Files
calc/CHANGES
2017-05-21 15:38:25 -07:00

1619 lines
60 KiB
Plaintext

Following is the change from calc version 2.10.2t25 to date:
Eliminated use of VARARG and <varargs.h>. Calc supports only
<stdarg.h>. The VARARGS Makefile variable has been eliminated.
Source is converted to ANSI C. In particular, functions
will now have ANSI C style args. Any comments from old K&R
style args have been moved to function comment section.
Removed prototype.h. The PROTO() macro is no longer needed
or supported.
Added mfactor.cal to find the smallest factor of a Mersenne number.
The built .h file: have_times.h, determines if the system has
<time.h>, <times.h>, <sys/time.h> and <sys/times.h>.
Because shs.c depends on HASHFUNC, which in turn depends on
VALUE, shs.o has been moved out of libcalc.a. For the same
reasons, hash.h and shs.h are not being installed into
the ${LIBDIR} for now.
A number of the regression tests that need random numbers now
use different seeds.
Fixes for compiling under BSDI's BSD/OS 2.0. Added a Makefile
section for BSD/OS.
Added a Makefile compile section for Dec Alpha without gcc ...
provides a hack-a-round for Dec Alpha cc bug.
Following is the change from calc version 2.10.2t4 to 2.10.2t25:
Added makefile debugging rules:
make chk like a 'make check' (run the regression tests)
except that only a few lines around interesting
(and presumable error messages) are printed.
No output if no errors are found.
make env print important makefile values
make mkdebug 'make env' + version information and a
make with verbose output and printing of
constructed files
make debug 'make mkdebug' with a 'make clobber'
so that the entire make is verbose and
a constructed files are printed
Improved instuctions in 'BUGS' section on reporting problems.
In particular we made it easy for people to send in a full
diagnostic output by sending 'debug.out' which is made as follows:
make debug > debug.out
Added -v to calc command line to print the version and exit.
Fixed declarations of memcpy(), strcpy() and memset() in the
case of them HAVE_NEWSTR is false.
Fixed some compile time warnings.
Attempting to rewind a file this is not open generates an error.
Noted conversion problems in file.c in tripple X comments.
Some extremely braindead shells cannot correctly deal with if
cluases that do not have a non-empty else statement. Their
exit bogosity results in make problems. As a work-a-round,
Makefile if clauses have 'else true;' clauses for if statements
that previously did not have an else cluause.
Fixed problems where the input stack depth reached the 10 levels.
The show keyword is now a statement instead of a command:
> define demo() {local f = open("foo", "w"); show files; fclose(f);}
> demo()
Added a new trace option for display of links to real and complex
numbers. This is activated by config("trace", 4). The printing
of a real number is immediately followed by "#" and the number of
links to that number; complex numbers are printed in the same
except for having "##" instead of "#". <ernie@neumann.une.edu.au>
The number of links for a number value is essentially the number of value
locations at which it is either stored or deemed to be stored. Here a
number value is the result of a reading or evaluation; when the result
is assigned to lvalues, "linking" rather than copying occurs. Different
sets of mutually linked values may contain the same number. For example:
a = b = 2 + 3; x, y = 2 + 3;
a and b are linked, and x and y are linked, but a and x are not linked.
Revised the credits help file and man page. Added archive help
file to indicate where recent versions of calc are available.
The regression test suite output has been changed so that it will
output the same information regardless of CPU performance. In
particular, cpu times of certain tests are not printed. This allows
one to compare the regression output of two different systems easier.
A matrix or object declaration is now considered an expression
and returns a matrix or object of the specified type. Thus one may
use assignments like:
A = mat[2]; /* same as: mat A[2]; */
P = obj point; /* same as: obj point P; */
The obj and mat keywords may be with "local", "global", "static" as in:
local mat A[2];
Several matrices or objects may be assigned or declared in the one
statement, as in:
mat A, B[2], C[3]; /* same as: mat A[2], B[2], C[3] */
except that only one matrix creation occurs and is copied as in:
A = B = mat[2];
Initialization of matrices and objects now occur before assignments:
mat A, B [2] = {1,2}; /* same as: A = B = (mat[2] = {1,2}); */
Missing arguments are considered as "no change" rather than
"assign null values". As in recent versions of calc, the default
value assigned to matrix elements is zero and the default for object
elements is a null value). Thus:
mat A[2] = {1,2};
A = { , 3};
will change the value of A to {1,3}.
If the relevant operation exists for matrices or has been defined for
the type of object A is, the assignment = may be combined with +, -, *,
etc. as in:
A += {3, 4}; /* same as: A[0] += 3; A[1] += 4; */
A += { }; /* same as: A += A; */
In (non-local) declarations, the earlier value of a variable may be
used in the initialization list:
mat A[3]={1,2,3}; mat A[3]={A[2],A[1],A[0]}; /* same as: A={3,2,1} */
Also:
mat A[3] = {1,2,3};
mat A[3] = {A, A, A};
produces a 3-element matrix, each of whose elements is a 3-element matrix.
