Files
calc/shs.c
2017-05-21 15:38:25 -07:00

1248 lines
32 KiB
C

/* XXX - this code is currently not really used, but it will be soon */
/*
* shs - old Secure Hash Standard
*
**************************************************************************
* This version implements the old Secure Hash Algorithm specified by *
* (FIPS Pub 180). This version is kept for backward compatibility with *
* shs version 2.10.1. See the shs utility for the new standard. *
**************************************************************************
*
* Written 2 September 1992, Peter C. Gutmann.
*
* This file was Modified/Re-written by:
*
* Landon Curt Noll (chongo@toad.com) chongo <was here> /\../\
*
* This code has been placed in the public domain. Please do not
* copyright this code.
*
* LANDON CURT NOLL DISCLAIMS ALL WARRANTIES WITH REGARD TO
* THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MER-
* CHANTABILITY AND FITNESS. IN NO EVENT SHALL LANDON CURT
* NOLL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL
* DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
* USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
* NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* Based on Version 2.11 (09 Mar 1995) from Landon Curt Noll's
* (chongo@toad.com) shs hash program.
*
****
*
* The SHS algorithm hashes 32 bit unsigned values, 16 at a time.
* It further specifies that strings are to be converted into
* 32 bit values in BIG ENDIAN order. That is on little endian
* machines, strings are byte swaped into BIG ENDIAN order before
* they are taken 32 bit at a time. Even so, when hashing 32 bit
* numeric values the byte order DOES NOT MATTER because the
* algorithm works off of their numeric value, not their byte order.
*
* In calc, we want to hash equal values to the same hash value.
* For the most part, we will be hashing arrays of HALF's instead
* of strings. For this reason, the functions below do not byte
* swap on little endian machines automatically. Instead it is
* the responsibility of the caller of the internal SHS function
* to ensure that the values are already in the canonical 32 bit
* numeric value form.
*/
#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <sys/stat.h>
#include "calc.h"
#include "zrand.h"
#include "longbits.h"
#include "align32.h"
#include "endian_calc.h"
#include "shs.h"
#include "value.h"
/*
* The SHS f()-functions. The f1 and f3 functions can be optimized
* to save one boolean operation each - thanks to Rich Schroeppel,
* rcs@cs.arizona.edu for discovering this.
*
* f1: ((x&y) | (~x&z)) == (z ^ (x&(y^z)))
* f3: ((x&y) | (x&z) | (y&z)) == ((x&y) | (z&(x|y)))
*/
#define f1(x,y,z) (z ^ (x&(y^z))) /* Rounds 0-19 */
#define f2(x,y,z) (x^y^z) /* Rounds 20-39 */
#define f3(x,y,z) ((x&y) | (z&(x|y))) /* Rounds 40-59 */
#define f4(x,y,z) (x^y^z) /* Rounds 60-79 */
/* The SHS Mysterious Constants */
#define K1 0x5A827999L /* Rounds 0-19 */
#define K2 0x6ED9EBA1L /* Rounds 20-39 */
#define K3 0x8F1BBCDCL /* Rounds 40-59 */
#define K4 0xCA62C1D6L /* Rounds 60-79 */
/* SHS initial values */
#define h0init 0x67452301L
#define h1init 0xEFCDAB89L
#define h2init 0x98BADCFEL
#define h3init 0x10325476L
#define h4init 0xC3D2E1F0L
/* 32-bit rotate left - kludged with shifts */
#define LEFT_ROT(X,n) (((X)<<(n)) | ((X)>>(32-(n))))
/*
* The initial expanding function. The hash function is defined over an
* 80-word expanded input array W, where the first 16 are copies of the input
* data, and the remaining 64 are defined by
*
* W[i] = W[i-16] ^ W[i-14] ^ W[i-8] ^ W[i-3]
*
* This implementation generates these values on the fly in a circular
* buffer - thanks to Colin Plumb (colin@nyx10.cs.du.edu) for this
* optimization.
*/
#define exor(W,i) (W[i&15] ^= (W[(i-14)&15] ^ W[(i-8)&15] ^ W[(i-3)&15]))
/*
* The prototype SHS sub-round. The fundamental sub-round is:
*
* a' = e + LEFT_ROT(a,5) + f(b,c,d) + k + data;
* b' = a;
* c' = LEFT_ROT(b,30);
* d' = c;
* e' = d;
*
* but this is implemented by unrolling the loop 5 times and renaming the
* variables ( e, a, b, c, d ) = ( a', b', c', d', e' ) each iteration.
* This code is then replicated 20 times for each of the 4 functions, using
* the next 20 values from the W[] array each time.
