:
randfree(vp->v_rand);
break;
case V_RANDOM:
randomfree(vp->v_random);
break;
case V_CONFIG:
config_free(vp->v_config);
break;
#if 0 /* XXX - write */
case V_HASH:
hash_free(vp->v_hash);
break;
#endif
default:
math_error("Freeing unknown value type");
/*NOTREACHED*/
}
vp->v_subtype = V_NOSUBTYPE;
}
/*
* Copy a value from one location to another.
* This overwrites the specified new value without checking it.
*
* given:
* oldvp value to be copied from
* newvp value to be copied into
*/
void
copyvalue(VALUE *oldvp, VALUE *newvp)
{
if (oldvp->v_type < 0) {
newvp->v_type = oldvp->v_type;
return;
}
newvp->v_type = V_NULL;
switch (oldvp->v_type) {
case V_NULL:
break;
case V_FILE:
newvp->v_file = oldvp->v_file;
break;
case V_NUM:
newvp->v_num = qlink(oldvp->v_num);
break;
case V_COM:
newvp->v_com = clink(oldvp->v_com);
break;
case V_STR:
newvp->v_str = oldvp->v_str;
if (oldvp->v_subtype == V_STRALLOC) {
newvp->v_str = (char *)malloc(strlen(oldvp->v_str) + 1);
if (newvp->v_str == NULL) {
math_error("Cannot get memory for string copy");
/*NOTREACHED*/
}
strcpy(newvp->v_str, oldvp->v_str);
}
break;
case V_MAT:
newvp->v_mat = matcopy(oldvp->v_mat);
break;
case V_LIST:
newvp->v_list = listcopy(oldvp->v_list);
break;
case V_ASSOC:
newvp->v_assoc = assoccopy(oldvp->v_assoc);
break;
case V_ADDR:
newvp->v_addr = oldvp->v_addr;
break;
case V_OBJ:
newvp->v_obj = objcopy(oldvp->v_obj);
break;
case V_RAND:
newvp->v_rand = randcopy(oldvp->v_rand);
break;
case V_RANDOM:
newvp->v_random = randomcopy(oldvp->v_random);
break;
case V_CONFIG:
newvp->v_config = config_copy(oldvp->v_config);
break;
#if 0 /* XXX - write */
case V_HASH:
newvp->v_hash = hash_copy(oldvp->v_hash);
break;
#endif
default:
math_error("Copying unknown value type");
/*NOTREACHED*/
}
if (oldvp->v_type == V_STR) {
newvp->v_subtype = oldvp->v_subtype;
} else {
newvp->v_subtype = V_NOSUBTYPE;
}
newvp->v_type = oldvp->v_type;
}
/*
* Negate an arbitrary value.
* Result is placed in the indicated location.
*/
void
negvalue(VALUE *vp, VALUE *vres)
{
vres->v_type = vp->v_type;
switch (vp->v_type) {
case V_NUM:
vres->v_num = qneg(vp->v_num);
return;
case V_COM:
vres->v_com = cneg(vp->v_com);
return;
case V_MAT:
vres->v_mat = matneg(vp->v_mat);
return;
case V_OBJ:
*vres = objcall(OBJ_NEG, vp, NULL_VALUE, NULL_VALUE);
return;
default:
if (vp->v_type < 0)
return;
*vres = error_value(E_NEG);
return;
}
}
/*
* addnumeric - add two numeric values togethter
*
* If either value is not real or complex, it is assumed to have
* a value of 0.
*
* Result is placed in the indicated location.
*/
void
addnumeric(VALUE *v1, VALUE *v2, VALUE *vres)
{
COMPLEX *c;
/*
* add numeric values
*/
vres->v_subtype = V_NOSUBTYPE;
switch (TWOVAL(v1->v_type, v2->v_type)) {
case TWOVAL(V_NUM, V_NUM):
vres->v_num = qqadd(v1->v_num, v2->v_num);
vres->v_type = V_NUM;
return;
case TWOVAL(V_COM, V_NUM):
vres->v_com = caddq(v1->v_com, v2->v_num);
vres->v_type = V_COM;
return;
case TWOVAL(V_NUM, V_COM):
vres->v_com = caddq(v2->v_com, v1->v_num);
vres->v_type = V_COM;
return;
case TWOVAL(V_COM, V_COM):
vres->v_com = cadd(v1->v_com, v2->v_com);
vres->v_type = V_COM;
c = vres->v_com;
if (!cisreal(c))
return;
vres->v_num = qlink(c->real);
vres->v_type = V_NUM;
comfree(c);
return;
}
/*
* assume zero if a value is not numeric
*/
if (v1->v_type == V_NUM) {
/* v1 + 0 == v1 */
vres->v_type = v1->v_type;
vres->v_num = qlink(v1->v_num);
} else if (v1->v_type == V_COM) {
/* v1 + 0 == v1 */
vres->v_type = v1->v_type;
vres->v_com = clink(v1->v_com);
} else if (v2->v_type == V_NUM) {
/* v2 + 0 == v2 */
vres->v_type = v2->v_type;
vres->v_num = qlink(v2->v_num);
} else if (v2->v_type == V_COM) {
/* v2 + 0 == v2 */
vres->v_type = v2->v_type;
vres->v_com = clink(v2->v_com);
} else {
/* 0 + 0 = 0 */
vres->v_type = V_NUM;
vres->v_num = qlink(&_qzero_);
}
return;
}
/*
* Add two arbitrary values together.
* Result is placed in the indicated location.