The notation A[i][j] requires A[i] to be a matrix, whereas B[i,j]
accesses an element in a 2-dimensional matrix. Thus:
B == A[i] implies A[i][j] = B[j]
There is requirement in the use of A[i][j] that the matrices A[i]
for i = 0, 1, ... all be of the same size. Thus:
mat A[3] = {(mat[2]), (mat[3]), (mat[2])};
produces a matrix with a 7-element structure:
A[0][0], A[0][1], A[1][0], A[1][1], A[1][2], A[2][0], A[2][1]
One can initialize matrices and objects whose elements are matrices
and/or objects:
obj point {x,y}
obj point P;
obj point A = {P,P};
or:
obj point {x,y};
obj point P;
mat A[2] = {P,P};
A = {{1,2}, {3,4}};
The config("trace", 8) causes opcodes of newly defined functions
are displayed. Also show can now show the opcides for a function.
For example:
config("trace", 8);
define f(x) = x^2;
show opcodes f;
define g(x,y) {static mat A[2]; A += {x,y}; return A;}
show opcodes g
g(2,3);
show opcodes g;
g(3,4);
The two sequences displayed for f should show the different ways
the parameter is displayed. The third sequence for g should also
show the effects of the static declaration of A.
Fixed a number of compiler warning and type cast problems.
Added a number of new error codes.
Misc bug fixes for gcc2 based Sparc systems.
Fixed a bug in the SVAL() macro on systems with 'long long'
type and on systems with 16 bit HALFs.
Reduced the Makefile CC set:
CCOPT are flags given to ${CC} for optimization
CCWARN are flags given to ${CC} for warning message control
CCMISC are misc flags given to ${CC}
CFLAGS are all flags given to ${CC}
[[often includes CCOPT, CCWARN, CCMISC]]
ICFLAGS are given to ${CC} for intermediate progs
CCMAIN are flags for ${CC} when files with main() instead of CFLAGS
CCSHS are flags given to ${CC} for compiling shs.c instead of CFLAGS
LCFLAGS are CC-style flags for ${LINT}
LDFLAGS are flags given to ${CC} for linking .o files
ILDFLAGS are flags given to ${CC} for linking .o files
for intermediate progs
CC is how the the C compiler is invoked
Added more tests to regress.cal.
Port to HP-UX.
Moved config_print() from config.c to value.c so prevent printvalue()
and freevalue() from being unresolved symbols for libcalc.a users.
Calc will generate "maximum depth reached" messages or errors when
reading or eval() is attempted at maximum input depth.
Now each invocation of make is done via ${MAKE} and includes:
MAKE_FILE=${MAKE_FILE}
TOPDIR=${TOPDIR}
LIBDIR=${LIBDIR}
HELPDIR=${HELPDIR}
Setting MAKE_FILE= will cause make to not re-make if the Makefile
is edited.
Added libinit.c which contains the function libcalc_call_me_first().
Users of libcalc.a MUST CALL libcalc_call_me_first BEFORE THEY USE
ANY OTHER libcalc.a functions!
Added support for the SGI IRIX6.2 (or later) Mongoose 7.0 (or later)
C Compiler for the r4k, r8k and r10k. Added LD_NO_SHARED for
non-shared linker support.
Re-ordered and expanded options for the DEBUG make variable.
Make a few minor cosmetic comment changes/fixes in the main Makefile.
Statements such as:
mat A[2][3];
now to the same as:
mat M[3];
mat A[2] = {M, M};
To initialize such an A one can use a statement like
A = {{1,2,3}, {4,5,6}};
or combine initialization with creation by:
mat A[2][3] = {{1,2,3}, {4,5,6}};
One would then have, for example, A[1][0] = 4. Also, the inner braces
cannot be removed from the initialization for A:
mat A[2][3] = {1,2};
results in exactly the same as:
mat A[2] = {1,2};
Added rm("file") builtin to remove a file.
The regress test sections that create files also use rm() to remove
them before and afterwards.
Added 4400-4500 set to test new mat and obj initializaion rules.
Added 4600 to test version file operations.
Added CCZPRIME Makefile variable to the set for the short term
to work around a CC -O2 bug on some SGI machines.
Added regression test of _ variables and function names.
Added read of read and write, including read and write test for
long strings.
Fixed bug associated with read of a long string variable.
Renumbered some of the early regress.cal test numbers to make room
for more tests. Fixed all out of sequence test numbers. Fixed some
malformatted regression reports.
Following is the change from calc version 2.10.2t0 to 2.10.2t4:
Fixed bug in the regression suite that made test3400 and test4100
fail on correct computations.