*/
#define subRound(a, b, c, d, e, f, k, data) \
(e += LEFT_ROT(a,5) + f(b,c,d) + k + data, b = LEFT_ROT(b,30))
/* forward declarations */
#if defined(MUST_ALIGN32)
static USB32 in[SHS_CHUNKWORDS];
#endif
static void shsInit(SHS_INFO*);
static void shsTransform(USB32*, USB32*);
static void shsUpdate(SHS_INFO*, USB8*, USB32);
static void shsfullUpdate(SHS_INFO*, USB8*, USB32);
static void shsFinal(SHS_INFO*);
static void shs_chkpt(HASH*);
static void shs_note(HASH*, int);
static void shs_type(HASH*, int);
static HASH *shs_init(HASH*);
static HASH *shs_long(HASH*, long);
static HASH *shs_zvalue(HASH*, ZVALUE);
static HASH *shs_number(HASH*, NUMBER*);
static HASH *shs_complex(HASH*, COMPLEX*);
static HASH *shs_str(HASH*, char*);
static HASH *shs_value(HASH*, VALUE*);
static ZVALUE shs_final(HASH*);
/*
* shsInit - initialize the SHS state
*/
static void
shsInit(SHS_INFO *dig)
{
/* Set the h-vars to their initial values */
dig->digest[0] = h0init;
dig->digest[1] = h1init;
dig->digest[2] = h2init;
dig->digest[3] = h3init;
dig->digest[4] = h4init;
/* Initialise bit count */
dig->countLo = 0;
dig->countHi = 0;
dig->datalen = 0;
}
/*
* shsTransform - perform the SHS transformatio
*
* Note that this code, like MD5, seems to break some optimizing compilers.
* It may be necessary to split it into sections, eg based on the four
* subrounds. One may also want to roll each subround into a loop.
*/
static void
shsTransform(USB32 *digest, USB32 *W)
{
USB32 A, B, C, D, E; /* Local vars */
/* Set up first buffer and local data buffer */
A = digest[0];
B = digest[1];
C = digest[2];
D = digest[3];
E = digest[4];
/* Heavy mangling, in 4 sub-rounds of 20 interations each. */
subRound(A, B, C, D, E, f1, K1, W[ 0]);
subRound(E, A, B, C, D, f1, K1, W[ 1]);
subRound(D, E, A, B, C, f1, K1, W[ 2]);
subRound(C, D, E, A, B, f1, K1, W[ 3]);
subRound(B, C, D, E, A, f1, K1, W[ 4]);
subRound(A, B, C, D, E, f1, K1, W[ 5]);
subRound(E, A, B, C, D, f1, K1, W[ 6]);
subRound(D, E, A, B, C, f1, K1, W[ 7]);
subRound(C, D, E, A, B, f1, K1, W[ 8]);
subRound(B, C, D, E, A, f1, K1, W[ 9]);
subRound(A, B, C, D, E, f1, K1, W[10]);
subRound(E, A, B, C, D, f1, K1, W[11]);
subRound(D, E, A, B, C, f1, K1, W[12]);
subRound(C, D, E, A, B, f1, K1, W[13]);
subRound(B, C, D, E, A, f1, K1, W[14]);
subRound(A, B, C, D, E, f1, K1, W[15]);
subRound(E, A, B, C, D, f1, K1, exor(W,16));
subRound(D, E, A, B, C, f1, K1, exor(W,17));
subRound(C, D, E, A, B, f1, K1, exor(W,18));
subRound(B, C, D, E, A, f1, K1, exor(W,19));
subRound(A, B, C, D, E, f2, K2, exor(W,20));
subRound(E, A, B, C, D, f2, K2, exor(W,21));
subRound(D, E, A, B, C, f2, K2, exor(W,22));
subRound(C, D, E, A, B, f2, K2, exor(W,23));
subRound(B, C, D, E, A, f2, K2, exor(W,24));
subRound(A, B, C, D, E, f2, K2, exor(W,25));
subRound(E, A, B, C, D, f2, K2, exor(W,26));
subRound(D, E, A, B, C, f2, K2, exor(W,27));
subRound(C, D, E, A, B, f2, K2, exor(W,28));
subRound(B, C, D, E, A, f2, K2, exor(W,29));
subRound(A, B, C, D, E, f2, K2, exor(W,30));
subRound(E, A, B, C, D, f2, K2, exor(W,31));
subRound(D, E, A, B, C, f2, K2, exor(W,32));
subRound(C, D, E, A, B, f2, K2, exor(W,33));
subRound(B, C, D, E, A, f2, K2, exor(W,34));
subRound(A, B, C, D, E, f2, K2, exor(W,35));
subRound(E, A, B, C, D, f2, K2, exor(W,36));
subRound(D, E, A, B, C, f2, K2, exor(W,37));
subRound(C, D, E, A, B, f2, K2, exor(W,38));
