mirror of
https://github.com/lcn2/calc.git
synced 2025-08-16 01:03:29 +03:00
1248 lines
32 KiB
C
1248 lines
32 KiB
C
/* XXX - this code is currently not really used, but it will be soon */
|
|
/*
|
|
* shs - old Secure Hash Standard
|
|
*
|
|
**************************************************************************
|
|
* This version implements the old Secure Hash Algorithm specified by *
|
|
* (FIPS Pub 180). This version is kept for backward compatibility with *
|
|
* shs version 2.10.1. See the shs utility for the new standard. *
|
|
**************************************************************************
|
|
*
|
|
* Written 2 September 1992, Peter C. Gutmann.
|
|
*
|
|
* This file was Modified/Re-written by:
|
|
*
|
|
* Landon Curt Noll (chongo@toad.com) chongo <was here> /\../\
|
|
*
|
|
* This code has been placed in the public domain. Please do not
|
|
* copyright this code.
|
|
*
|
|
* LANDON CURT NOLL DISCLAIMS ALL WARRANTIES WITH REGARD TO
|
|
* THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MER-
|
|
* CHANTABILITY AND FITNESS. IN NO EVENT SHALL LANDON CURT
|
|
* NOLL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL
|
|
* DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
|
|
* USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
|
|
* NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
|
|
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*
|
|
* Based on Version 2.11 (09 Mar 1995) from Landon Curt Noll's
|
|
* (chongo@toad.com) shs hash program.
|
|
*
|
|
****
|
|
*
|
|
* The SHS algorithm hashes 32 bit unsigned values, 16 at a time.
|
|
* It further specifies that strings are to be converted into
|
|
* 32 bit values in BIG ENDIAN order. That is on little endian
|
|
* machines, strings are byte swaped into BIG ENDIAN order before
|
|
* they are taken 32 bit at a time. Even so, when hashing 32 bit
|
|
* numeric values the byte order DOES NOT MATTER because the
|
|
* algorithm works off of their numeric value, not their byte order.
|
|
*
|
|
* In calc, we want to hash equal values to the same hash value.
|
|
* For the most part, we will be hashing arrays of HALF's instead
|
|
* of strings. For this reason, the functions below do not byte
|
|
* swap on little endian machines automatically. Instead it is
|
|
* the responsibility of the caller of the internal SHS function
|
|
* to ensure that the values are already in the canonical 32 bit
|
|
* numeric value form.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <sys/types.h>
|
|
#include <sys/stat.h>
|
|
#include "calc.h"
|
|
#include "zrand.h"
|
|
#include "longbits.h"
|
|
#include "align32.h"
|
|
#include "endian_calc.h"
|
|
#include "shs.h"
|
|
#include "value.h"
|
|
|
|
|
|
/*
|
|
* The SHS f()-functions. The f1 and f3 functions can be optimized
|
|
* to save one boolean operation each - thanks to Rich Schroeppel,
|
|
* rcs@cs.arizona.edu for discovering this.
|
|
*
|
|
* f1: ((x&y) | (~x&z)) == (z ^ (x&(y^z)))
|
|
* f3: ((x&y) | (x&z) | (y&z)) == ((x&y) | (z&(x|y)))
|
|
*/
|
|
#define f1(x,y,z) (z ^ (x&(y^z))) /* Rounds 0-19 */
|
|
#define f2(x,y,z) (x^y^z) /* Rounds 20-39 */
|
|
#define f3(x,y,z) ((x&y) | (z&(x|y))) /* Rounds 40-59 */
|
|
#define f4(x,y,z) (x^y^z) /* Rounds 60-79 */
|
|
|
|
/* The SHS Mysterious Constants */
|
|
#define K1 0x5A827999L /* Rounds 0-19 */
|
|
#define K2 0x6ED9EBA1L /* Rounds 20-39 */
|
|
#define K3 0x8F1BBCDCL /* Rounds 40-59 */
|
|
#define K4 0xCA62C1D6L /* Rounds 60-79 */
|
|
|
|
/* SHS initial values */
|
|
#define h0init 0x67452301L
|
|
#define h1init 0xEFCDAB89L
|
|
#define h2init 0x98BADCFEL
|
|
#define h3init 0x10325476L
|
|
#define h4init 0xC3D2E1F0L
|
|
|
|
/* 32-bit rotate left - kludged with shifts */
|
|
#define LEFT_ROT(X,n) (((X)<<(n)) | ((X)>>(32-(n))))
|
|
|
|
/*
|
|
* The initial expanding function. The hash function is defined over an
|
|
* 80-word expanded input array W, where the first 16 are copies of the input
|
|
* data, and the remaining 64 are defined by
|
|
*
|
|
* W[i] = W[i-16] ^ W[i-14] ^ W[i-8] ^ W[i-3]
|
|
*
|
|
* This implementation generates these values on the fly in a circular
|
|
* buffer - thanks to Colin Plumb (colin@nyx10.cs.du.edu) for this
|
|
* optimization.
|
|
*/
|
|
#define exor(W,i) (W[i&15] ^= (W[(i-14)&15] ^ W[(i-8)&15] ^ W[(i-3)&15]))
|
|
|
|
/*
|
|
* The prototype SHS sub-round. The fundamental sub-round is:
|
|
*
|
|
* a' = e + LEFT_ROT(a,5) + f(b,c,d) + k + data;
|
|
* b' = a;
|
|
* c' = LEFT_ROT(b,30);
|
|
* d' = c;
|
|
* e' = d;
|
|
*
|
|
* but this is implemented by unrolling the loop 5 times and renaming the
|
|
* variables ( e, a, b, c, d ) = ( a', b', c', d', e' ) each iteration.
|
|
* This code is then replicated 20 times for each of the 4 functions, using
|
|
* the next 20 values from the W[] array each time.