The randbit() builtin, when given to argument, returns 1 random bit.
Fixed a bug in longlong.c which made is generate a syntax error
on systems such as the PowerPC where the make variable LONGLONG
was left empty.
By default, the Makefile leaves LONGLONG_BITS empty to allow for
testing of 64 bit data types. A few hosts may have problems with
this, but hopefully not. Such hosts can revert back to LONGLONG_BITS=0.
Improved SGI support. Understands SGI IRIX6.2 performance issues
for multiple architectures.
Fixed a number of implicit conversion from unsigned long to long to avoid
unexpected rounding, sign extension, or loss of accuracy side effects.
Added SHSCC because shs.c contains a large expression that some
systems need help in optimizing.
Added "show files" to display information about all currently open files.
Calc now prevents user-defined function having the same name as a
builtin function.
A number of new error codes (more than 100) have been added.
Added ctime() builtin for date and time as string value.
Added time() builtin for seconds since 00:00:00 1 Jan 1970 UTC.
Added strerror() builtin for string describing error type.
Added freopen() builtin to reopen a file.
Added frewind() builtin to rewind a file.
Added fputstr() builtin to write a null-terminated string to a file.
Added fgetstr() builtin to read a null-terminated string from a file.
Added fgetfield() builtin to read next field from file.
Added strscan() builtin to scan a string.
Added scan() builtin to scan of a file.
Added fscan() builtin to scan of a file.
Added fscanf() builtin to do a formatted scan of a file.
Added scanf() builtin to do a formatted scan of stdin.
Added strscanf() builtin to do a formatted scan of a string.
Added ungetc() builtin to unget character read from a file.
As before, files opened with fopen() will have an id different from
earlier files. But instead of returning the id to the FILEIO slot
used to store information about it, calc simply uses consecutive
numbers starting with 3. A calc file retains its id, even when the
file has been closed.
The builtin files(i) now returns the file opened with id == i
rather than the file with slot number i. For any i <= lastid,
files(i) has at some time been opened. Whether open or closed, it
may be "reopened" with the freopen() command. This write to a file
and then read it, use:
f = fopen("junk", "w")
freopen(f, "r")
To use the same stream f for a new file, one may use:
freopen(f, mode, newfilename)
which closes f (assuming it is open) and then opens newfilename on f.
And as before:
f = fopen("curds", "r")
g = fopen("curds", "r")
results in two file ids (f and g) that refer to the same file
name but with different pointers.
Calc now understands "w+", "a+" and "r+" file modes.
If calc opens a file without a mode there is a "guess" that mode
"r+" will work for any files with small descriptors found to be
open. In case it doesn't (as apparently happens if the file had
not been opened for both reading and reading) the function now also
tries "w" and "r", and if none work, gives up. This avoids having
"open" files with null fp.
The buildin rewind() calls the C rewind() function, but one may
now rewind several files at once by a call like rewind(f1, f2).
With no argument, rewind() rewinds all open files with id >= 3.
The functions fputstr(), fgetstr() have been defined to include the
terminating '\0' when writing a string to a file. This can be done
at present with a sequence of instructions like:
fputs(f, "Landon"); fputc(f, 0);
fputs(f, "Curt"); fputc(f, 0);
fputs(f, "Noll"); fputc(f, 0);
One may now do:
fputstr(f, "Landon", "Curt", "Noll");
and read them back by:
rewind(f);
x = fgetstr(f); /* returns "Landon" */
y = fgetstr(f); /* returns "Curt" */
z = fgetstr(f); /* returns "Noll" */
The buildin fgetfield() returns the next field of non-whitepsace
characters.
The builtins scan(), fscan(), strscan() read tokens (fields of
non-whitepsace characters) and evaluates them. Thus:
global a,b,c;
strscan("2+3 4^2\n c=a+b", a, b, 0);
results in a = 5, b = 16, c = 21
The functions scanf, fscanf, strscanf behave like the C functions
scanf, fscanf, sscanf. The conversion specifiers recognized are "%c",
"%s", "%[...]" as in C, with the options of *, width-specification,
and complementation (as in [^abc]), and "%n" for file-position, and
"%f", "%r", "%e", "%i" for numbers or simple number-expressions - any
width-specification is ignored; the expressions are not to include any
white space or characters other than decimal digits, +, -, *, /, e, and i.
E.g. expressions like 2e4i+7/8 are acceptable.
The builtin size(x) now returns the size of x if x is an open file
or -1 if x is a file but not open. If s is a string, size(s) returns
characters in s.
Added buildin access("foo", "w") returns the null value if a file
"foo" exists and is writeable.
Some systems has a libc symbolc qadd() that conflicted with calc's
qadd function. To avoid this, qadd() has been renamed to qqadd().
The calc error codes are produced from the the calcerr.tbl file.