subRound(B, C, D, E, A, f2, K2, exor(W,39));
subRound(A, B, C, D, E, f3, K3, exor(W,40));
subRound(E, A, B, C, D, f3, K3, exor(W,41));
subRound(D, E, A, B, C, f3, K3, exor(W,42));
subRound(C, D, E, A, B, f3, K3, exor(W,43));
subRound(B, C, D, E, A, f3, K3, exor(W,44));
subRound(A, B, C, D, E, f3, K3, exor(W,45));
subRound(E, A, B, C, D, f3, K3, exor(W,46));
subRound(D, E, A, B, C, f3, K3, exor(W,47));
subRound(C, D, E, A, B, f3, K3, exor(W,48));
subRound(B, C, D, E, A, f3, K3, exor(W,49));
subRound(A, B, C, D, E, f3, K3, exor(W,50));
subRound(E, A, B, C, D, f3, K3, exor(W,51));
subRound(D, E, A, B, C, f3, K3, exor(W,52));
subRound(C, D, E, A, B, f3, K3, exor(W,53));
subRound(B, C, D, E, A, f3, K3, exor(W,54));
subRound(A, B, C, D, E, f3, K3, exor(W,55));
subRound(E, A, B, C, D, f3, K3, exor(W,56));
subRound(D, E, A, B, C, f3, K3, exor(W,57));
subRound(C, D, E, A, B, f3, K3, exor(W,58));
subRound(B, C, D, E, A, f3, K3, exor(W,59));
subRound(A, B, C, D, E, f4, K4, exor(W,60));
subRound(E, A, B, C, D, f4, K4, exor(W,61));
subRound(D, E, A, B, C, f4, K4, exor(W,62));
subRound(C, D, E, A, B, f4, K4, exor(W,63));
subRound(B, C, D, E, A, f4, K4, exor(W,64));
subRound(A, B, C, D, E, f4, K4, exor(W,65));
subRound(E, A, B, C, D, f4, K4, exor(W,66));
subRound(D, E, A, B, C, f4, K4, exor(W,67));
subRound(C, D, E, A, B, f4, K4, exor(W,68));
subRound(B, C, D, E, A, f4, K4, exor(W,69));
subRound(A, B, C, D, E, f4, K4, exor(W,70));
subRound(E, A, B, C, D, f4, K4, exor(W,71));
subRound(D, E, A, B, C, f4, K4, exor(W,72));
subRound(C, D, E, A, B, f4, K4, exor(W,73));
subRound(B, C, D, E, A, f4, K4, exor(W,74));
subRound(A, B, C, D, E, f4, K4, exor(W,75));
subRound(E, A, B, C, D, f4, K4, exor(W,76));
subRound(D, E, A, B, C, f4, K4, exor(W,77));
subRound(C, D, E, A, B, f4, K4, exor(W,78));
subRound(B, C, D, E, A, f4, K4, exor(W,79));
/* Build message digest */
digest[0] += A;
digest[1] += B;
digest[2] += C;
digest[3] += D;
digest[4] += E;
}
/*
* shsUpdate - update SHS with arbitrary length data
*
* This code does not assume that the buffer size is a multiple of
* SHS_CHUNKSIZE bytes long. This code handles partial chunk between
* calls to shsUpdate().
*/
static void
shsUpdate(SHS_INFO *dig, USB8 *buffer, USB32 count)
{
USB32 datalen = dig->datalen;
/*
* Catch the case of a non-empty data buffer
*/
if (datalen > 0) {
/* determine the size we need to copy */
USB32 cpylen = SHS_CHUNKSIZE - datalen;
/* case: new data will not fill the buffer */
if (cpylen > count) {
memcpy((char *)dig->data+datalen,
(char *)buffer, count);
dig->datalen = datalen+count;
return;
/* case: buffer will be filled */
} else {
memcpy((char *)dig->data+datalen,
(char *)buffer, cpylen);
shsTransform(dig->digest, dig->data);
buffer += cpylen;
count -= cpylen;
dig->datalen = 0;
}
}
/*
* Process data in SHS_CHUNKSIZE chunks
*/
if (count >= SHS_CHUNKSIZE) {
shsfullUpdate(dig, buffer, count);
buffer += (count/SHS_CHUNKSIZE)*SHS_CHUNKSIZE;
count %= SHS_CHUNKSIZE;
}
/*
* Handle any remaining bytes of data.
* This should only happen once on the final lot of data
*/
if (count > 0) {
memcpy((char *)dig->data, (char *)buffer, count);
}
dig->datalen = count;
}
/*
* shsfullUpdate - update SHS with chunk multiple length data
*
* This function assumes that count is a multiple of SHS_CHUNKSIZE and that
* no partial chunk is left over from a previous call.