|
|
*/
|
|
#define subRound(a, b, c, d, e, f, k, data) \
|
|
(e += LEFT_ROT(a,5) + f(b,c,d) + k + data, b = LEFT_ROT(b,30))
|
|
|
|
|
|
/* forward declarations */
|
|
#if defined(MUST_ALIGN32)
|
|
static USB32 in[SHS_CHUNKWORDS];
|
|
#endif
|
|
static void shsInit(SHS_INFO*);
|
|
static void shsTransform(USB32*, USB32*);
|
|
static void shsUpdate(SHS_INFO*, USB8*, USB32);
|
|
static void shsfullUpdate(SHS_INFO*, USB8*, USB32);
|
|
static void shsFinal(SHS_INFO*);
|
|
static void shs_chkpt(HASH*);
|
|
static void shs_note(HASH*, int);
|
|
static void shs_type(HASH*, int);
|
|
static HASH *shs_init(HASH*);
|
|
static HASH *shs_long(HASH*, long);
|
|
static HASH *shs_zvalue(HASH*, ZVALUE);
|
|
static HASH *shs_number(HASH*, NUMBER*);
|
|
static HASH *shs_complex(HASH*, COMPLEX*);
|
|
static HASH *shs_str(HASH*, char*);
|
|
static HASH *shs_value(HASH*, VALUE*);
|
|
static ZVALUE shs_final(HASH*);
|
|
|
|
|
|
/*
|
|
* shsInit - initialize the SHS state
|
|
*/
|
|
static void
|
|
shsInit(SHS_INFO *dig)
|
|
{
|
|
/* Set the h-vars to their initial values */
|
|
dig->digest[0] = h0init;
|
|
dig->digest[1] = h1init;
|
|
dig->digest[2] = h2init;
|
|
dig->digest[3] = h3init;
|
|
dig->digest[4] = h4init;
|
|
|
|
/* Initialise bit count */
|
|
dig->countLo = 0;
|
|
dig->countHi = 0;
|
|
dig->datalen = 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* shsTransform - perform the SHS transformatio
|
|
*
|
|
* Note that this code, like MD5, seems to break some optimizing compilers.
|
|
* It may be necessary to split it into sections, eg based on the four
|
|
* subrounds. One may also want to roll each subround into a loop.
|
|
*/
|
|
static void
|
|
shsTransform(USB32 *digest, USB32 *W)
|
|
{
|
|
USB32 A, B, C, D, E; /* Local vars */
|
|
|
|
/* Set up first buffer and local data buffer */
|
|
A = digest[0];
|
|
B = digest[1];
|
|
C = digest[2];
|
|
D = digest[3];
|
|
E = digest[4];
|
|
|
|
/* Heavy mangling, in 4 sub-rounds of 20 interations each. */
|
|
subRound(A, B, C, D, E, f1, K1, W[ 0]);
|
|
subRound(E, A, B, C, D, f1, K1, W[ 1]);
|
|
subRound(D, E, A, B, C, f1, K1, W[ 2]);
|
|
subRound(C, D, E, A, B, f1, K1, W[ 3]);
|
|
subRound(B, C, D, E, A, f1, K1, W[ 4]);
|
|
subRound(A, B, C, D, E, f1, K1, W[ 5]);
|
|
subRound(E, A, B, C, D, f1, K1, W[ 6]);
|
|
subRound(D, E, A, B, C, f1, K1, W[ 7]);
|
|
subRound(C, D, E, A, B, f1, K1, W[ 8]);
|
|
subRound(B, C, D, E, A, f1, K1, W[ 9]);
|
|
subRound(A, B, C, D, E, f1, K1, W[10]);
|
|
subRound(E, A, B, C, D, f1, K1, W[11]);
|
|
subRound(D, E, A, B, C, f1, K1, W[12]);
|
|
subRound(C, D, E, A, B, f1, K1, W[13]);
|
|
subRound(B, C, D, E, A, f1, K1, W[14]);
|
|
subRound(A, B, C, D, E, f1, K1, W[15]);
|
|
subRound(E, A, B, C, D, f1, K1, exor(W,16));
|
|
subRound(D, E, A, B, C, f1, K1, exor(W,17));
|
|
subRound(C, D, E, A, B, f1, K1, exor(W,18));
|
|
subRound(B, C, D, E, A, f1, K1, exor(W,19));
|
|
|
|
subRound(A, B, C, D, E, f2, K2, exor(W,20));
|
|
subRound(E, A, B, C, D, f2, K2, exor(W,21));
|
|
subRound(D, E, A, B, C, f2, K2, exor(W,22));
|
|
subRound(C, D, E, A, B, f2, K2, exor(W,23));
|
|
subRound(B, C, D, E, A, f2, K2, exor(W,24));
|
|
subRound(A, B, C, D, E, f2, K2, exor(W,25));
|
|
subRound(E, A, B, C, D, f2, K2, exor(W,26));
|
|
subRound(D, E, A, B, C, f2, K2, exor(W,27));
|
|
subRound(C, D, E, A, B, f2, K2, exor(W,28));
|
|
subRound(B, C, D, E, A, f2, K2, exor(W,29));
|
|
subRound(A, B, C, D, E, f2, K2, exor(W,30));
|
|
subRound(E, A, B, C, D, f2, K2, exor(W,31));
|
|
subRound(D, E, A, B, C, f2, K2, exor(W,32));
|
|
subRound(C, D, E, A, B, f2, K2, exor(W,33));
|
|
subRound(B, C, D, E, A, f2, K2, exor(W,34));
|
|
subRound(A, B, C, D, E, f2, K2, exor(W,35));
|
|
subRound(E, A, B, C, D, f2, K2, exor(W,36));
|
|
subRound(D, E, A, B, C, f2, K2, exor(W,37));
|
|
subRound(C, D, E, A, B, f2, K2, exor(W,38));
|
|
subRound(B, C, D, E, A, f2, K2, exor(W,39));
|
|
|
|
subRound(A, B, C, D, E, f3, K3, exor(W,40));
|
|
subRound(E, A, B, C, D, f3, K3, exor(W,41));
|
|
subRound(D, E, A, B, C, f3, K3, exor(W,42));
|
|
subRound(C, D, E, A, B, f3, K3, exor(W,43));
|
|
subRound(B, C, D, E, A, f3, K3, exor(W,44));
|
|
subRound(A, B, C, D, E, f3, K3, exor(W,45));
|
|
subRound(E, A, B, C, D, f3, K3, exor(W,46));
|
|
subRound(D, E, A, B, C, f3, K3, exor(W,47));
|
|
subRound(C, D, E, A, B, f3, K3, exor(W,48));
|
|
subRound(B, C, D, E, A, f3, K3, exor(W,49));
|
|