Instead of changing #defines in value.h, one can not edit calcerr.tbl.
The Makefile builds calcerr.h from this file.
Calc error codes are now as follows:
<0 invalid
0 .. sys_nerr-1 system error ala C's errno values
sys_nerr .. E__BASE-1 reserved for future system errors
E__BASE .. E__HIGHEST calc internal errors
E__HIGHEST+1 .. E_USERDEF-1 invalid
E_USERDEF .. user defined errors
Currently, E__BASE == 10000 and E_USERDEF == 20000. Of course,
sys_nerr is system defined however is likely to be < E__BASE.
Renamed CONST_TYPE (as defined in have_const.h) to just CONST.
This symbol will either be 'const' or an empty string depending
on if your compiler understands const.
CONST is beginning to be used with read-only tables and some
function arguments. This allows certain compilers to better
optimize the code as well as alerts one to when some value
is being changed inappropriately. Use of CONST as in:
int foo(CONST int curds, char *CONST whey)
while legal C is not as useful because the caller is protected
by the fact that args are passed by value. However, the
in the following:
int bar(CONST char *fizbin, CONST HALF *data)
is useful because it calls the compiler that the string pointed
at by 'fizbin' and the HALF array pointer at by 'data' should be
treated as read-only.
Following is the change from calc version 2.10.1t21 to 2.10.2t0:
Bumped patch level 2.10.2t0 in honor of having help files for
all builtin functions. Beta release will happen at the end of
the 2.10.2 cycle!!!
Fewer items listed in BUGS due to a number of bug fixes.
Less todo in the help/todo file because more has already been done. :-)
All builtin functions have help files! While a number need cleanup
and some of the LIMITS, LIBRARY and SEE ALSO sections need fixing
(or are missing), most of it is there. A Big round of thanks goes
to <ernie@neumann.une.edu.au> for his efforts in initial write-ups
for many of these files!
The recognition of '\' as an escape character in the format argument
of printf() has been dropped. Thus:
printf("\\n");
will print the two-character string "\n" rather than the a
one-character carriage return. <ernie@neumann.une.edu.au>
Missing args to printf-like functions will be treated as null values.
The scope of of config("fullzero") has been extended to integers,
so that for example, after config("mode","real"), config("display", 5),
config("fullzero", 1), both:
print 0, 1, 2;
printf("%d %d %d\n", 0, 1, 2);
print:
.00000 1.00000, 2.00000
The bug which caused calc to exit on:
b = "print 27+"
eval(b)
has been fixed. <ernie@neumann.une.edu.au>
Fixed bugs in zio.c which caused eval(str(x)) == x to fail
in non-real modes such as "oct". <ernie@neumann.une.edu.au>
The following:
for (i = 1; i < 10; i++) print i^2,;
now prints the same as:
for (i = 1; i < 10; i++) print i^2,;
The show globals will print '...' in the middle of large values.
<ernie@neumann.une.edu.au>
The param(n) builtin, then n > 0, returns the address rather than
the value of the n-th argument to save time and memory usage. This
is useful when a matrix with big number entries is passed as an arg.
<ernie@neumann.une.edu.au>
The param(n) builtin, then n > 0, may be used as an lvalue:
> define g() = (param(2) = param(1));
> define h() = (param(1)++, param(2)--);
> u = 5
> v = 10
> print g(u, &v), u, v;
5 5 5
> print h(&u, &v), u, v;
5 6 4
Missing args now evaluate to null as in:
A = list(1,,3)
B = list(,,)
mat C[] = {,,}
mat D[] = { }
Following is the change from calc version 2.10.1t20 to 2.10.1t21:
Changes made in preparation for Blum Blum Shub random number generator.
REDC bug fixes: <ernie@neumann.une.edu.au>
Fixed yet another bug in zdiv which occasionally caused the "top digit"
of a nonzero quotient to be zero.
Fixed a bug in zredcmul() where a rarely required "topdigit" is
sometimes lost rather than added to the appropriate carry.
A new function zredcmodinv(ZVALUE z, ZVALUE *res) has been defined for
evaluating rp->inv in zredcalloc(). <ernie@neumann.une.edu.au>
New functions zmod5(ZVALUE *zp) and zmod6(ZVALUE z, ZVALUE *res) have
been defined to give O(N^1.585)-runtime evaluation of z % m for
large N-word m. These require m and BASE^(2*N) // m to have been
stored at named locations lastmod, lastmodinv. zmod5() is essentially
for internal use by zmod6() and zpowermod(). <ernie@neumann.une.edu.au>
Changes to rcmul(x,y,m) so that the result is always in [0, m-1].
<ernie@neumann.une.edu.au>
Changes to some of the detail of zredcmul() so that it should run slightly
faster. Also changes to zredcsq() in the hope that it might achieve
something like the improvement in speed of x^2 compared with x * x.