*/
static void
shsfullUpdate(SHS_INFO *dig, USB8 *buffer, USB32 count)
{
/*
* Process data in SHS_CHUNKSIZE chunks
*/
while (count >= SHS_CHUNKSIZE) {
#if defined(MUST_ALIGN32)
if ((long)buffer & (sizeof(USB32)-1)) {
memcpy((char *)in, (char *)buffer, SHS_CHUNKSIZE);
shsTransform(dig->digest, in);
} else {
shsTransform(dig->digest, (USB32 *)buffer);
}
#else
shsTransform(dig->digest, (USB32 *)buffer);
#endif
buffer += SHS_CHUNKSIZE;
count -= SHS_CHUNKSIZE;
}
}
/*
* shsFinal - perform final SHS transforms
*
* At this point we have less than a full chunk of data remaining
* (and possibly no data) in the shs state data buffer.
*
* First we append a final 0x80 byte.
*
* Next if we have more than 56 bytes, we will zero fill the remainder
* of the chunk, transform and then zero fill the first 56 bytes.
* If we have 56 or fewer bytes, we will zero fill out to the 56th
* chunk byte. Regardless, we wind up with 56 bytes data.
*
* Finally we append the 64 bit length on to the 56 bytes of data
* remaining. This final chunk is transformed.
*/
static void
shsFinal(SHS_INFO *dig)
{
long count = (long)(dig->datalen);
USB32 lowBitcount = dig->countLo;
USB32 highBitcount = dig->countHi;
#if BYTE_ORDER == LITTLE_ENDIAN
int i;
#endif
/*
* Set the first char of padding to 0x80.
* This is safe since there is always at least one byte free
*/
((USB8 *)dig->data)[count++] = 0x80;
/* Pad out to 56 mod SHS_CHUNKSIZE */
if (count > SHS_CHUNKSIZE-8) {
/* Pad the first chunk to SHS_CHUNKSIZE bytes */
memset((USB8 *)dig->data + count, 0, SHS_CHUNKSIZE - count);
shsTransform(dig->digest, dig->data);
/* Now fill the next chunk with 56 bytes */
memset(dig->data, 0, SHS_CHUNKSIZE-8);
} else {
/* Pad chunk to 56 bytes */
memset((USB8 *)dig->data + count, 0, SHS_CHUNKSIZE-8 - count);
}
#if BYTE_ORDER == LITTLE_ENDIAN
for (i=0; i < SHS_CHUNKWORDS; ++i) {
SWAP_B8_IN_B32(dig->data+i, dig->data+i);
}
#endif
/*
* Append length in bits and transform
*
* We assume that bit count is a multiple of 8 because we have
* only processed full bytes.
*/
dig->data[SHS_HIGH] = (highBitcount << 3) | (lowBitcount >> 29);
dig->data[SHS_LOW] = (lowBitcount << 3);
shsTransform(dig->digest, dig->data);
dig->datalen = 0;
}
/*
* shs_chkpt - checkpoint a SHS state
*
* given:
* state the state to checkpoint
*
* This function will ensure that the the hash chunk buffer is empty.
* Any partially hashed data will be padded out with 0's and hashed.
*/
static void
shs_chkpt(HASH *state)
{
SHS_INFO *dig = &state->h_shs; /* digest state */
/*
* checkpoint if partial buffer exists
*/
if (dig->datalen > 0) {
/* pad to the end of the chunk */
memset((USB8 *)dig->data + dig->datalen, 0,
SHS_CHUNKSIZE-dig->datalen);
/* transform padded chunk */
shsTransform(dig->digest, dig->data);
SHSCOUNT(dig, SHS_CHUNKSIZE-dig->datalen);
/* empty buffer */
dig->datalen = 0;
/* previous value is now not a string */
state->prevstr = FALSE;
}
return;
}
/*
* shs_note - note a special value
*
* given:
* state the state to hash
* special a special value (SHS_HASH_XYZ) to note
*
* This function will note that a special value is about to be hashed.
* Types include negative values, complex values, division, zero numeric
* and array of HALFs.
*/
static void
shs_note(HASH *state, int special)
{
SHS_INFO *dig = &state->h_shs; /* digest state */
int i;
/*
* change state to reflect a special value
*/
dig->digest[0] ^= special;
for (i=1; i < SHS_DIGESTWORDS; ++i) {
dig->digest[i] ^= (special + dig->digest[i-1] + i);
}
state->prevstr = FALSE; /* it is as we just hashed a non-string */
return;
}
/*
* shs_type - note a VALUE type
*
* given:
* state the state to hash
* type the VALUE type to note
*
* This function will note that a type of value is about to be hashed.
* The type of a VALUE will be noted. For purposes of hash comparison,
* we will do nothing with V_NUM and V_COM so that the other functions
* can hash to the same value reguardless of if shs_value() is called
* or not. We also do nothing with V_STR so that a hash of a string
* will produce the same value as the standard hash function.