subRound(A, B, C, D, E, f3, K3, exor(W,50));
|
|
subRound(E, A, B, C, D, f3, K3, exor(W,51));
|
|
subRound(D, E, A, B, C, f3, K3, exor(W,52));
|
|
subRound(C, D, E, A, B, f3, K3, exor(W,53));
|
|
subRound(B, C, D, E, A, f3, K3, exor(W,54));
|
|
subRound(A, B, C, D, E, f3, K3, exor(W,55));
|
|
subRound(E, A, B, C, D, f3, K3, exor(W,56));
|
|
subRound(D, E, A, B, C, f3, K3, exor(W,57));
|
|
subRound(C, D, E, A, B, f3, K3, exor(W,58));
|
|
subRound(B, C, D, E, A, f3, K3, exor(W,59));
|
|
|
|
subRound(A, B, C, D, E, f4, K4, exor(W,60));
|
|
subRound(E, A, B, C, D, f4, K4, exor(W,61));
|
|
subRound(D, E, A, B, C, f4, K4, exor(W,62));
|
|
subRound(C, D, E, A, B, f4, K4, exor(W,63));
|
|
subRound(B, C, D, E, A, f4, K4, exor(W,64));
|
|
subRound(A, B, C, D, E, f4, K4, exor(W,65));
|
|
subRound(E, A, B, C, D, f4, K4, exor(W,66));
|
|
subRound(D, E, A, B, C, f4, K4, exor(W,67));
|
|
subRound(C, D, E, A, B, f4, K4, exor(W,68));
|
|
subRound(B, C, D, E, A, f4, K4, exor(W,69));
|
|
subRound(A, B, C, D, E, f4, K4, exor(W,70));
|
|
subRound(E, A, B, C, D, f4, K4, exor(W,71));
|
|
subRound(D, E, A, B, C, f4, K4, exor(W,72));
|
|
subRound(C, D, E, A, B, f4, K4, exor(W,73));
|
|
subRound(B, C, D, E, A, f4, K4, exor(W,74));
|
|
subRound(A, B, C, D, E, f4, K4, exor(W,75));
|
|
subRound(E, A, B, C, D, f4, K4, exor(W,76));
|
|
subRound(D, E, A, B, C, f4, K4, exor(W,77));
|
|
subRound(C, D, E, A, B, f4, K4, exor(W,78));
|
|
subRound(B, C, D, E, A, f4, K4, exor(W,79));
|
|
|
|
/* Build message digest */
|
|
digest[0] += A;
|
|
digest[1] += B;
|
|
digest[2] += C;
|
|
digest[3] += D;
|
|
digest[4] += E;
|
|
}
|
|
|
|
|
|
/*
|
|
* shsUpdate - update SHS with arbitrary length data
|
|
*
|
|
* This code does not assume that the buffer size is a multiple of
|
|
* SHS_CHUNKSIZE bytes long. This code handles partial chunk between
|
|
* calls to shsUpdate().
|
|
*/
|
|
static void
|
|
shsUpdate(SHS_INFO *dig, USB8 *buffer, USB32 count)
|
|
{
|
|
USB32 datalen = dig->datalen;
|
|
|
|
/*
|
|
* Catch the case of a non-empty data buffer
|
|
*/
|
|
if (datalen > 0) {
|
|
|
|
/* determine the size we need to copy */
|
|
USB32 cpylen = SHS_CHUNKSIZE - datalen;
|
|
|
|
/* case: new data will not fill the buffer */
|
|
if (cpylen > count) {
|
|
memcpy((char *)dig->data+datalen,
|
|
(char *)buffer, count);
|
|
dig->datalen = datalen+count;
|
|
return;
|
|
|
|
/* case: buffer will be filled */
|
|
} else {
|
|
memcpy((char *)dig->data+datalen,
|
|
(char *)buffer, cpylen);
|
|
shsTransform(dig->digest, dig->data);
|
|
buffer += cpylen;
|
|
count -= cpylen;
|
|
dig->datalen = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Process data in SHS_CHUNKSIZE chunks
|
|
*/
|
|
if (count >= SHS_CHUNKSIZE) {
|
|
shsfullUpdate(dig, buffer, count);
|
|
buffer += (count/SHS_CHUNKSIZE)*SHS_CHUNKSIZE;
|
|
count %= SHS_CHUNKSIZE;
|
|
}
|
|
|
|
/*
|
|
* Handle any remaining bytes of data.
|
|
* This should only happen once on the final lot of data
|
|
*/
|
|
if (count > 0) {
|
|
memcpy((char *)dig->data, (char *)buffer, count);
|
|
}
|
|
dig->datalen = count;
|
|
}
|
|
|
|
|
|
/*
|
|
* shsfullUpdate - update SHS with chunk multiple length data
|
|
*
|
|
* This function assumes that count is a multiple of SHS_CHUNKSIZE and that
|
|
* no partial chunk is left over from a previous call.
|
|
*/
|
|
static void
|
|
shsfullUpdate(SHS_INFO *dig, USB8 *buffer, USB32 count)
|
|
{
|
|
/*
|
|
* Process data in SHS_CHUNKSIZE chunks
|
|
*/
|
|
while (count >= SHS_CHUNKSIZE) {
|
|
#if defined(MUST_ALIGN32)
|
|
if ((long)buffer & (sizeof(USB32)-1)) {
|
|
memcpy((char *)in, (char *)buffer, SHS_CHUNKSIZE);
|
|
shsTransform(dig->digest, in);
|
|
} else {
|
|
shsTransform(dig->digest, (USB32 *)buffer);
|
|
}
|
|
#else
|
|
shsTransform(dig->digest, (USB32 *)buffer);
|
|
#endif
|
|
buffer += SHS_CHUNKSIZE;
|
|
count -= SHS_CHUNKSIZE;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* shsFinal - perform final SHS transforms
|
|
*
|
|
* At this point we have less than a full chunk of data remaining
|
|
* (and possibly no data) in the shs state data buffer.
|
|
*
|
|
* First we append a final 0x80 byte.
|
|
*
|
|
* Next if we have more than 56 bytes, we will zero fill the remainder
|
|
* of the chunk, transform and then zero fill the first 56 bytes.
|
|
* If we have 56 or fewer bytes, we will zero fill out to the 56th
|
|
* chunk byte. Regardless, we wind up with 56 bytes data.