*/
void
addvalue(VALUE *v1, VALUE *v2, VALUE *vres)
{
COMPLEX *c;
VALUE tmp;
if (v1->v_type == V_LIST) {
tmp.v_type = V_NULL;
addlistitems(v1->v_list, &tmp);
addvalue(&tmp, v2, vres);
return;
}
if (v2->v_type == V_LIST) {
copyvalue(v1, vres);
addlistitems(v2->v_list, vres);
return;
}
if (v1->v_type == V_NULL) {
copyvalue(v2, vres);
return;
}
if (v2->v_type == V_NULL) {
copyvalue(v1, vres);
return;
}
vres->v_type = v1->v_type;
switch (TWOVAL(v1->v_type, v2->v_type)) {
case TWOVAL(V_NUM, V_NUM):
vres->v_num = qqadd(v1->v_num, v2->v_num);
return;
case TWOVAL(V_COM, V_NUM):
vres->v_com = caddq(v1->v_com, v2->v_num);
return;
case TWOVAL(V_NUM, V_COM):
vres->v_com = caddq(v2->v_com, v1->v_num);
vres->v_type = V_COM;
return;
case TWOVAL(V_COM, V_COM):
vres->v_com = cadd(v1->v_com, v2->v_com);
c = vres->v_com;
if (!cisreal(c))
return;
vres->v_num = qlink(c->real);
vres->v_type = V_NUM;
comfree(c);
return;
case TWOVAL(V_MAT, V_MAT):
vres->v_mat = matadd(v1->v_mat, v2->v_mat);
return;
default:
if ((v1->v_type != V_OBJ) && (v2->v_type != V_OBJ)) {
if (v1->v_type < 0) {
copyvalue(v1, vres);
return;
}
if (v2->v_type < 0) {
copyvalue(v2, vres);
return;
}
*vres = error_value(E_ADD);
return;
}
*vres = objcall(OBJ_ADD, v1, v2, NULL_VALUE);
return;
}
}
/*
* Subtract one arbitrary value from another one.
* Result is placed in the indicated location.
*/
void
subvalue(VALUE *v1, VALUE *v2, VALUE *vres)
{
COMPLEX *c;
vres->v_type = v1->v_type;
switch (TWOVAL(v1->v_type, v2->v_type)) {
case TWOVAL(V_NUM, V_NUM):
vres->v_num = qsub(v1->v_num, v2->v_num);
return;
case TWOVAL(V_COM, V_NUM):
vres->v_com = csubq(v1->v_com, v2->v_num);
return;
case TWOVAL(V_NUM, V_COM):
c = csubq(v2->v_com, v1->v_num);
vres->v_type = V_COM;
vres->v_com = cneg(c);
comfree(c);
return;
case TWOVAL(V_COM, V_COM):
vres->v_com = csub(v1->v_com, v2->v_com);
c = vres->v_com;
if (!cisreal(c))
return;
vres->v_num = qlink(c->real);
vres->v_type = V_NUM;
comfree(c);
return;
case TWOVAL(V_MAT, V_MAT):
vres->v_mat = matsub(v1->v_mat, v2->v_mat);
return;
default:
if ((v1->v_type != V_OBJ) && (v2->v_type != V_OBJ)) {
if (v1->v_type < 0) {
copyvalue(v1, vres);
return;
}
if (v2->v_type < 0) {
copyvalue(v2, vres);
return;
}
*vres = error_value(E_SUB);
return;
}
*vres = objcall(OBJ_SUB, v1, v2, NULL_VALUE);
return;
}
}
/*
* Multiply two arbitrary values together.
* Result is placed in the indicated location.
*/
void
mulvalue(VALUE *v1, VALUE *v2, VALUE *vres)
{
COMPLEX *c;
vres->v_type = v1->v_type;
switch (TWOVAL(v1->v_type, v2->v_type)) {
case TWOVAL(V_NUM, V_NUM):
vres->v_num = qmul(v1->v_num, v2->v_num);
return;
case TWOVAL(V_COM, V_NUM):
vres->v_com = cmulq(v1->v_com, v2->v_num);
break;
case TWOVAL(V_NUM, V_COM):
vres->v_com = cmulq(v2->v_com, v1->v_num);
vres->v_type = V_COM;
break;
case TWOVAL(V_COM, V_COM):
vres->v_com = cmul(v1->v_com, v2->v_com);
break;
case TWOVAL(V_MAT, V_MAT):
vres->v_mat = matmul(v1->v_mat, v2->v_mat);
return;
case TWOVAL(V_MAT, V_NUM):
case TWOVAL(V_MAT, V_COM):
vres->v_mat = matmulval(v1->v_mat, v2);
return;
case TWOVAL(V_NUM, V_MAT):
case TWOVAL(V_COM, V_MAT):
vres->v_mat = matmulval(v2->v_mat, v1);
vres->v_type = V_MAT;
return;
default:
if ((v1->v_type != V_OBJ) && (v2->v_type != V_OBJ)) {
if (v1->v_type < 0) {
copyvalue(v1, vres);
return;
}
if (v2->v_type < 0) {
copyvalue(v2, vres);
return;
}
*vres = error_value(E_MUL);
return;
}
*vres = objcall(OBJ_MUL, v1, v2, NULL_VALUE);
return;
}
c = vres->v_com;
if (cisreal(c)) {
vres->v_num = qlink(c->real);
vres->v_type = V_NUM;
comfree(c);
}
}
/*
* Square an arbitrary value.
* Result is placed in the indicated location.
*/
void
squarevalue(VALUE *vp, VALUE *vres)
{
COMPLEX *c;
vres->v_type = vp->v_type;
switch (vp->v_type) {
case V_NUM:
vres->v_num = qsquare(vp->v_num);
return;
case V_COM:
vres->v_com = csquare(vp->v_com);
c = vres->v_com;
if (!cisreal(c))
return;
vres->v_num = qlink(c->real);
vres->v_type = V_NUM;
comfree(c);
return;
case V_MAT:
vres->v_mat = matsquare(vp->v_mat);
return;
case V_OBJ:
*vres = objcall(OBJ_SQUARE, vp, NULL_VALUE, NULL_VALUE);
return;
default:
if (vp->v_type < 0) {
copyvalue(vp, vres);
return;
}
*vres = error_value(E_SQUARE);
return;
}
}
/*
* Invert an arbitrary value.
* Result is placed in the indicated location.
*/
void
invertvalue(VALUE *vp, VALUE *vres)
{
vres->v_type = vp->v_type;
switch (vp->v_type) {
case V_NUM:
vres->v_num = qinv(vp->v_num);
return;
case V_COM:
vres->v_com = cinv(vp->v_com);
return;
case V_MAT:
vres->v_mat = matinv(vp->v_mat);
return;
case V_OBJ:
*vres = objcall(OBJ_INV, vp, NULL_VALUE, NULL_VALUE);
return;
default:
if (vp->v_type < 0) {
copyvalue(vp, vres);
return;
}
*vres = error_value(E_INV);
return;
}
}
/*
* Approximate numbers by multiples of v2 using rounding criterion v3.