*/
static void
shs_type(HASH *state, int type)
{
SHS_INFO *dig = &state->h_shs; /* digest state */
int i;
/*
* ignore NUMBER and COMPLEX
*/
if (type == V_NUM || type == V_COM || type == V_STR) {
return;
}
/*
* change state to reflect a VALUE type
*/
dig->digest[0] += type;
for (i=1; i < SHS_DIGESTWORDS; ++i) {
dig->digest[i] += ((type+i) ^ dig->digest[i-1]);
}
state->prevstr = FALSE; /* it is as if we just hashed a non-string */
return;
}
/*
* shs_init - initialize SHS hash state
*
* given:
* state the state to initialize, or NULL to malloc it
*
* returns:
* initialized state
*/
static HASH *
shs_init(HASH *state)
{
/*
* malloc if needed
*/
if (state == NULL) {
state = (HASH *)malloc(sizeof(HASH));
if (state == NULL) {
math_error("cannot malloc HASH");
/*NOTREACHED*/
}
}
/*
* initialize
*/
shsInit((SHS_INFO *)state);
state->prevstr = FALSE;
/*
* return state
*/
return (HASH *)state;
}
/*
* shs_long - note a long value
*
* given:
* state the state to hash
* longval a long value
*
* returns:
* the new state
*
* This function will hash a long value as if it were a 64 bit value.
* The input is a long. If a long is smaller than 64 bits, we will
* hash a final 32 bits of zeros.
*/
static HASH *
shs_long(HASH *state, long longval)
{
SHS_INFO *dig; /* digest state */
long lval[64/LONG_BITS]; /* 64 bits of longs */
/*
* initialize if state is NULL
*/
if (state == NULL) {
state = shs_init(state);
}
/*
* setup for the long value hash
*/
shs_chkpt(state);
/*
* catch the zero numeric value special case
*/
if (longval == 0) {
/* note a zero numeric value and return */
shs_note(state, SHS_HASH_ZERO);
state->prevstr = FALSE; /* we just hashed a non-string */
return state;
}
/*
* prep for a long value hash
*/
shs_note(state, SHS_BASE);
dig = &state->h_shs;
/*
* hash as if we have a 64 bit value
*/
memset((char *)lval, 0, sizeof(lval));
lval[0] = longval;
shsUpdate(dig, (USB8 *)lval, sizeof(lval));
SHSCOUNT(dig, 64/8);
/*
* all done
*/
state->prevstr = FALSE; /* we just hashed a non-string */
return state;
}
/*
* shs_zvalue - hash a ZVALUE
*
* given:
* state the state to hash or NULL
* zval the ZVALUE
*
* returns:
* the new state
*/
static HASH *
shs_zvalue(HASH *state, ZVALUE zval)
{
SHS_INFO *dig; /* digest state */
#if BYTE_ORDER == BIG_ENDIAN && BASEB == 16
HALF half[SHS_CHUNKHALFS]; /* SHS chunk buffer as HALFs */
int full_lim; /* HALFs in whole chunks in zval */
int i;
int j;
#endif
/*
* initialize if state is NULL
*/
if (state == NULL) {
state = shs_init(state);
}
/*
* setup for the ZVALUE hash
*/
shs_chkpt(state);
/*
* catch the zero numeric value special case
*/
if (ziszero(zval)) {
/* note a zero numeric value and return */
shs_note(state, SHS_HASH_ZERO);
state->prevstr = FALSE; /* we just hashed a non-string */
return state;
}
/*
* prep for a ZVALUE hash
*/
shs_note(state, SHS_HASH_ZVALUE);
/* note if we have a negative value */
if (zisneg(zval)) {
shs_note(state, SHS_HASH_NEG);
}
dig = &state->h_shs;
#if BYTE_ORDER == BIG_ENDIAN && BASEB == 16
/*
* hash full chunks
*
* We need to convert the array of HALFs into canonical architectural
* independent form -- 32 bit arrays. Because we have 16 bit values
* in Big Endian form, we need to swap 16 bit values so that they
* appear as 32 bit Big Endian values.
*/
full_lim = (zval.len / SHS_CHUNKHALFS) * SHS_CHUNKHALFS;
for (i=0; i < full_lim; i += SHS_CHUNKHALFS) {
/* HALF swap copy a chunk into a data buffer */
for (j=0; j < SHS_CHUNKHALFS; j += 2) {
half[j] = zval.v[i+j+1];
half[j+1] = zval.v[i+j];
}
shsfullUpdate(dig, (USB8 *)half, SHS_CHUNKSIZE);
}
/*
* hash the final partial chunk (if any)
*
* We need to convert the array of HALFs into canonical architectural
* independent form -- 32 bit arrays. Because we have 16 bit values
* in Big Endian form, we need to swap 16 bit values so that they
* appear as 32 bit Big Endian values.