<ernie@neumann.une.edu.au>
A new "bignum" algorithm for evaluating pmod(x,k,m) when
N >= config("pow2"). For the multiplications and squarings
modulo m, or their equivalent, when N >= config("redc2"),
calc has used evaluations correponding to rcout(x * y, m),
for which the runtime is essentially that of three multiplications.
<ernie@neumann.une.edu.au>
Yet more additions to the regress.cal test suite.
Fixed some ANSI-C compile nits in shs.c and quickhash.c.
Plugs some potential memory leaks in definitions in func.c.
Expressions such as qlink(vals[2]) in some circumstances are
neither qfreed nor returned as function values.
<ernie@neumann.une.edu.au>
The nextcand() and prevcand() functions handle modval, modulus
and skip by using ZVALUE rather than ZVALUE * and dropping
the long modulus, etc. <ernie@neumann.une.edu.au>
Changed a couple of occurrences of itoq(1) or itoq(0) to &_qone_
and &_qzero_. <ernie@neumann.une.edu.au>
In definition of f_primetest, changed ztolong(q2->num) to ztoi(q2->num)
so that the sign of count in ptest(n, count, skip) is not lost; and
ztolong(q3->num) to q3->num so that skip can be any integer.
<ernie@neumann.une.edu.au>
In zprime.c, in definition of small_factor(), adds "&& *tp != 1" to
the exit condition in the for loop so that searching for a factor
will continue beyond the table of primes, as required for e.g.
factor(2^59 - 1). <ernie@neumann.une.edu.au>
Changed zprimetest() so that skip in ptest(n, count, skip)
determines the way bases for the tests are selected. Neg values of
n are treated differently. When considering factorization,
primeness, etc. one is concerned with equivalence classes which for
the rational integers are {0}, {-1, 1}, {-2, 2}, etc. To refer to
an equivalence class users may use any of its elements but when
returning a value for a factor the computer normally gives the
non-negative member. The same sort of thing happens with integers
modulo an integer, with fractions, etc., etc. E.g. users may refer
to 3/4 as 6/8 or 9/12, etc. A simple summary of the way negative n
is treated is "the sign is ignored". E.g. isprime(-97) and
nextprime(-97) now return the same as isprime(97) and nextprime(97).
<ernie@neumann.une.edu.au>
Following is the change from calc version 2.10.1t11 to 2.10.1t20:
Added many more regression tests to lib/regress.cal. Some
due to <ernie@neumann.une.edu.au>.
Added many help files, most due to <ernie@neumann.une.edu.au>.
Fixed exp() and ln() so that when they return a complex value with a
zero imaginary component, isreal() is true. <ernie@neumann.une.edu.au>
Fixed cast problem in byteswap.c. <ernie@neumann.une.edu.au>
Fixed memory leak problem where repeated assignments did not
free the previous value. <ernie@neumann.une.edu.au>
Complex number ordering/comparison has been changed such that:
a < b implies a + c < b + c
a < b and c > 0 implies a * c < b * c
a < b implies -a > -b
To achieve a "natural" partial ordering of the complex numbers
with the above properties, cmp(a,b) for real or complex numbers
may be considered as follows:
cmp(a,b) = sgn(re(a) - re(b)) + sgn(im(a) - im(b)) * 1i
The cmp help file has been uptdated.
Change HASH type to QCKHASH. The HASH type is a name better suited
for the upcoming one-way hash interface.
Added the CONFIG type; a structure containing all of the configuration
values under the control of config(). Added V_CONFIG data type.
The call config("all") returns a V_CONFIG. One may now save/restore
the configuration state as follows:
x = config("all")
...
config("all",x)
Added two configuration aliases, "oldstd" (for old backward compatible
standard configuration) and "newstd" (for new style configuration).
One may set the historic configuration state by:
config("all", "oldstd")
One may use what some people consider to be a better but not backward
compatible configuration state by:
config("all", "newstd")
Renamed config.h (configuration file built during the make) to conf.h.
Added a new config.h to contain info on thw V_CONFIG type.
Fixed some ANSI C compile warnings.
The show config output is not indented by only one tab, unless
config("tab",0) in which case it is not indented.
The order of show config has been changed to reflect the config
type values.
Changed declaration of sys_errlst in func.c to be char *.
Added quo(x,y,rnd) and mod(x,y,rnd) to give function interfaces
to // and % with rounding mode arguments. Extended these functions
to work for list-values, complex numbers and matrices.
<ernie@neumann.une.edu.au>
For integer x, cfsim(x,8) returns 0. <ernie@neumann.une.edu.au>
Fixed config("leadzero"). <ernie@neumann.une.edu.au>
Set config("cfsim",8) by default (in "oldstd"). Setup initial idea for
config("all", "newstd") to be the default with the following changes:
display 10
epsilon 1e-10
quo 0
outround 24
leadzero 1
fullzero 1
prompt "; " (allows full line cut/paste)
more ";; " (allows full line cut/paste)
The "newstd" is a (hopefully) more perferred configuration than the
historic default.