* Result is placed in the indicated location.
*/
void
apprvalue(VALUE *v1, VALUE *v2, VALUE *v3, VALUE *vres)
{
NUMBER *e;
long R = 0;
NUMBER *q1, *q2;
COMPLEX *c;
vres->v_type = v1->v_type;
if (v1->v_type < 0) {
copyvalue(v1, vres);
return;
}
e = NULL;
switch(v2->v_type) {
case V_NUM: e = v2->v_num;
break;
case V_NULL: e = conf->epsilon;
break;
default:
*vres = error_value(E_APPR2);
return;
}
switch(v3->v_type) {
case V_NUM: if (qisfrac(v3->v_num)) {
*vres = error_value(E_APPR3);
return;
}
R = qtoi(v3->v_num);
break;
case V_NULL: R = conf->appr;
break;
default:
*vres = error_value(E_APPR3);
return;
}
if (qiszero(e)) {
copyvalue(v1, vres);
return;
}
switch (v1->v_type) {
case V_NUM:
vres->v_num = qmappr(v1->v_num, e, R);
return;
case V_MAT:
vres->v_mat = matappr(v1->v_mat, v2, v3);
return;
case V_LIST:
vres->v_list = listappr(v1->v_list, v2, v3);
return;
case V_COM:
q1 = qmappr(v1->v_com->real, e, R);
q2 = qmappr(v1->v_com->imag, e, R);
if (qiszero(q2)) {
vres->v_type = V_NUM;
vres->v_num = q1;
qfree(q2);
return;
}
c = comalloc();
c->real = q1;
c->imag = q2;
vres->v_com = c;
return;
default:
*vres = error_value(E_APPR);
return;
}
}
/*
* Round numbers to number of decimals specified by v2, type of rounding
* specified by v3. Result placed in location vres.
*/
void
roundvalue(VALUE *v1, VALUE *v2, VALUE *v3, VALUE *vres)
{
NUMBER *q1, *q2;
COMPLEX *c;
long places, rnd;
vres->v_type = v1->v_type;
if (v1->v_type == V_MAT) {
vres->v_mat = matround(v1->v_mat, v2, v3);
return;
}
if (v1->v_type == V_LIST) {
vres->v_list = listround(v1->v_list, v2, v3);
return;
}
if (v1->v_type == V_OBJ || v2->v_type == V_OBJ) {
*vres = objcall(OBJ_ROUND, v1, v2, v3);
return;
}
places = 0;
switch (v2->v_type) {
case V_NUM:
if (qisfrac(v2->v_num)) {
*vres = error_value(E_ROUND2);
return;
}
places = qtoi(v2->v_num);
break;
case V_NULL:
break;
default:
*vres = error_value(E_ROUND2);
return;
}
rnd = 0;
switch (v3->v_type) {
case V_NUM:
if (qisfrac(v3->v_num)) {
*vres = error_value(E_ROUND3);
return;
}
rnd = qtoi(v3->v_num);
break;
case V_NULL:
rnd = conf->round;
break;
default:
*vres = error_value(E_ROUND3);
return;
}
switch(v1->v_type) {
case V_NUM:
vres->v_num = qround(v1->v_num, places, rnd);
return;
case V_COM:
q1 = qround(v1->v_com->real, places, rnd);
q2 = qround(v1->v_com->imag, places, rnd);
if (qiszero(q2)) {
vres->v_type = V_NUM;
vres->v_num = q1;
qfree(q2);
return;
}
c = comalloc();
c->real = q1;
c->imag = q2;
vres->v_com = c;
return;
default:
if (v1->v_type < 0) {
copyvalue(v1, vres);
return;
}
*vres = error_value(E_ROUND);
return;
}
}
/*
* Round numbers to number of binary digits specified by v2, type of rounding
* specified by v3. Result placed in location vres.
*/
void
broundvalue(VALUE *v1, VALUE *v2, VALUE *v3, VALUE *vres)
{
NUMBER *q1, *q2;
COMPLEX *c;
long places, rnd;
vres->v_type = v1->v_type;
if (v1->v_type == V_MAT) {
vres->v_mat = matbround(v1->v_mat, v2, v3);
return;
}
if (v1->v_type == V_LIST) {
vres->v_list = listbround(v1->v_list, v2, v3);
return;
}
if (v1->v_type == V_OBJ || v2->v_type == V_OBJ) {
*vres = objcall(OBJ_BROUND, v1, v2, v3);
return;
}
places = 0;
switch (v2->v_type) {
case V_NUM:
if (qisfrac(v2->v_num)) {
*vres = error_value(E_BROUND2);
return;
}
places = qtoi(v2->v_num);
break;
case V_NULL:
break;
default:
*vres = error_value(E_BROUND2);
return;
}
rnd = 0;
switch (v3->v_type) {
case V_NUM:
if (qisfrac(v3->v_num)) {
*vres = error_value(E_BROUND3);
return;
}
rnd = qtoi(v3->v_num);
break;
case V_NULL:
rnd = conf->round;
break;
default:
*vres = error_value(E_BROUND3);
return;
}
switch(v1->v_type) {
case V_NUM:
vres->v_num = qbround(v1->v_num, places, rnd);
return;
case V_COM:
q1 = qbround(v1->v_com->real, places, rnd);
q2 = qbround(v1->v_com->imag, places, rnd);
if (qiszero(q2)) {
vres->v_type = V_NUM;
vres->v_num = q1;
qfree(q2);
return;
}
c = comalloc();
c->real = q1;
c->imag = q2;
vres->v_com = c;
return;
default:
if (v1->v_type < 0) {
copyvalue(v1, vres);
return;
}
*vres = error_value(E_BROUND);
return;
}
}
/*
* Take the integer part of an arbitrary value.
* Result is placed in the indicated location.