*/
if (zval.len > full_lim) {
for (j=0; j < zval.len-full_lim-1; j += 2) {
half[j] = zval.v[full_lim+i+1];
half[j+1] = zval.v[full_lim+i];
}
if (j < zval.len-full_lim) {
half[j] = (HALF)0;
half[j+1] = zval.v[zval.len-1];
--full_lim;
SHSCOUNT(dig, sizeof(HALF));
}
shsUpdate(dig, (USB8 *)half,
(zval.len-full_lim)*sizeof(HALF));
}
SHSCOUNT(dig, zval.len*sizeof(HALF));
#else
/*
* hash the array of HALFs
*
* The array of HALFs is equivalent to the canonical architectural
* independent form. We either have 32 bit HALFs (in which case
* we do not case the byte order) or we have 16 bit HALFs in Little
* Endian order (which happens to be laid out in the same order as
* 32 bit values).
*/
shsUpdate(dig, (USB8 *)zval.v, zval.len*sizeof(HALF));
SHSCOUNT(dig, zval.len*sizeof(HALF));
#endif
/*
* all done
*/
state->prevstr = FALSE; /* we just hashed a non-string */
return state;
}
/*
* shs_number - hash a NUMBER
*
* given:
* state the state to hash or NULL
* number the NUMBER
*
* returns:
* the new state
*/
static HASH *
shs_number(HASH *state, NUMBER *number)
{
BOOL sign; /* sign of the denominator */
/*
* initialize if state is NULL
*/
if (state == NULL) {
state = shs_init(state);
}
/*
* setup for the ZVALUE hash
*/
shs_chkpt(state);
/*
* process the numerator
*/
state = shs_zvalue(state, number->num);
/*
* if the NUMBER is not an integer, process the denominator
*/
if (qisfrac(number)) {
/* note the division */
shs_note(state, SHS_HASH_DIV);
/* hash denominator as positive -- just in case */
sign = number->den.sign;
number->den.sign = 0;
/* hash the denominator */
state = shs_zvalue(state, number->den);
/* restore the sign */
number->den.sign = sign;
}
/*
* all done
*/
state->prevstr = FALSE; /* we just hashed a non-string */
return state;
}
/*
* shs_complex - hash a COMPLEX
*
* given:
* state the state to hash or NULL
* complex the COMPLEX
*
* returns:
* the new state
*/
static HASH *
shs_complex(HASH *state, COMPLEX *complex)
{
/*
* initialize if state is NULL
*/
if (state == NULL) {
state = shs_init(state);
}
/*
* setup for the COMPLEX hash
*/
shs_chkpt(state);
/*
* catch the zero special case
*/
if (ciszero(complex)) {
/* note a zero numeric value and return */
shs_note(state, SHS_HASH_ZERO);
state->prevstr = FALSE; /* we just hashed a non-string */
return state;
}
/*
* process the real value if not pure imaginary
*
* We will ignore the real part if the value is of the form 0+xi.
*/
if (!qiszero(complex->real)) {
state = shs_number(state, complex->real);
}
/*
* if the NUMBER is not real, process the imaginary value
*
* We will ignore the imaginary part of the value is of the form x+0i.
*/
if (!cisreal(complex)) {
/* note the sqrt(-1) */
shs_note(state, SHS_HASH_COMPLEX);
/* hash the imaginary value */
state = shs_number(state, complex->imag);
}
/*
* all done
*/
state->prevstr = FALSE; /* we just hashed a non-string */
return state;
}
/*
* shs_str - hash a string
*
* given:
* state the state to hash or NULL
* str the string
*
* returns:
* the new state
*/
static HASH *
shs_str(HASH *state, char *str)
{
SHS_INFO *dig; /* digest state */
#if BYTE_ORDER == LITTLE_ENDIAN
char *newstr; /* Big Endian version of str */
USB32 newlen; /* newstr string length */
int i;
#endif
USB32 len; /* string length */
/*
* initialize if state is NULL
*/
if (state == NULL) {
state = shs_init(state);
}
/*
* setup for the string hash
*/
if (!state->prevstr) {
shs_chkpt(state);
}
len = strlen(str);
dig = &state->h_shs;
#if BYTE_ORDER == BIG_ENDIAN
/*
* shs hashes in Big Endian form directly
*/
shsUpdate(dig, (USB8*)str, len);
#else
/*
* we must convert from Little Endian string to Big Endian string
*/
newlen = ((len+3)/4)*4;
newstr = (char *)malloc(newlen+1);
if (newstr) {
math_error("hash of string malloc failed");
/*NOTREACHED*/
}
strcpy(newstr, str);
newstr[len+1] = 0;
newstr[len+2] = 0;
newstr[len+3] = 0;
for (i=0; i < newlen; i += 4) {
SWAP_B8_IN_B32(newstr+i, newstr+i);
}
shsUpdate(dig, (USB8*)newstr, newlen);