|
|
*
|
|
* Finally we append the 64 bit length on to the 56 bytes of data
|
|
* remaining. This final chunk is transformed.
|
|
*/
|
|
static void
|
|
shsFinal(SHS_INFO *dig)
|
|
{
|
|
long count = (long)(dig->datalen);
|
|
USB32 lowBitcount = dig->countLo;
|
|
USB32 highBitcount = dig->countHi;
|
|
#if BYTE_ORDER == LITTLE_ENDIAN
|
|
int i;
|
|
#endif
|
|
|
|
/*
|
|
* Set the first char of padding to 0x80.
|
|
* This is safe since there is always at least one byte free
|
|
*/
|
|
((USB8 *)dig->data)[count++] = 0x80;
|
|
|
|
/* Pad out to 56 mod SHS_CHUNKSIZE */
|
|
if (count > SHS_CHUNKSIZE-8) {
|
|
/* Pad the first chunk to SHS_CHUNKSIZE bytes */
|
|
memset((USB8 *)dig->data + count, 0, SHS_CHUNKSIZE - count);
|
|
shsTransform(dig->digest, dig->data);
|
|
|
|
/* Now fill the next chunk with 56 bytes */
|
|
memset(dig->data, 0, SHS_CHUNKSIZE-8);
|
|
} else {
|
|
/* Pad chunk to 56 bytes */
|
|
memset((USB8 *)dig->data + count, 0, SHS_CHUNKSIZE-8 - count);
|
|
}
|
|
#if BYTE_ORDER == LITTLE_ENDIAN
|
|
for (i=0; i < SHS_CHUNKWORDS; ++i) {
|
|
SWAP_B8_IN_B32(dig->data+i, dig->data+i);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Append length in bits and transform
|
|
*
|
|
* We assume that bit count is a multiple of 8 because we have
|
|
* only processed full bytes.
|
|
*/
|
|
dig->data[SHS_HIGH] = (highBitcount << 3) | (lowBitcount >> 29);
|
|
dig->data[SHS_LOW] = (lowBitcount << 3);
|
|
shsTransform(dig->digest, dig->data);
|
|
dig->datalen = 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* shs_chkpt - checkpoint a SHS state
|
|
*
|
|
* given:
|
|
* state the state to checkpoint
|
|
*
|
|
* This function will ensure that the the hash chunk buffer is empty.
|
|
* Any partially hashed data will be padded out with 0's and hashed.
|
|
*/
|
|
static void
|
|
shs_chkpt(HASH *state)
|
|
{
|
|
SHS_INFO *dig = &state->h_shs; /* digest state */
|
|
|
|
/*
|
|
* checkpoint if partial buffer exists
|
|
*/
|
|
if (dig->datalen > 0) {
|
|
|
|
/* pad to the end of the chunk */
|
|
memset((USB8 *)dig->data + dig->datalen, 0,
|
|
SHS_CHUNKSIZE-dig->datalen);
|
|
|
|
/* transform padded chunk */
|
|
shsTransform(dig->digest, dig->data);
|
|
SHSCOUNT(dig, SHS_CHUNKSIZE-dig->datalen);
|
|
|
|
/* empty buffer */
|
|
dig->datalen = 0;
|
|
|
|
/* previous value is now not a string */
|
|
state->prevstr = FALSE;
|
|
}
|
|
return;
|
|
}
|
|
|
|
|
|
/*
|
|
* shs_note - note a special value
|
|
*
|
|
* given:
|
|
* state the state to hash
|
|
* special a special value (SHS_HASH_XYZ) to note
|
|
*
|
|
* This function will note that a special value is about to be hashed.
|
|
* Types include negative values, complex values, division, zero numeric
|
|
* and array of HALFs.
|
|
*/
|
|
static void
|
|
shs_note(HASH *state, int special)
|
|
{
|
|
SHS_INFO *dig = &state->h_shs; /* digest state */
|
|
int i;
|
|
|
|
/*
|
|
* change state to reflect a special value
|
|
*/
|
|
dig->digest[0] ^= special;
|
|
for (i=1; i < SHS_DIGESTWORDS; ++i) {
|
|
dig->digest[i] ^= (special + dig->digest[i-1] + i);
|
|
}
|
|
state->prevstr = FALSE; /* it is as we just hashed a non-string */
|
|
return;
|
|
}
|
|
|
|
|
|
/*
|
|
* shs_type - note a VALUE type
|
|
*
|
|
* given:
|
|
* state the state to hash
|
|
* type the VALUE type to note
|
|
*
|
|
* This function will note that a type of value is about to be hashed.
|
|
* The type of a VALUE will be noted. For purposes of hash comparison,
|
|
* we will do nothing with V_NUM and V_COM so that the other functions
|
|
* can hash to the same value reguardless of if shs_value() is called
|
|
* or not. We also do nothing with V_STR so that a hash of a string
|
|
* will produce the same value as the standard hash function.
|
|
*/
|
|
static void
|
|
shs_type(HASH *state, int type)
|
|
{
|
|
SHS_INFO *dig = &state->h_shs; /* digest state */
|
|
int i;
|
|
|
|
/*
|
|
* ignore NUMBER and COMPLEX
|
|
*/
|
|
if (type == V_NUM || type == V_COM || type == V_STR) {
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* change state to reflect a VALUE type
|
|
*/
|
|
dig->digest[0] += type;
|
|
for (i=1; i < SHS_DIGESTWORDS; ++i) {
|
|
dig->digest[i] += ((type+i) ^ dig->digest[i-1]);
|
|
}
|
|
state->prevstr = FALSE; /* it is as if we just hashed a non-string */
|
|
return;
|
|
}
|
|
|
|
|
|
/*
|
|
* shs_init - initialize SHS hash state
|
|
*
|
|
* given:
|
|
* state the state to initialize, or NULL to malloc it
|
|
*
|
|
* returns:
|
|
* initialized state
|
|
*/
|
|
static HASH *
|
|
shs_init(HASH *state)
|
|
{
|
|
/*
|
|
* malloc if needed
|
|
*/
|
|
if (state == NULL) {
|
|
state = (HASH *)malloc(sizeof(HASH));
|
|
if (state == NULL) {
|
|
math_error("cannot malloc HASH");
|
|
/*NOTREACHED*/
|
|
}
|
|
}
|
|
|
|
/*
|
|
* initialize
|
|
*/
|
|
shsInit((SHS_INFO *)state);
|
|
state->prevstr = FALSE;
|
|
|
|
/*
|
|
* return state
|
|
*/
|
|
return (HASH *)state;
|
|
}
|
|
|
|
|
|
/*
|
|
* shs_long - note a long value
|
|
*
|
|
* given:
|
|
* state the state to hash
|
|
* longval a long value
|
|
*
|
|
* returns:
|
|
* the new state
|
|
*
|
|
* This function will hash a long value as if it were a 64 bit value.