*/
void
intvalue(VALUE *vp, VALUE *vres)
{
COMPLEX *c;
vres->v_type = vp->v_type;
switch (vp->v_type) {
case V_NUM:
if (qisint(vp->v_num))
vres->v_num = qlink(vp->v_num);
else
vres->v_num = qint(vp->v_num);
return;
case V_COM:
if (cisint(vp->v_com)) {
vres->v_com = clink(vp->v_com);
return;
}
vres->v_com = cint(vp->v_com);
c = vres->v_com;
if (cisreal(c)) {
vres->v_num = qlink(c->real);
vres->v_type = V_NUM;
comfree(c);
}
return;
case V_MAT:
vres->v_mat = matint(vp->v_mat);
return;
case V_OBJ:
*vres = objcall(OBJ_INT, vp, NULL_VALUE, NULL_VALUE);
return;
default:
if (vp->v_type < 0) {
copyvalue(vp, vres);
return;
}
*vres = error_value(E_INT);
return;
}
}
/*
* Take the fractional part of an arbitrary value.
* Result is placed in the indicated location.
*/
void
fracvalue(VALUE *vp, VALUE *vres)
{
COMPLEX *c;
vres->v_type = vp->v_type;
switch (vp->v_type) {
case V_NUM:
if (qisint(vp->v_num))
vres->v_num = qlink(&_qzero_);
else
vres->v_num = qfrac(vp->v_num);
return;
case V_COM:
if (cisint(vp->v_com)) {
vres->v_num = clink(&_qzero_);
vres->v_type = V_NUM;
return;
}
vres->v_com = cfrac(vp->v_com);
c = vres->v_com;
if (cisreal(c)) {
vres->v_num = qlink(c->real);
vres->v_type = V_NUM;
comfree(c);
}
return;
case V_MAT:
vres->v_mat = matfrac(vp->v_mat);
return;
case V_OBJ:
*vres = objcall(OBJ_FRAC, vp, NULL_VALUE, NULL_VALUE);
return;
default:
if (vp->v_type < 0) {
copyvalue(vp, vres);
return;
}
*vres = error_value(E_FRAC);
return;
}
}
/*
* Increment an arbitrary value by one.
* Result is placed in the indicated location.
*/
void
incvalue(VALUE *vp, VALUE *vres)
{
vres->v_type = vp->v_type;
switch (vp->v_type) {
case V_NUM:
vres->v_num = qinc(vp->v_num);
return;
case V_COM:
vres->v_com = caddq(vp->v_com, &_qone_);
return;
case V_OBJ:
*vres = objcall(OBJ_INC, vp, NULL_VALUE, NULL_VALUE);
return;
default:
if (vp->v_type < 0) {
copyvalue(vp, vres);
return;
}
*vres = error_value(E_INCV);
return;
}
}
/*
* Decrement an arbitrary value by one.
* Result is placed in the indicated location.
*/
void
decvalue(VALUE *vp, VALUE *vres)
{
vres->v_type = vp->v_type;
switch (vp->v_type) {
case V_NUM:
vres->v_num = qdec(vp->v_num);
return;
case V_COM:
vres->v_com = caddq(vp->v_com, &_qnegone_);
return;
case V_OBJ:
*vres = objcall(OBJ_DEC, vp, NULL_VALUE, NULL_VALUE);
return;
default:
if (vp->v_type < 0) {
copyvalue(vp, vres);
return;
}
*vres = error_value(E_DECV);
return;
}
}
/*
* Produce the 'conjugate' of an arbitrary value.
* Result is placed in the indicated location.
* (Example: complex conjugate.)
*/
void
conjvalue(VALUE *vp, VALUE *vres)
{
vres->v_type = vp->v_type;
switch (vp->v_type) {
case V_NUM:
vres->v_num = qlink(vp->v_num);
return;
case V_COM:
vres->v_com = comalloc();
vres->v_com->real = qlink(vp->v_com->real);
vres->v_com->imag = qneg(vp->v_com->imag);
return;
case V_MAT:
vres->v_mat = matconj(vp->v_mat);
return;
case V_OBJ:
*vres = objcall(OBJ_CONJ, vp, NULL_VALUE, NULL_VALUE);
return;
default:
if (vp->v_type < 0) {
copyvalue(vp, vres);
return;
}
*vres = error_value(E_CONJ);
return;
}
}
/*
* Take the square root of an arbitrary value within the specified error.
* Result is placed in the indicated location.
*/
void
sqrtvalue(VALUE *v1, VALUE *v2, VALUE *v3, VALUE *vres)
{
NUMBER *q, *tmp;
COMPLEX *c;
long R;
if (v1->v_type == V_OBJ || v2->v_type == V_OBJ) {
*vres = objcall(OBJ_SQRT, v1, v2, v3);
return;
}
vres->v_type = v1->v_type;
if (v1->v_type < 0) {
copyvalue(v1, vres);
return;
}
if (v2->v_type == V_NULL)
q = conf->epsilon;
else {
if (v2->v_type != V_NUM || qiszero(v2->v_num)) {
*vres = error_value(E_SQRT2);
return;
}
q = v2->v_num;
}
if (v3->v_type == V_NULL)
R = conf->sqrt;
else {
if (v3->v_type != V_NUM || qisfrac(v3->v_num)) {
*vres = error_value(E_SQRT3);
return;
}
R = qtoi(v3->v_num);
}
switch (v1->v_type) {
case V_NUM:
if (!qisneg(v1->v_num)) {
vres->v_num = qsqrt(v1->v_num, q, R);
return;
}
tmp = qneg(v1->v_num);
c = comalloc();
c->imag = qsqrt(tmp, q, R);
qfree(tmp);
vres->v_com = c;
vres->v_type = V_COM;
break;
case V_COM:
vres->v_com = csqrt(v1->v_com, q, R);
break;
default:
*vres = error_value(E_SQRT);
return;
}
c = vres->v_com;
if (cisreal(c)) {
vres->v_num = qlink(c->real);
vres->v_type = V_NUM;
comfree(c);
}
}
/*
* Take the Nth root of an arbitrary value within the specified error.
* Result is placed in the indicated location.