#endif
SHSCOUNT((SHS_INFO *)dig, len);
/*
* all done
*/
state->prevstr = TRUE; /* we just hashed a string */
return state;
}
/*
* shs_value - hash a value
*
* given:
* state the state to hash or NULL
* value the value
*
* returns:
* the new state
*/
static HASH *
shs_value(HASH *state, VALUE *value)
{
SHS_INFO *dig; /* digest state */
LISTELEM *ep; /* list element pointer */
ASSOCELEM **assochead; /* association chain head */
ASSOCELEM *aep; /* current association value */
ASSOCELEM *nextaep; /* next association value */
VALUE *vp; /* pointer to next OBJ table value */
ZVALUE fileval; /* size, position, dev, inode of a file */
int i;
/*
* initialize if state is NULL
*/
if (state == NULL) {
state = shs_init(state);
}
/*
* setup for the next type of value
*/
shs_chkpt(state);
shs_type(state, value->v_type);
dig = &state->h_shs;
/*
* process the value type
*/
switch (value->v_type) {
case V_INT:
/* hash as if we have a 64 bit value */
state = shs_long(state, (long)value->v_int);
break;
case V_NUM:
state = shs_number(state, value->v_num);
break;
case V_COM:
state = shs_complex(state, value->v_com);
break;
case V_ADDR:
state = shs_value(state, value->v_addr);
break;
case V_STR:
state = shs_str(state, value->v_str);
break;
case V_MAT:
/* hash all the elements of the matrix */
for (i=0; i < value->v_mat->m_size; ++i) {
/* force strings to not be concatinated */
state->prevstr = FALSE;
/* hash the next matrix value */
state = shs_value(state, value->v_mat->m_table+i);
}
/* don't allow the next string to concatinate to the matrix */
state->prevstr = FALSE;
break;
case V_LIST:
/* hash all the elements of the list */
for (i=0, ep = value->v_list->l_first;
ep != NULL && i < value->v_list->l_count;
++i, ep = ep->e_next) {
/* force strings to not be concatinated */
state->prevstr = FALSE;
/* hash the next list value */
state = shs_value(state, &ep->e_value);
}
/* don't allow the next string to concatinate to the list */
state->prevstr = FALSE;
break;
case V_ASSOC:
assochead = value->v_assoc->a_table;
for (i = 0; i < value->v_assoc->a_size; i++) {
nextaep = *assochead;
while (nextaep) {
aep = nextaep;
nextaep = aep->e_next;
/* force strings to not be concatinated */
state->prevstr = FALSE;
/* hash the next association value */
state = shs_value(state, &aep->e_value);
}
assochead++;
}
/* don't allow the next string to concatinate to the assoc */
state->prevstr = FALSE;
break;
case V_OBJ:
for (i=value->v_obj->o_actions->count, vp=value->v_obj->o_table;
i-- > 0;
vp++) {
/* force strings to not be concatinated */
state->prevstr = FALSE;
/* hash the next object value */
shs_value(state, vp);
}
/* don't allow the next string to concatinate to the object */
state->prevstr = FALSE;
break;
case V_FILE:
/* hash file length if possible */
if (getsize(value->v_file, &fileval) == 0) {
state = shs_zvalue(state, fileval);
zfree(fileval);
} else {
/* hash -1 for invalid length */
state = shs_long(state, (long)-1);
}
/* hash the file position if possible */
if (getloc(value->v_file, &fileval) == 0) {
state = shs_zvalue(state, fileval);
zfree(fileval);
} else {
/* hash -1 for invalid location */
state = shs_long(state, (long)-1);
}
/* hash the file device if possible */
if (get_device(value->v_file, &fileval) == 0) {
state = shs_zvalue(state, fileval);
zfree(fileval);
} else {
/* hash -1 for invalid device */
state = shs_long(state, (long)-1);
}
/* hash the file inode if possible */
if (get_inode(value->v_file, &fileval) == 0) {
state = shs_zvalue(state, fileval);
zfree(fileval);
} else {
/* hash -1 for invalid inode */
state = shs_long(state, (long)-1);
}
break;
case V_RAND:
state = shs_long(state, (long)value->v_rand->seeded);
state = shs_long(state, (long)value->v_rand->bits);
shsUpdate(dig, (USB8 *)value->v_rand->buffer, SLEN*FULL_BITS/8);
SHSCOUNT(dig, SLEN*FULL_BITS/8);
state = shs_long(state, (long)value->v_rand->j);
state = shs_long(state, (long)value->v_rand->k);
shsUpdate(dig, (USB8 *)value->v_rand->slot, SCNT*FULL_BITS/8);