|
|
* The input is a long. If a long is smaller than 64 bits, we will
|
|
* hash a final 32 bits of zeros.
|
|
*/
|
|
static HASH *
|
|
shs_long(HASH *state, long longval)
|
|
{
|
|
SHS_INFO *dig; /* digest state */
|
|
long lval[64/LONG_BITS]; /* 64 bits of longs */
|
|
|
|
/*
|
|
* initialize if state is NULL
|
|
*/
|
|
if (state == NULL) {
|
|
state = shs_init(state);
|
|
}
|
|
|
|
/*
|
|
* setup for the long value hash
|
|
*/
|
|
shs_chkpt(state);
|
|
|
|
/*
|
|
* catch the zero numeric value special case
|
|
*/
|
|
if (longval == 0) {
|
|
/* note a zero numeric value and return */
|
|
shs_note(state, SHS_HASH_ZERO);
|
|
state->prevstr = FALSE; /* we just hashed a non-string */
|
|
return state;
|
|
}
|
|
|
|
/*
|
|
* prep for a long value hash
|
|
*/
|
|
shs_note(state, SHS_BASE);
|
|
dig = &state->h_shs;
|
|
|
|
/*
|
|
* hash as if we have a 64 bit value
|
|
*/
|
|
memset((char *)lval, 0, sizeof(lval));
|
|
lval[0] = longval;
|
|
shsUpdate(dig, (USB8 *)lval, sizeof(lval));
|
|
SHSCOUNT(dig, 64/8);
|
|
|
|
/*
|
|
* all done
|
|
*/
|
|
state->prevstr = FALSE; /* we just hashed a non-string */
|
|
return state;
|
|
}
|
|
|
|
|
|
/*
|
|
* shs_zvalue - hash a ZVALUE
|
|
*
|
|
* given:
|
|
* state the state to hash or NULL
|
|
* zval the ZVALUE
|
|
*
|
|
* returns:
|
|
* the new state
|
|
*/
|
|
static HASH *
|
|
shs_zvalue(HASH *state, ZVALUE zval)
|
|
{
|
|
SHS_INFO *dig; /* digest state */
|
|
#if BYTE_ORDER == BIG_ENDIAN && BASEB == 16
|
|
HALF half[SHS_CHUNKHALFS]; /* SHS chunk buffer as HALFs */
|
|
int full_lim; /* HALFs in whole chunks in zval */
|
|
int i;
|
|
int j;
|
|
#endif
|
|
|
|
/*
|
|
* initialize if state is NULL
|
|
*/
|
|
if (state == NULL) {
|
|
state = shs_init(state);
|
|
}
|
|
|
|
/*
|
|
* setup for the ZVALUE hash
|
|
*/
|
|
shs_chkpt(state);
|
|
|
|
/*
|
|
* catch the zero numeric value special case
|
|
*/
|
|
if (ziszero(zval)) {
|
|
/* note a zero numeric value and return */
|
|
shs_note(state, SHS_HASH_ZERO);
|
|
state->prevstr = FALSE; /* we just hashed a non-string */
|
|
return state;
|
|
}
|
|
|
|
/*
|
|
* prep for a ZVALUE hash
|
|
*/
|
|
shs_note(state, SHS_HASH_ZVALUE);
|
|
/* note if we have a negative value */
|
|
if (zisneg(zval)) {
|
|
shs_note(state, SHS_HASH_NEG);
|
|
}
|
|
dig = &state->h_shs;
|
|
|
|
#if BYTE_ORDER == BIG_ENDIAN && BASEB == 16
|
|
|
|
/*
|
|
* hash full chunks
|
|
*
|
|
* We need to convert the array of HALFs into canonical architectural
|
|
* independent form -- 32 bit arrays. Because we have 16 bit values
|
|
* in Big Endian form, we need to swap 16 bit values so that they
|
|
* appear as 32 bit Big Endian values.
|
|
*/
|
|
full_lim = (zval.len / SHS_CHUNKHALFS) * SHS_CHUNKHALFS;
|
|
for (i=0; i < full_lim; i += SHS_CHUNKHALFS) {
|
|
/* HALF swap copy a chunk into a data buffer */
|
|
for (j=0; j < SHS_CHUNKHALFS; j += 2) {
|
|
half[j] = zval.v[i+j+1];
|
|
half[j+1] = zval.v[i+j];
|
|
}
|
|
shsfullUpdate(dig, (USB8 *)half, SHS_CHUNKSIZE);
|
|
}
|
|
|
|
/*
|
|
* hash the final partial chunk (if any)
|
|
*
|
|
* We need to convert the array of HALFs into canonical architectural
|
|
* independent form -- 32 bit arrays. Because we have 16 bit values
|
|
* in Big Endian form, we need to swap 16 bit values so that they
|
|
* appear as 32 bit Big Endian values.
|
|
*/
|
|
if (zval.len > full_lim) {
|
|
for (j=0; j < zval.len-full_lim-1; j += 2) {
|
|
half[j] = zval.v[full_lim+i+1];
|
|
half[j+1] = zval.v[full_lim+i];
|
|
}
|
|
if (j < zval.len-full_lim) {
|
|
half[j] = (HALF)0;
|
|
half[j+1] = zval.v[zval.len-1];
|
|
--full_lim;
|
|
SHSCOUNT(dig, sizeof(HALF));
|
|
}
|
|
shsUpdate(dig, (USB8 *)half,
|
|
(zval.len-full_lim)*sizeof(HALF));
|
|
}
|
|
SHSCOUNT(dig, zval.len*sizeof(HALF));
|
|
|
|
#else
|
|
|
|
/*
|
|
* hash the array of HALFs
|
|
*
|
|
* The array of HALFs is equivalent to the canonical architectural
|
|
* independent form. We either have 32 bit HALFs (in which case
|
|
* we do not case the byte order) or we have 16 bit HALFs in Little
|
|
* Endian order (which happens to be laid out in the same order as
|
|
* 32 bit values).