*
* given:
* v1 value to take root of
* v2 value specifying root to take
* v3 value specifying error
* vres result
*/
void
rootvalue(VALUE *v1, VALUE *v2, VALUE *v3, VALUE *vres)
{
NUMBER *q1, *q2;
COMPLEX ctmp;
COMPLEX *c;
vres->v_type = v1->v_type;
if (v1->v_type < 0) {
copyvalue(v1, vres);
return;
}
if (v2->v_type != V_NUM) {
*vres = error_value(E_ROOT2);
return;
}
q1 = v2->v_num;
if (qisneg(q1) || qiszero(q1) || qisfrac(q1)) {
*vres = error_value(E_ROOT2);
return;
}
if (v3->v_type != V_NUM || qiszero(v3->v_num)) {
*vres = error_value(E_ROOT3);
return;
}
q2 = v3->v_num;
switch (v1->v_type) {
case V_NUM:
if (!qisneg(v1->v_num) || zisodd(q1->num)) {
vres->v_num = qroot(v1->v_num, q1, q2);
return;
}
ctmp.real = v1->v_num;
ctmp.imag = &_qzero_;
ctmp.links = 1;
vres->v_com = croot(&ctmp, q1, q2);
vres->v_type = V_COM;
break;
case V_COM:
vres->v_com = croot(v1->v_com, q1, q2);
break;
case V_OBJ:
*vres = objcall(OBJ_ROOT, v1, v2, v3);
return;
default:
*vres = error_value(E_ROOT);
return;
}
c = vres->v_com;
if (cisreal(c)) {
vres->v_num = qlink(c->real);
vres->v_type = V_NUM;
comfree(c);
}
}
/*
* Take the absolute value of an arbitrary value within the specified error.
* Result is placed in the indicated location.
*/
void
absvalue(VALUE *v1, VALUE *v2, VALUE *vres)
{
static NUMBER *q;
if (v1->v_type == V_OBJ || v2->v_type == V_OBJ) {
*vres = objcall(OBJ_ABS, v1, v2, NULL_VALUE);
return;
}
if (v1->v_type < 0) {
copyvalue(v1, vres);
return;
}
switch (v1->v_type) {
case V_NUM:
if (qisneg(v1->v_num))
q = qneg(v1->v_num);
else
q = qlink(v1->v_num);
break;
case V_COM:
if (v2->v_type != V_NUM || qiszero(v2->v_num)) {
*vres = error_value(E_ABS2);
return;
}
q = qhypot(v1->v_com->real, v1->v_com->imag, v2->v_num);
break;
default:
*vres = error_value(E_ABS);
return;
}
vres->v_num = q;
vres->v_type = V_NUM;
}
/*
* Calculate the norm of an arbitrary value.
* Result is placed in the indicated location.
* The norm is the square of the absolute value.
*/
void
normvalue(VALUE *vp, VALUE *vres)
{
NUMBER *q1, *q2;
vres->v_type = vp->v_type;
if (vp->v_type < 0) {
copyvalue(vp, vres);
return;
}
switch (vp->v_type) {
case V_NUM:
vres->v_num = qsquare(vp->v_num);
return;
case V_COM:
q1 = qsquare(vp->v_com->real);
q2 = qsquare(vp->v_com->imag);
vres->v_num = qqadd(q1, q2);
vres->v_type = V_NUM;
qfree(q1);
qfree(q2);
return;
case V_OBJ:
*vres = objcall(OBJ_NORM, vp, NULL_VALUE, NULL_VALUE);
return;
default:
*vres = error_value(E_NORM);
return;
}
}
/*
* Shift a value left or right by the specified number of bits.
* Negative shift value means shift the direction opposite the selected dir.
* Right shifts are defined to lose bits off the low end of the number.
* Result is placed in the indicated location.
*
* given:
* v1 value to shift
* v2 shirt amount
* rightshift TRUE if shift right instead of left
* vres result
*/
void
shiftvalue(VALUE *v1, VALUE *v2, BOOL rightshift, VALUE *vres)
{
COMPLEX *c;
long n = 0;
VALUE tmp;
if (v1->v_type < 0) {
copyvalue(v1, vres);
return;
}
if ((v2->v_type != V_NUM) || (qisfrac(v2->v_num))) {
*vres = error_value(E_SHIFT2);
return;
}
if (v1->v_type != V_OBJ) {
if (zge31b(v2->v_num->num)) {
*vres = error_value(E_SHIFT2);
return;
}
n = qtoi(v2->v_num);
}
if (rightshift)
n = -n;
vres->v_type = v1->v_type;
switch (v1->v_type) {
case V_NUM:
if (qisfrac(v1->v_num)) {
*vres = error_value(E_SHIFT);
return;
}
vres->v_num = qshift(v1->v_num, n);
return;
case V_COM:
if (qisfrac(v1->v_com->real) ||
qisfrac(v1->v_com->imag)) {
*vres = error_value(E_SHIFT);
return;
}
c = cshift(v1->v_com, n);
if (!cisreal(c)) {
vres->v_com = c;
return;
}
vres->v_num = qlink(c->real);
vres->v_type = V_NUM;
comfree(c);
return;
case V_MAT:
vres->v_mat = matshift(v1->v_mat, n);
return;
case V_OBJ:
if (!rightshift) {
*vres = objcall(OBJ_SHIFT, v1, v2, NULL_VALUE);
return;
}
tmp.v_num = qneg(v2->v_num);
tmp.v_type = V_NUM;
*vres = objcall(OBJ_SHIFT, v1, &tmp, NULL_VALUE);
qfree(tmp.v_num);
return;
default:
*vres = error_value(E_SHIFT);
return;
}
}
/*
* Scale a value by a power of two.
* Result is placed in the indicated location.
*/
void
scalevalue(VALUE *v1, VALUE *v2, VALUE *vres)
{
long n = 0;
if (v1->v_type < 0) {
copyvalue(v1, vres);
return;
}
if ((v2->v_type != V_NUM) || qisfrac(v2->v_num)) {
*vres = error_value(E_SCALE2);
return;
}
if (v1->v_type != V_OBJ) {
if (zge31b(v2->v_num->num)) {
*vres = error_value(E_SCALE2);
return;
}
n = qtoi(v2->v_num);
}
vres->v_type = v1->v_type;
switch (v1->v_type) {
case V_NUM:
vres->v_num = qscale(v1->v_num, n);
return;
case V_COM:
vres->v_com = cscale(v1->v_com, n);
return;
case V_MAT:
vres->v_mat = matscale(v1->v_mat, n);
return;
case V_OBJ:
*vres = objcall(OBJ_SCALE, v1, v2, NULL_VALUE);
return;
default:
*vres = error_value(E_SCALE);
return;
}
}
/*
* Raise a value to an integral power.