SHSCOUNT(dig, SCNT*FULL_BITS/8);
shsUpdate(dig, (USB8*)value->v_rand->shuf, SHUFLEN*FULL_BITS/8);
SHSCOUNT(dig, SHUFLEN*FULL_BITS/8);
/* don't allow the next string to concatinate to the list */
state->prevstr = FALSE;
break;
case V_RANDOM:
state = shs_long(state, (long)value->v_random->seeded);
state = shs_long(state, (long)value->v_random->bits);
shsUpdate(dig, (USB8 *)&(value->v_random->buffer), BASEB/8);
SHSCOUNT(dig, SLEN*FULL_BITS/8);
state = shs_zvalue(state, *(value->v_random->r));
state = shs_zvalue(state, *(value->v_random->n));
/* don't allow the next string to concatinate to the list */
state->prevstr = FALSE;
break;
case V_CONFIG:
state = shs_long(state, (long)value->v_config->outmode);
state = shs_long(state, (long)value->v_config->outdigits);
state = shs_number(state, value->v_config->epsilon);
state = shs_long(state, (long)value->v_config->epsilonprec);
state = shs_long(state, (long)value->v_config->traceflags);
state = shs_long(state, (long)value->v_config->maxprint);
state = shs_long(state, (long)value->v_config->mul2);
state = shs_long(state, (long)value->v_config->sq2);
state = shs_long(state, (long)value->v_config->pow2);
state = shs_long(state, (long)value->v_config->redc2);
state = shs_long(state, (long)value->v_config->tilde_ok);
state = shs_long(state, (long)value->v_config->tab_ok);
state = shs_long(state, (long)value->v_config->quomod);
state = shs_long(state, (long)value->v_config->quo);
state = shs_long(state, (long)value->v_config->mod);
state = shs_long(state, (long)value->v_config->sqrt);
state = shs_long(state, (long)value->v_config->appr);
state = shs_long(state, (long)value->v_config->cfappr);
state = shs_long(state, (long)value->v_config->cfsim);
state = shs_long(state, (long)value->v_config->outround);
state = shs_long(state, (long)value->v_config->round);
state = shs_long(state, (long)value->v_config->leadzero);
state = shs_long(state, (long)value->v_config->fullzero);
state = shs_long(state, (long)value->v_config->maxerrorcount);
state = shs_str(state, value->v_config->prompt1);
state = shs_str(state, value->v_config->prompt2);
/* don't allow the next string to concatinate to the list */
state->prevstr = FALSE;
break;
case V_HASH:
if (value->v_hash->type == SHS_HASH_TYPE) {
shsUpdate(dig, (USB8 *)&value->v_hash->h_shs,
sizeof(SHS_INFO));
SHSCOUNT(dig, sizeof(SHS_INFO));
} else {
math_error("SHS hashing a non-SHS hash state");
/*NOTREACHED*/
}
/* don't allow the next string to concatinate to the list */
state->prevstr = FALSE;
break;
default:
math_error("hashing an unknown value");
/*NOTREACHED*/
}
return state;
}
/*
* shs_final - complete hash state and return a ZVALUE
*
* given:
* state the state to complete and convert
*
* returns:
* a ZVALUE representing the state
*/
static ZVALUE
shs_final(HASH *state)
{
SHS_INFO *dig; /* digest state */
ZVALUE ret; /* return ZVALUE of completed hash state */
#if BTYE_ORDER == BIG_ENDIAN && BASEB == 16
int i;
#endif
/*
* initialize if state is NULL
*/
if (state == NULL) {
state = shs_init(state);
}
/*
* complete the hash state
*/
dig = &state->h_shs;
shsFinal(dig);
/*
* allocate storage for ZVALUE
*/
ret.len = SHS_DIGESTSIZE/sizeof(HALF);
ret.sign = 0;
ret.v = alloc(ret.len);
/*
* load ZVALUE
*/
#if BTYE_ORDER == BIG_ENDIAN && BASEB == 16
for (i=0; i < ret.len; i+=2) {
rev.v[i+1] = ((HALF*)dig->digest)[i];
rev.v[i] = ((HALF*)dig->digest)[i+1];
}
#else
memcpy(ret.v, dig->digest, SHS_DIGESTSIZE);
#endif
/*
* return ZVALUE
*/
return ret;
}
/*
* shs_hashfunc - initialize a hashfunc for an interface for this hash
*
* given:
* hfunc - pointer to the hfunction element to initialize
*/
void
shs_hashfunc(HASHFUNC *hfunc)
{
/*
* initalize
*/
hfunc->type = SHS_HASH_TYPE;
hfunc->init = shs_init;
hfunc->longval = shs_long;
hfunc->str = shs_str;
hfunc->value = shs_value;
hfunc->complex = shs_complex;
hfunc->number = shs_number;
hfunc->zvalue = shs_zvalue;
hfunc->final = shs_final;
return;
}