The fposval.h file defines DEV_BITS and INODE_BITS giving the
bit size of the st_dev and st_ino stat elements. Also added
SWAP_HALF_IN_DEV and SWAP_HALF_IN_STSIZE.
Added sec(), csc(), cot(), sech(), csch(), coth(), asec(), acsc(),
acot(), asech(), acsch() and acoth() builtins. <ernie@neumann.une.edu.au>
The initmasks() call is no longer needed. The bitmask[] array
is a compiled into zmath.c directly.
Added isconfig(), ishash(), isrand() and israndom() builtins to
test is something is a configuration state, hash state, RAND
state or RANDOM state.
The lib/cryrand.cal library now no longer keeps the Blum prime
factors used to formt he Blum modulus. The default modulus has
been expanded to 1062 bits product of two Blum primes.
Added shs hash code, though it is not currently used. - XXX
The function hash_init() is called to initialize the hash function
interface.
Misc calc man page fixes and new command line updates.
Fixed bug related to srand(1).
Cleaned up some warning messages.
All calls to math_error() now have a /*NOTREACHED*/ comment after
them. This allows lint and compiler flow progs to note the jumpjmp
nature of math_error(). Unfortunately some due to some systems
not dealing with /*NOTREACHED*/ comments correctly, calls of the form:
if (foo)
math_error("bar");
must be turned into:
if (foo) {
math_error("bar");
/*NOTREACHED*/
}
The ploy() function can take a list of coefficients. See
the help/poly file. Added poly.c. <ernie@neumann.une.edu.au>
Fixes and performance improvemtns to det(). <ernie@neumann.une.edu.au>
Renamed atoq() and atoz() to str2q() and str2z() to avoid conflicts
with libc function names.
Fixed use of ${NROFF_ARG} when ${CATDIR} and ${NROFF} are set.
Fixed SWAP_HALF_IN_B64 macro use for Big Endian machines without
long long or with LONGLONG_BITS=0.
Added error() and iserror() to generate a value of a given error type.
See help/error for details. <ernie@neumann.une.edu.au>
Added singular forms of help files. For example one can now get
help for binding, bug, change, errorcode and type.
The builtin mmin(x, md) has been changed to return the same as
mod(x, md, 16). The old mmin(x, md) required md to be a positive
integer and x to be an integer. Now md can be any real number; x
can be real, complex, or a matrix or list with real elements, etc.
<ernie@neumann.une.edu.au>
The builtin avg(x_1, x_2, ...) has been changed to accept list-valued
arguments: a list x_i contributes its elements to the list of items to
be averaged. E.g. avg(list(1,2,list(3,4)),5) is treated as if it were
avg(1,2,3,4,5). If an error value is encountered in the items to be
averaged, the first such value is returned. If the number of items to be
averaged is zero, the null value is returned. <ernie@neumann.une.edu.au>
The builtin hmean(x_1, x_2, ...) has been changed to admit types
other than real for x_1, x_2, ...; list arguments are treated in
the same way as in avg(). <ernie@neumann.une.edu.au>
The builtin eval(str) has been changed so that when str has a
syntax error, instead of call to math_error(), an error value is
returned. <ernie@neumann.une.edu.au>
The old frem(x,y) builtin returned the wrong value when y was a power of
2 greater than 2, e.g. f(8,4) is returned as 4 when its value should be 2.
This has been fixed by a small change to the definition of zfacrem().
Calc used to accept with no warning or error message, gcdrem(0,2) or
generally gcdrem(0,y) for any y with abs(y) > 1, but then went into an
infinite loop. This has been fixed by never calling zfacrem() with zero x.
Both frem(x,y) and gcdrem(x,y) now reject y = -1, 0 or 1 as errors. For
nonzero x, and y == -1 or 1, defining frem(x,y) and gcdrem(x,y) to equal
abs(x) is almost as natural as defining x^0 to be 1. Similarly, if x is
not zero then gcdrem(x,0) == 1.
<ernie@neumann.une.edu.au>
Plugged some more memory leaks.
Fixed bug related randbit(x) skip (where x < 0).
Added seedrandom.cal to help users use the raw random() interface well.
Made extensive additions and changes to the rand() and random() generator
comments in zrand.c.
Fixed a bug in fposval.c that prevented calc from compiling on systems
with 16 bit device and/or inodes. Fixed error messages in fposval.c.
Fixed bug that would put calc into an infinite loop if it is ran
with errors in startup files (calc/startup, .calcrc).