|
|
*/
|
|
shsUpdate(dig, (USB8 *)zval.v, zval.len*sizeof(HALF));
|
|
SHSCOUNT(dig, zval.len*sizeof(HALF));
|
|
|
|
#endif
|
|
|
|
/*
|
|
* all done
|
|
*/
|
|
state->prevstr = FALSE; /* we just hashed a non-string */
|
|
return state;
|
|
}
|
|
|
|
|
|
/*
|
|
* shs_number - hash a NUMBER
|
|
*
|
|
* given:
|
|
* state the state to hash or NULL
|
|
* number the NUMBER
|
|
*
|
|
* returns:
|
|
* the new state
|
|
*/
|
|
static HASH *
|
|
shs_number(HASH *state, NUMBER *number)
|
|
{
|
|
BOOL sign; /* sign of the denominator */
|
|
|
|
/*
|
|
* initialize if state is NULL
|
|
*/
|
|
if (state == NULL) {
|
|
state = shs_init(state);
|
|
}
|
|
|
|
/*
|
|
* setup for the ZVALUE hash
|
|
*/
|
|
shs_chkpt(state);
|
|
|
|
/*
|
|
* process the numerator
|
|
*/
|
|
state = shs_zvalue(state, number->num);
|
|
|
|
/*
|
|
* if the NUMBER is not an integer, process the denominator
|
|
*/
|
|
if (qisfrac(number)) {
|
|
|
|
/* note the division */
|
|
shs_note(state, SHS_HASH_DIV);
|
|
|
|
/* hash denominator as positive -- just in case */
|
|
sign = number->den.sign;
|
|
number->den.sign = 0;
|
|
|
|
/* hash the denominator */
|
|
state = shs_zvalue(state, number->den);
|
|
|
|
/* restore the sign */
|
|
number->den.sign = sign;
|
|
}
|
|
|
|
/*
|
|
* all done
|
|
*/
|
|
state->prevstr = FALSE; /* we just hashed a non-string */
|
|
return state;
|
|
}
|
|
|
|
|
|
/*
|
|
* shs_complex - hash a COMPLEX
|
|
*
|
|
* given:
|
|
* state the state to hash or NULL
|
|
* complex the COMPLEX
|
|
*
|
|
* returns:
|
|
* the new state
|
|
*/
|
|
static HASH *
|
|
shs_complex(HASH *state, COMPLEX *complex)
|
|
{
|
|
/*
|
|
* initialize if state is NULL
|
|
*/
|
|
if (state == NULL) {
|
|
state = shs_init(state);
|
|
}
|
|
|
|
/*
|
|
* setup for the COMPLEX hash
|
|
*/
|
|
shs_chkpt(state);
|
|
|
|
/*
|
|
* catch the zero special case
|
|
*/
|
|
if (ciszero(complex)) {
|
|
/* note a zero numeric value and return */
|
|
shs_note(state, SHS_HASH_ZERO);
|
|
state->prevstr = FALSE; /* we just hashed a non-string */
|
|
return state;
|
|
}
|
|
|
|
/*
|
|
* process the real value if not pure imaginary
|
|
*
|
|
* We will ignore the real part if the value is of the form 0+xi.
|
|
*/
|
|
if (!qiszero(complex->real)) {
|
|
state = shs_number(state, complex->real);
|
|
}
|
|
|
|
/*
|
|
* if the NUMBER is not real, process the imaginary value
|
|
*
|
|
* We will ignore the imaginary part of the value is of the form x+0i.
|
|
*/
|
|
if (!cisreal(complex)) {
|
|
|
|
/* note the sqrt(-1) */
|
|
shs_note(state, SHS_HASH_COMPLEX);
|
|
|
|
/* hash the imaginary value */
|
|
state = shs_number(state, complex->imag);
|
|
}
|
|
|
|
/*
|
|
* all done
|
|
*/
|
|
state->prevstr = FALSE; /* we just hashed a non-string */
|
|
return state;
|
|
}
|
|
|
|
|
|
/*
|
|
* shs_str - hash a string
|
|
*
|
|
* given:
|
|
* state the state to hash or NULL
|
|
* str the string
|
|
*
|
|
* returns:
|
|
* the new state
|
|
*/
|
|
static HASH *
|
|
shs_str(HASH *state, char *str)
|
|
{
|
|
SHS_INFO *dig; /* digest state */
|
|
#if BYTE_ORDER == LITTLE_ENDIAN
|
|
char *newstr; /* Big Endian version of str */
|
|
USB32 newlen; /* newstr string length */
|
|
int i;
|
|
#endif
|
|
USB32 len; /* string length */
|
|
|
|
/*
|
|
* initialize if state is NULL
|
|
*/
|
|
if (state == NULL) {
|
|
state = shs_init(state);
|
|
}
|
|
|
|
/*
|
|
* setup for the string hash
|
|
*/
|
|
if (!state->prevstr) {
|
|
shs_chkpt(state);
|
|
}
|
|
len = strlen(str);
|
|
dig = &state->h_shs;
|
|
|
|
#if BYTE_ORDER == BIG_ENDIAN
|
|
/*
|
|
* shs hashes in Big Endian form directly
|
|
*/
|
|
shsUpdate(dig, (USB8*)str, len);
|
|
#else
|
|
/*
|
|
* we must convert from Little Endian string to Big Endian string
|
|
*/
|
|
newlen = ((len+3)/4)*4;
|
|
newstr = (char *)malloc(newlen+1);
|
|
if (newstr) {
|
|
math_error("hash of string malloc failed");
|
|
/*NOTREACHED*/
|
|
}
|
|
strcpy(newstr, str);
|
|
newstr[len+1] = 0;
|
|
newstr[len+2] = 0;
|
|
newstr[len+3] = 0;
|
|
for (i=0; i < newlen; i += 4) {
|
|
SWAP_B8_IN_B32(newstr+i, newstr+i);
|
|
}
|
|
shsUpdate(dig, (USB8*)newstr, newlen);
|
|
#endif
|
|
SHSCOUNT((SHS_INFO *)dig, len);
|
|
|
|
/*
|
|
* all done
|
|
*/
|
|
state->prevstr = TRUE; /* we just hashed a string */
|
|
return state;
|
|
}
|
|
|
|
|
|
/*
|
|
* shs_value - hash a value
|
|
*
|
|
* given:
|
|
* state the state to hash or NULL
|
|
* value the value
|
|
*
|
|
* returns:
|
|
* the new state
|
|
*/