* Result is placed in the indicated location.
*/
void
powivalue(VALUE *v1, VALUE *v2, VALUE *vres)
{
NUMBER *q;
COMPLEX *c;
if (v1->v_type < 0) {
copyvalue(v1, vres);
return;
}
if (v2->v_type < 0) {
copyvalue(v2, vres);
return;
}
if (v2->v_type != V_NUM || qisfrac(v2->v_num)) {
*vres = error_value(E_POWI2);
return;
}
q = v2->v_num;
vres->v_type = v1->v_type;
switch (v1->v_type) {
case V_NUM:
vres->v_num = qpowi(v1->v_num, q);
return;
case V_COM:
vres->v_com = cpowi(v1->v_com, q);
c = vres->v_com;
if (!cisreal(c))
return;
vres->v_num = qlink(c->real);
vres->v_type = V_NUM;
comfree(c);
return;
case V_MAT:
vres->v_mat = matpowi(v1->v_mat, q);
return;
case V_OBJ:
*vres = objcall(OBJ_POW, v1, v2, NULL_VALUE);
return;
default:
*vres = error_value(E_POWI);
return;
}
}
/*
* Raise one value to another value's power, within the specified error.
* Result is placed in the indicated location.
*/
void
powervalue(VALUE *v1, VALUE *v2, VALUE *v3, VALUE *vres)
{
NUMBER *epsilon;
COMPLEX *c, ctmp;
if (v1->v_type < 0) {
copyvalue(v1, vres);
return;
}
if (v1->v_type != V_NUM && v1->v_type != V_COM) {
*vres = error_value(E_POWER);
return;
}
if (v2->v_type != V_NUM && v2->v_type != V_COM) {
*vres = error_value(E_POWER2);
return;
}
if (v3->v_type != V_NUM || qiszero(v3->v_num)) {
*vres = error_value(E_POWER3);
return;
}
epsilon = v3->v_num;
vres->v_type = v1->v_type;
switch (TWOVAL(v1->v_type, v2->v_type)) {
case TWOVAL(V_NUM, V_NUM):
vres->v_num = qpower(v1->v_num, v2->v_num, epsilon);
return;
case TWOVAL(V_NUM, V_COM):
ctmp.real = v1->v_num;
ctmp.imag = &_qzero_;
ctmp.links = 1;
vres->v_com = cpower(&ctmp, v2->v_com, epsilon);
break;
case TWOVAL(V_COM, V_NUM):
ctmp.real = v2->v_num;
ctmp.imag = &_qzero_;
ctmp.links = 1;
vres->v_com = cpower(v1->v_com, &ctmp, epsilon);
break;
case TWOVAL(V_COM, V_COM):
vres->v_com = cpower(v1->v_com, v2->v_com, epsilon);
break;
default:
*vres = error_value(E_POWER);
return;
}
/*
* Here for any complex result.
*/
vres->v_type = V_COM;
c = vres->v_com;
if (!cisreal(c))
return;
vres->v_num = qlink(c->real);
vres->v_type = V_NUM;
comfree(c);
}
/*
* Divide one arbitrary value by another one.
* Result is placed in the indicated location.
*/
void
divvalue(VALUE *v1, VALUE *v2, VALUE *vres)
{
COMPLEX *c;
COMPLEX ctmp;
VALUE tmpval;
if (v1->v_type < 0) {
copyvalue(v1, vres);
return;
}
if (v2->v_type < 0) {
copyvalue(v2, vres);
return;
}
if (!testvalue(v2)) {
if (testvalue(v1))
*vres = error_value(E_1OVER0);
else
*vres = error_value(E_0OVER0);
return;
}
vres->v_type = v1->v_type;
switch (TWOVAL(v1->v_type, v2->v_type)) {
case TWOVAL(V_NUM, V_NUM):
vres->v_num = qdiv(v1->v_num, v2->v_num);
return;
case TWOVAL(V_COM, V_NUM):
vres->v_com = cdivq(v1->v_com, v2->v_num);
return;
case TWOVAL(V_NUM, V_COM):
if (qiszero(v1->v_num)) {
vres->v_num = qlink(&_qzero_);
return;
}
ctmp.real = v1->v_num;
ctmp.imag = &_qzero_;
ctmp.links = 1;
vres->v_com = cdiv(&ctmp, v2->v_com);
vres->v_type = V_COM;
return;
case TWOVAL(V_COM, V_COM):
vres->v_com = cdiv(v1->v_com, v2->v_com);
c = vres->v_com;
if (cisreal(c)) {
vres->v_num = qlink(c->real);
vres->v_type = V_NUM;
comfree(c);
}
return;
case TWOVAL(V_MAT, V_NUM):
case TWOVAL(V_MAT, V_COM):
invertvalue(v2, &tmpval);
vres->v_mat = matmulval(v1->v_mat, &tmpval);
freevalue(&tmpval);
return;
default:
if ((v1->v_type != V_OBJ) && (v2->v_type != V_OBJ)) {
*vres = error_value(E_DIV);
return;
}
*vres = objcall(OBJ_DIV, v1, v2, NULL_VALUE);
return;
}
}
/*
* Divide one arbitrary value by another one keeping only the integer part.
* Result is placed in the indicated location.
*/
void
quovalue(VALUE *v1, VALUE *v2, VALUE *v3, VALUE *vres)
{
COMPLEX *c;
NUMBER *q1, *q2;
long rnd;
vres->v_type = v1->v_type;
if (v1->v_type < 0) {
copyvalue(v1, vres);
return;
}
if (v1->v_type == V_MAT) {
vres->v_mat = matquoval(v1->v_mat, v2, v3);
return;
}
if (v1->v_type == V_LIST) {
vres->v_list = listquo(v1->v_list, v2, v3);
return;
}
if (v1->v_type == V_OBJ || v2->v_type == V_OBJ) {
*vres = objcall(OBJ_QUO, v1, v2, v3);
return;
}
if (v2->v_type < 0) {
copyvalue(v2, vres);
return;
}
if (v2->v_type != V_NUM) {
*vres = error_value(E_QUO2);
return;
}
rnd = 0;
switch (v3->v_type) {
case V_NUM:
if (qisfrac(v3->v_num)) {
*vres = error_value(E_QUO3);
return;
}
rnd = qtoi(v3->v_num);
break;
case V_NULL:
rnd = conf->quo;
break;
default:
*vres = error_value(E_QUO3);
return;
}
switch (v1->v_type) {
case V_NUM:
vres->v_num = qquo(v1->v_num, v2->v_num, rnd);
return;
case V_COM:
q1 = qquo(v1->v_com->real, v2->v_num, rnd);
q2 = qquo(v1->v_com->imag, v2->v_num, rnd);
if (qiszero(q2)) {
qfree(q2);
vres->v_type = V_NUM;
vres->v_num = q1;
return;
}
c = comalloc();
c->real = q1;
c->imag = q2;
vres->v_com = c;
return;
default:
*vres = error_value(E_QUO);
return;
}
}
/*
* Divide one arbitrary value by another one keeping only the remainder.