Ha Lam <hl@kuhep5.phsx.ukans.edu>
Following is the change from calc version 2.10.0t13 to 2.10.1t11:
Added SB8, USB8, SB16, USB16, SB32, USB32 typedefs, determined by
longbits and declared in longbits.h, to deal with 8, 16 and 32 bit
signed and unsigned values.
The longbits.h will define HAVE_B64 with a 64 bit type (long or
longlong) is available. If one is, then SB64 abd US64 typedefs
are declared.
The U(x) and L(x) macros only used to define 33 to 64 bit signed
and unsigned constants. Without HAVE_B64, these macros cannot
be used.
Changed the way zmath.h declares types such as HALF and FULL.
Changed the PRINT typedef.
The only place where the long long type might be used is in longlong.c
and if HAVE_LONGLONG, in longbits.h if it is needed. The only place
were a long long constant might be used is in longlong.c. Any
long long constants, if HAVE_LONGLONG, are hidden under the U(x) and
L(x) macros on longbits.h. And of course, if you don't have long long,
then HAVE_LONGLONG will NOT be defined and long long's will not be used.
The longlong.h file is no longer directly used by the main calc source.
It only comes into play when compiling the longbits tool.
Added config("prompt") to change the default interactive prompt ("> ")
and config("more") to change the default continuation prompt (">> ").
Makefile builds align32.h with determines if 32 bit values must always
be aligned on 32 bit boundaries.
The CALCBINDINGS file is searched for along the CALCPATH. The Makefile
defines the default CALCBINDINGS is "bindings" (or "altbind") which
is now usualy found in ./lib or ${LIBDIR}.
Per Ernest Bowen <ernie@neumann.une.edu.au>, an optional third argument
was added sqrt() so that in sqrt(x,y,z), y and z have essentially the
same role as in appr(x,y,z) except that of course what is being
approximated is the sqrt of x. Another difference is that two more
bits of z are used in sqrt: bit 5 gives the option of exact results
when they exist (the value of y is then ignored) and bit 6 returns
the nonprincipal root rather than the principal value.
If commands are given on the command line, leading tabs are not
printed in output. Giving a command on the command line implies
that config("tab",0) was given.
Pipe processing is enabled by use of -p. For example:
echo "print 2^21701-1, 2^23209-1" | calc -p | fizzbin
In pipe mode, calc does not prompt, does not print leading tabs
and does not print the initial version header.
Calc will now form FILE objects for any open file descriptor > 2
and < MAXFILES. Calc assumes they are available for reading
and writing. For example:
$ echo "A line of text in the file on descriptor 5" > datafile
$ calc 5<datafile
C-style arbitrary precision calculator (version 2.10.1t3)
[Type "exit" to exit, or "help" for help.]
> files(5)
FILE 5 "descriptor[5]" (unknown_mode, pos 0)
> fgetline(files(5))
"A line of text in the file on descriptor 5"
The -m mode flag now controls calc's ability to open files
and execute programs. This mode flag is a single digit that
is processed in a similar way as the octal chmod values:
0 do not open any file, do not execute progs
1 do not open any file
2 do not open files for reading, do not execute progs
3 do not open files for reading
4 do not open files for writing, do not execute progs
5 do not open files for writing
6 do not execute any program
7 allow everything (default mode)
Thus if one wished to run calc from a privledged user, one might
want to use -m 0 in an effort to make calc more secure.
The -m flags for reading and writing apply on open.
Files already open are not effected. Thus if one wanted to use
the -m 0 in an effort to make calc more secure, but still be
able to read and write a specific file, one might do:
calc -m 0 3<a.file 4>b.file
NOTE: Files presented to calc in this way are opened in an unknown
mode. Calc will try to read or write them if directed.
The maximum command line size it MAXCMD (16384) bytes. Calc objects to
command lines that are longer.
The -u flag cause calc to unbuffer stdin and stdout.
Added more help files. Improved other help files.
Removed trailing blanks from files.
Removed or rewrite the formally gross and disgusting hacks for
dealing with various sizes and byte sex FILEPOS and off_t types.
Defined ilog2(x), ilog10(x), ilog(x,y) so that sign of x is ignored,
e.g. ilog2(x) = ilog2(abs(x)).
The sixth bit of rnd in config("round", rnd) and config("bround", rnd)
is used to specify rounding to the given number of significant
digits or bits rather than places, e.g. round(.00238, 2, 32)
returns .0023, round(.00238, 2, 56) returns .0024.
Following is the change from calc version 2.9.3t11 to 2.10.0t13:
The default ${LIBDIR}/bindings CALCBINDINGS uses ^D for editing.
The alternate CALCBINDINGS ${LIBDIR}/altbind uses ^D for EOF.