|
|
static HASH *
|
|
shs_value(HASH *state, VALUE *value)
|
|
{
|
|
SHS_INFO *dig; /* digest state */
|
|
LISTELEM *ep; /* list element pointer */
|
|
ASSOCELEM **assochead; /* association chain head */
|
|
ASSOCELEM *aep; /* current association value */
|
|
ASSOCELEM *nextaep; /* next association value */
|
|
VALUE *vp; /* pointer to next OBJ table value */
|
|
ZVALUE fileval; /* size, position, dev, inode of a file */
|
|
int i;
|
|
|
|
/*
|
|
* initialize if state is NULL
|
|
*/
|
|
if (state == NULL) {
|
|
state = shs_init(state);
|
|
}
|
|
|
|
/*
|
|
* setup for the next type of value
|
|
*/
|
|
shs_chkpt(state);
|
|
shs_type(state, value->v_type);
|
|
dig = &state->h_shs;
|
|
|
|
/*
|
|
* process the value type
|
|
*/
|
|
switch (value->v_type) {
|
|
case V_INT:
|
|
/* hash as if we have a 64 bit value */
|
|
state = shs_long(state, (long)value->v_int);
|
|
break;
|
|
case V_NUM:
|
|
state = shs_number(state, value->v_num);
|
|
break;
|
|
case V_COM:
|
|
state = shs_complex(state, value->v_com);
|
|
break;
|
|
case V_ADDR:
|
|
state = shs_value(state, value->v_addr);
|
|
break;
|
|
case V_STR:
|
|
state = shs_str(state, value->v_str);
|
|
break;
|
|
case V_MAT:
|
|
/* hash all the elements of the matrix */
|
|
for (i=0; i < value->v_mat->m_size; ++i) {
|
|
/* force strings to not be concatinated */
|
|
state->prevstr = FALSE;
|
|
/* hash the next matrix value */
|
|
state = shs_value(state, value->v_mat->m_table+i);
|
|
}
|
|
/* don't allow the next string to concatinate to the matrix */
|
|
state->prevstr = FALSE;
|
|
break;
|
|
case V_LIST:
|
|
/* hash all the elements of the list */
|
|
for (i=0, ep = value->v_list->l_first;
|
|
ep != NULL && i < value->v_list->l_count;
|
|
++i, ep = ep->e_next) {
|
|
/* force strings to not be concatinated */
|
|
state->prevstr = FALSE;
|
|
/* hash the next list value */
|
|
state = shs_value(state, &ep->e_value);
|
|
}
|
|
/* don't allow the next string to concatinate to the list */
|
|
state->prevstr = FALSE;
|
|
break;
|
|
case V_ASSOC:
|
|
assochead = value->v_assoc->a_table;
|
|
for (i = 0; i < value->v_assoc->a_size; i++) {
|
|
nextaep = *assochead;
|
|
while (nextaep) {
|
|
aep = nextaep;
|
|
nextaep = aep->e_next;
|
|
/* force strings to not be concatinated */
|
|
state->prevstr = FALSE;
|
|
/* hash the next association value */
|
|
state = shs_value(state, &aep->e_value);
|
|
}
|
|
assochead++;
|
|
}
|
|
/* don't allow the next string to concatinate to the assoc */
|
|
state->prevstr = FALSE;
|
|
break;
|
|
case V_OBJ:
|
|
for (i=value->v_obj->o_actions->count, vp=value->v_obj->o_table;
|
|
i-- > 0;
|
|
vp++) {
|
|
/* force strings to not be concatinated */
|
|
state->prevstr = FALSE;
|
|
/* hash the next object value */
|
|
shs_value(state, vp);
|
|
}
|
|
/* don't allow the next string to concatinate to the object */
|
|
state->prevstr = FALSE;
|
|
break;
|
|
case V_FILE:
|
|
/* hash file length if possible */
|
|
if (getsize(value->v_file, &fileval) == 0) {
|
|
state = shs_zvalue(state, fileval);
|
|
zfree(fileval);
|
|
} else {
|
|
/* hash -1 for invalid length */
|
|
state = shs_long(state, (long)-1);
|
|
}
|
|
/* hash the file position if possible */
|
|
if (getloc(value->v_file, &fileval) == 0) {
|
|
state = shs_zvalue(state, fileval);
|
|
zfree(fileval);
|
|
} else {
|
|
/* hash -1 for invalid location */
|
|
state = shs_long(state, (long)-1);
|
|
}
|
|
/* hash the file device if possible */
|
|
if (get_device(value->v_file, &fileval) == 0) {
|
|
state = shs_zvalue(state, fileval);
|
|
zfree(fileval);
|
|
} else {
|
|
/* hash -1 for invalid device */
|
|
state = shs_long(state, (long)-1);
|
|
}
|
|
/* hash the file inode if possible */
|
|
if (get_inode(value->v_file, &fileval) == 0) {
|
|
state = shs_zvalue(state, fileval);
|
|
zfree(fileval);
|
|
} else {
|
|
/* hash -1 for invalid inode */
|
|
state = shs_long(state, (long)-1);
|
|
}
|
|
break;
|
|
case V_RAND:
|
|
state = shs_long(state, (long)value->v_rand->seeded);
|
|
state = shs_long(state, (long)value->v_rand->bits);
|
|
shsUpdate(dig, (USB8 *)value->v_rand->buffer, SLEN*FULL_BITS/8);
|
|
SHSCOUNT(dig, SLEN*FULL_BITS/8);
|
|
state = shs_long(state, (long)value->v_rand->j);
|
|
state = shs_long(state, (long)value->v_rand->k);
|
|
shsUpdate(dig, (USB8 *)value->v_rand->slot, SCNT*FULL_BITS/8);
|
|
SHSCOUNT(dig, SCNT*FULL_BITS/8);
|
|
shsUpdate(dig, (USB8*)value->v_rand->shuf, SHUFLEN*FULL_BITS/8);
|
|