* Result is placed in the indicated location.
*/
void
modvalue(VALUE *v1, VALUE *v2, VALUE *v3, VALUE *vres)
{
COMPLEX *c;
NUMBER *q1, *q2;
long rnd;
if (v1->v_type < 0) {
copyvalue(v1, vres);
return;
}
vres->v_type = v1->v_type;
if (v1->v_type == V_MAT) {
vres->v_mat = matmodval(v1->v_mat, v2, v3);
return;
}
if (v1->v_type == V_LIST) {
vres->v_list = listmod(v1->v_list, v2, v3);
return;
}
if (v1->v_type == V_OBJ || v2->v_type == V_OBJ) {
*vres = objcall(OBJ_MOD, v1, v2, v3);
return;
}
if (v2->v_type < 0) {
copyvalue(v2, vres);
return;
}
if (v2->v_type != V_NUM) {
*vres = error_value(E_MOD2);
return;
}
rnd = 0;
switch (v3->v_type) {
case V_NUM:
if (qisfrac(v3->v_num)) {
*vres = error_value(E_MOD3);
return;
}
rnd = qtoi(v3->v_num);
break;
case V_NULL:
rnd = conf->mod;
break;
default:
*vres = error_value(E_MOD3);
return;
}
switch (v1->v_type) {
case V_NUM:
vres->v_num = qmod(v1->v_num, v2->v_num, rnd);
return;
case V_COM:
q1 = qmod(v1->v_com->real, v2->v_num, rnd);
q2 = qmod(v1->v_com->imag, v2->v_num, rnd);
if (qiszero(q2)) {
qfree(q2);
vres->v_type = V_NUM;
vres->v_num = q1;
return;
}
c = comalloc();
c->real = q1;
c->imag = q2;
vres->v_com = c;
return;
default:
*vres = error_value(E_MOD);
return;
}
}
/*
* Test an arbitrary value to see if it is equal to "zero".
* The definition of zero varies depending on the value type. For example,
* the null string is "zero", and a matrix with zero values is "zero".
* Returns TRUE if value is not equal to zero.
*/
BOOL
testvalue(VALUE *vp)
{
VALUE val;
switch (vp->v_type) {
case V_NUM:
return !qiszero(vp->v_num);
case V_COM:
return !ciszero(vp->v_com);
case V_STR:
return (vp->v_str[0] != '\0');
case V_MAT:
return mattest(vp->v_mat);
case V_LIST:
return (vp->v_list->l_count != 0);
case V_ASSOC:
return (vp->v_assoc->a_count != 0);
case V_FILE:
return validid(vp->v_file);
case V_NULL:
break; /* hack to get gcc on SunOS to be quiet */
case V_OBJ:
val = objcall(OBJ_TEST, vp, NULL_VALUE, NULL_VALUE);
return (val.v_int != 0);
default:
math_error("Testing improper type");
/*NOTREACHED*/
}
/* hack to get gcc on SunOS to be quiet */
return FALSE;
}
/*
* Compare two values for equality.
* Returns TRUE if the two values differ.
*/
BOOL
comparevalue(VALUE *v1, VALUE *v2)
{
int r = FALSE;
VALUE val;
if ((v1->v_type == V_OBJ) || (v2->v_type == V_OBJ)) {
val = objcall(OBJ_CMP, v1, v2, NULL_VALUE);
return (val.v_int != 0);
}
if (v1 == v2)
return FALSE;
if (v1->v_type != v2->v_type)
return TRUE;
if (v1->v_type < 0)
return FALSE;
switch (v1->v_type) {
case V_NUM:
r = qcmp(v1->v_num, v2->v_num);
break;
case V_COM:
r = ccmp(v1->v_com, v2->v_com);
break;
case V_STR:
r = ((v1->v_str != v2->v_str) &&
((v1->v_str[0] - v2->v_str[0]) ||
strcmp(v1->v_str, v2->v_str)));
break;
case V_MAT:
r = matcmp(v1->v_mat, v2->v_mat);
break;
case V_LIST:
r = listcmp(v1->v_list, v2->v_list);
break;
case V_ASSOC:
r = assoccmp(v1->v_assoc, v2->v_assoc);
break;
case V_NULL:
break;
case V_FILE:
r = (v1->v_file != v2->v_file);
break;
case V_RAND:
r = randcmp(v1->v_rand, v2->v_rand);
break;
case V_RANDOM:
r = randomcmp(v1->v_random, v2->v_random);
break;
case V_CONFIG:
r = config_cmp(v1->v_config, v2->v_config);
break;
#if 0 /* XXX - write */
case V_HASH:
r = hash_cmp(v1->v_hash, v2->v_hash);
break;
#endif
default:
math_error("Illegal values for comparevalue");
/*NOTREACHED*/
}
return (r != 0);
}
BOOL
precvalue(VALUE *v1, VALUE *v2)
{
VALUE val;
long index;
int r = 0;
FUNC *fp;
index = adduserfunc("precedes");
fp = findfunc(index);
if (fp) {
++stack;
stack->v_type = V_ADDR;
stack->v_addr = v1;
++stack;
stack->v_type = V_ADDR;
stack->v_addr = v2;
calculate(fp, 2);
val = *stack--;
if (val.v_type != V_NUM) {
math_error("Non-numeric value for precvalue()");
/*NOTREACHED*/
}
return (qtoi(val.v_num) ? TRUE : FALSE);
}
relvalue(v1, v2, &val);
if ((val.v_type == V_NUM && qisneg(val.v_num)) ||
(val.v_type == V_COM && qisneg(val.v_com->imag)))
r = 1;
if (val.v_type == V_NULL)
r = (v1->v_type < v2->v_type);
freevalue(&val);
return r;
}
/*
* Compare two values for their relative values.