SHSCOUNT(dig, SHUFLEN*FULL_BITS/8);
|
|
/* don't allow the next string to concatinate to the list */
|
|
state->prevstr = FALSE;
|
|
break;
|
|
case V_RANDOM:
|
|
state = shs_long(state, (long)value->v_random->seeded);
|
|
state = shs_long(state, (long)value->v_random->bits);
|
|
shsUpdate(dig, (USB8 *)&(value->v_random->buffer), BASEB/8);
|
|
SHSCOUNT(dig, SLEN*FULL_BITS/8);
|
|
state = shs_zvalue(state, *(value->v_random->r));
|
|
state = shs_zvalue(state, *(value->v_random->n));
|
|
/* don't allow the next string to concatinate to the list */
|
|
state->prevstr = FALSE;
|
|
break;
|
|
case V_CONFIG:
|
|
state = shs_long(state, (long)value->v_config->outmode);
|
|
state = shs_long(state, (long)value->v_config->outdigits);
|
|
state = shs_number(state, value->v_config->epsilon);
|
|
state = shs_long(state, (long)value->v_config->epsilonprec);
|
|
state = shs_long(state, (long)value->v_config->traceflags);
|
|
state = shs_long(state, (long)value->v_config->maxprint);
|
|
state = shs_long(state, (long)value->v_config->mul2);
|
|
state = shs_long(state, (long)value->v_config->sq2);
|
|
state = shs_long(state, (long)value->v_config->pow2);
|
|
state = shs_long(state, (long)value->v_config->redc2);
|
|
state = shs_long(state, (long)value->v_config->tilde_ok);
|
|
state = shs_long(state, (long)value->v_config->tab_ok);
|
|
state = shs_long(state, (long)value->v_config->quomod);
|
|
state = shs_long(state, (long)value->v_config->quo);
|
|
state = shs_long(state, (long)value->v_config->mod);
|
|
state = shs_long(state, (long)value->v_config->sqrt);
|
|
state = shs_long(state, (long)value->v_config->appr);
|
|
state = shs_long(state, (long)value->v_config->cfappr);
|
|
state = shs_long(state, (long)value->v_config->cfsim);
|
|
state = shs_long(state, (long)value->v_config->outround);
|
|
state = shs_long(state, (long)value->v_config->round);
|
|
state = shs_long(state, (long)value->v_config->leadzero);
|
|
state = shs_long(state, (long)value->v_config->fullzero);
|
|
state = shs_long(state, (long)value->v_config->maxerrorcount);
|
|
state = shs_str(state, value->v_config->prompt1);
|
|
state = shs_str(state, value->v_config->prompt2);
|
|
/* don't allow the next string to concatinate to the list */
|
|
state->prevstr = FALSE;
|
|
break;
|
|
case V_HASH:
|
|
if (value->v_hash->type == SHS_HASH_TYPE) {
|
|
shsUpdate(dig, (USB8 *)&value->v_hash->h_shs,
|
|
sizeof(SHS_INFO));
|
|
SHSCOUNT(dig, sizeof(SHS_INFO));
|
|
} else {
|
|
math_error("SHS hashing a non-SHS hash state");
|
|
/*NOTREACHED*/
|
|
}
|
|
/* don't allow the next string to concatinate to the list */
|
|
state->prevstr = FALSE;
|
|
break;
|
|
default:
|
|
math_error("hashing an unknown value");
|
|
/*NOTREACHED*/
|
|
}
|
|
return state;
|
|
}
|
|
|
|
|
|
/*
|
|
* shs_final - complete hash state and return a ZVALUE
|
|
*
|
|
* given:
|
|
* state the state to complete and convert
|
|
*
|
|
* returns:
|
|
* a ZVALUE representing the state
|
|
*/
|
|
static ZVALUE
|
|
shs_final(HASH *state)
|
|
{
|
|
SHS_INFO *dig; /* digest state */
|
|
ZVALUE ret; /* return ZVALUE of completed hash state */
|
|
#if BTYE_ORDER == BIG_ENDIAN && BASEB == 16
|
|
int i;
|
|
#endif
|
|
|
|
/*
|
|
* initialize if state is NULL
|
|
*/
|
|
if (state == NULL) {
|
|
state = shs_init(state);
|
|
}
|
|
|
|
/*
|
|
* complete the hash state
|
|
*/
|
|
dig = &state->h_shs;
|
|
shsFinal(dig);
|
|
|
|
/*
|
|
* allocate storage for ZVALUE
|
|
*/
|
|
ret.len = SHS_DIGESTSIZE/sizeof(HALF);
|
|
ret.sign = 0;
|
|
ret.v = alloc(ret.len);
|
|
|
|
/*
|
|
* load ZVALUE
|
|
*/
|
|
#if BTYE_ORDER == BIG_ENDIAN && BASEB == 16
|
|
for (i=0; i < ret.len; i+=2) {
|
|
rev.v[i+1] = ((HALF*)dig->digest)[i];
|
|
rev.v[i] = ((HALF*)dig->digest)[i+1];
|
|
}
|
|
#else
|
|
memcpy(ret.v, dig->digest, SHS_DIGESTSIZE);
|
|
#endif
|
|
|
|
/*
|
|
* return ZVALUE
|
|
*/
|
|
return ret;
|
|
}
|
|
|
|
|
|
/*
|
|
* shs_hashfunc - initialize a hashfunc for an interface for this hash
|
|
*
|
|
* given:
|
|
* hfunc - pointer to the hfunction element to initialize
|
|
*/
|
|
void
|
|
shs_hashfunc(HASHFUNC *hfunc)
|
|
{
|
|
/*
|
|
* initalize
|
|
*/
|
|
hfunc->type = SHS_HASH_TYPE;
|
|
hfunc->init = shs_init;
|
|
hfunc->longval = shs_long;
|
|
hfunc->str = shs_str;
|
|
hfunc->value = shs_value;
|
|
hfunc->complex = shs_complex;
|
|
hfunc->number = shs_number;
|
|
hfunc->zvalue = shs_zvalue;
|
|
hfunc->final = shs_final;
|
|
return;
|
|
}
|