* Result is placed in the indicated location.
*/
void
relvalue(VALUE *v1, VALUE *v2, VALUE *vres)
{
int r = 0;
COMPLEX ctmp, *c;
if ((v1->v_type == V_OBJ) || (v2->v_type == V_OBJ)) {
*vres = objcall(OBJ_REL, v1, v2, NULL_VALUE);
return;
}
switch (TWOVAL(v1->v_type, v2->v_type)) {
case TWOVAL(V_NUM, V_NUM):
r = qrel(v1->v_num, v2->v_num);
vres->v_type = V_NUM;
vres->v_num = itoq((long) r);
return;
case TWOVAL(V_STR, V_STR):
r = strcmp(v1->v_str, v2->v_str);
vres->v_type = V_NUM;
if (r < 0) {
vres->v_num = itoq((long) -1);
} else if (r > 0) {
vres->v_num = itoq((long) 1);
} else {
vres->v_num = itoq((long) 0);
}
return;
case TWOVAL(V_COM, V_COM):
c = crel(v1->v_com, v2->v_com);
break;
case TWOVAL(V_COM, V_NUM):
ctmp.real = v2->v_num;
ctmp.imag = &_qzero_;
ctmp.links = 1;
c = crel(v1->v_com, &ctmp);
break;
case TWOVAL(V_NUM, V_COM):
ctmp.real = v1->v_num;
ctmp.imag = &_qzero_;
ctmp.links = 1;
c = crel(&ctmp, v2->v_com);
break;
default:
vres->v_type = V_NULL;
return;
}
if (cisreal(c)) {
vres->v_num = qlink(c->real);
vres->v_type = V_NUM;
comfree(c);
return;
}
vres->v_com = c;
vres->v_type = V_COM;
}
/*
* Find a value representing sign or signs in a value
* Result is placed in the indicated location.
*/
void
sgnvalue(VALUE *vp, VALUE *vres)
{
COMPLEX *c;
vres->v_type = vp->v_type;
switch (vp->v_type) {
case V_NUM:
vres->v_num = qsign(vp->v_num);
return;
case V_COM:
c = comalloc();
c->real = qsign(vp->v_com->real);
c->imag = qsign(vp->v_com->imag);
vres->v_com = c;
vres->v_type = V_COM;
return;
case V_OBJ:
*vres = objcall(OBJ_SGN, vp, NULL_VALUE, NULL_VALUE);
return;
default:
if (vp->v_type < 0) {
copyvalue(vp, vres);
return;
}
*vres = error_value(E_SGN);
return;
}
}
/*
* Print the value of a descriptor in one of several formats.
* If flags contains PRINT_SHORT, then elements of arrays and lists
* will not be printed. If flags contains PRINT_UNAMBIG, then quotes
* are placed around strings and the null value is explicitly printed.
*/
void
printvalue(VALUE *vp, int flags)
{
int type;
type = vp->v_type;
if (type < 0) {
if (-type > E__BASE)
printf("Error %d", -type);
else
printf("System error %d", -type);
return;
}
switch (type) {
case V_NUM:
qprintnum(vp->v_num, MODE_DEFAULT);
if (conf->traceflags & TRACE_LINKS)
printf("#%ld", vp->v_num->links);
break;
case V_COM:
comprint(vp->v_com);
if (conf->traceflags & TRACE_LINKS)
printf("##%ld", vp->v_com->links);
break;
case V_STR:
if (flags & PRINT_UNAMBIG)
math_chr('\"');
math_str(vp->v_str);
if (flags & PRINT_UNAMBIG)
math_chr('\"');
break;
case V_NULL:
if (flags & PRINT_UNAMBIG)
math_str("NULL");
break;
case V_OBJ:
(void) objcall(OBJ_PRINT, vp, NULL_VALUE, NULL_VALUE);
break;
case V_LIST:
listprint(vp->v_list,
((flags & PRINT_SHORT) ? 0L : conf->maxprint));
break;
case V_ASSOC:
assocprint(vp->v_assoc,
((flags & PRINT_SHORT) ? 0L : conf->maxprint));
break;
case V_MAT:
matprint(vp->v_mat,
((flags & PRINT_SHORT) ? 0L : conf->maxprint));
break;
case V_FILE:
printid(vp->v_file, flags);
break;
case V_RAND:
randprint(vp->v_rand, flags);
break;
case V_RANDOM:
randomprint(vp->v_random, flags);
break;
case V_CONFIG:
config_print(vp->v_config);
break;
#if 0 /* XXX - write */
case V_HASH:
hash_print(vp->v_hash);
break;
#endif
default:
math_error("Printing unknown value");
/*NOTREACHED*/
}
}
/*
* config_print - print a configuration value
*
* given:
* cfg what to print
*/
void
config_print(CONFIG *cfg)
{
NAMETYPE *cp;
VALUE tmp;
int tab_over; /* TRUE => ok move over one tab stop */
int i;
/*
* firewall
*/
if (cfg == NULL || cfg->epsilon == NULL || cfg->prompt1 == NULL ||
cfg->prompt2 == NULL) {
math_error("CONFIG value is invaid");
/*NOTREACHED*/
}
/*
* print each element
*/
tab_over = FALSE;
for (cp = configs; cp->name; cp++) {
/* skip if special all value */
if (cp->type == CONFIG_ALL)
continue;
/* print tab if allowed */
if (tab_over) {
printf("\t");
} else if (conf->tab_ok) {
tab_over = TRUE; /* tab next time */
}
/* print name and spaces */
printf("%s", cp->name);
i = 16 - (int)strlen(cp->name);
while (i-- > 0)
printf(" ");
/* print value */
config_value(cfg, cp->type, &tmp);
printvalue(&tmp, PRINT_SHORT | PRINT_UNAMBIG);
freevalue(&tmp);
if ((cp+1)->name)
printf("\n");
}
}
/* END CODE */