The Makefile CC flag system has been changed. The new CC flag system
includes:
CCMAIN are flags for ${CC} when compiling only files with main()
CCOPT are flags given to ${CC} for optimization
CCWARN are flags given to ${CC} for warning message control
CCMISC are misc flags given to ${CC}
CNOWARN are all flags given to ${CC} except ${CCWARN} flags
CFLAGS are all flags given to ${CC}
ICFLAGS are given to ${CC} for intermediate progs
LCFLAGS are CC-style flags for ${LINT}
LDFLAGS are flags given to ${CC} for linking .o files
ILDFLAGS are given to ${CC} for linking .o's for intermediate progs
CC is how the the C compiler is invoked
The syntax error:
print a[3][[4]]
used to send calc into a loop printing 'missing expression'. This
has been fixed.
Added config("maxerr") and config("maxerr",val) to control the
maximum number of errors before a computation is aborted.
Removed regress.cal test #952 and #953 in case calc's stdout or
stderr is re-directed to a non-file by some test suite.
Changed how <stdarg.h>, <varags.h> or simulate stdarg is determined.
Changed how vsprintf() vs sprintf() is determined. The args.h file
is created by Makefile to test which combination works. Setting
VARARG and/or HAVE_VSPRINTF in the Makefile will alter these tests
and direct a specific combination to be used. Removed have_vs.c,
std_arg.h and try_stdarg.c. Added have_stdvs.c and have_varvs.c.
Added 3rd optional arg to round(), bround(), appr() to specify the type of
rounding to be used.
Moved fnvhash.c to quickhash.c.
Fixed a bug in appr rounding mode when >= 16.
Added test2600.cal and test2700.cal. They are used by the regress.cal
to provide a more extensive test suite for some builtin numeric
functions.
Following is the change from calc version 2.9.3t9.2+ to 2.9.3t11:
Added many help files for builtin functions and some symbols.
More help files are needed, see help/todo.
Removed the calc malloc code. Calc now uses malloc and free to
manage storage since these implementations are often written to
work best for the local system. Removed CALC_MALLOC code and
Makefile symbol. Removed alloc.c.
Added getenv("name"), putenv("name=val") and putenv("name, "val")
builts for environment variable support thanks to "Dr." "D.J." Picton
<dave@aps2.ph.bham.ac.uk>.
Added system("shell command") builtin to execute shell commands,
thanks to "Dr." "D.J." Picton <dave@aps2.ph.bham.ac.uk>.
Added isatty(fd) builtin to determine if fd is attached to a tty
thanks to "Dr." "D.J." Picton <dave@aps2.ph.bham.ac.uk>.
Added cmdbuf() builtin to return the command line executed by calc's
command line args thanks to "Dr." "D.J." Picton <dave@aps2.ph.bham.ac.uk>.
Added strpos(str1,str2) builtin to determine the first position where
str2 is found in str1 thanks to "Dr." "D.J." Picton
<dave@aps2.ph.bham.ac.uk>.
Fixed bug that caused:
global a,b,c (newline with no semicolon)
read test.cal
the read command to not be recognized.
The show command looks at only the first 4 chars of the argument so
that:
show globals
show global
show glob
do the same thing.
Added show config to print the config values and parameters thanks
to Ernest Bowen <ernie@neumann.une.edu.au>.
Added show objtypes to print the defined objects thanks to Ernest Bowen
<ernie@neumann.une.edu.au>.
Added more builtin function help files.
Fixed the 3rd arg usage of the root builtin.
Expanded the regress.cal regression test suite.
Fixed -- and ++ with respect to objects and asignment (see the 2300
series in regress.cal).
Added isident(m) to determine if m is an identity matrix.
The append(), insert() and push() builtins can now append between
1 to 100 values to a list.
Added reverse() and join() builtins to reverse and join lists
thanks to Ernest Bowen <ernie@neumann.une.edu.au>.
Added sort() builtin to sort lists thanks to Ernest Bowen
<ernie@neumann.une.edu.au>.
Added head(), segment() and tail() builtins to return the head, middle or
tail of lists thanks to Ernest Bowen <ernie@neumann.une.edu.au>.
Added more and fixed some help files.
The builtin help file is generated by the help makefile. Thus it will
reflect the actual calc builtin list instead of the last time someone
tried to update it correctly. :-)
Fixed non-standard void pointer usage.
Fixed base() bug with regards to the default base.
Renamed MATH_PROTO() and HIST_PROTO() to PROTO(). Moved PROTO()
into prototype.h.
Fixed many function prototypes. Calc does not declare functions
as static in one place and extern in another. Where reasonable
function prototypes were added. Several arg mismatch problems
were fixed.
Added support for SGI MIPSpro C compiler.
Changes the order that args are declared to match the order
of the function. Some source tools got confused when:
arg order did not match as in:
void
funct(foo,bar)
int bar; /* this caused a problem */
char *foo; /* even though it should not! */
{
}
Following is the change from calc version 2.9.3t8 to 2.9.3t9.2+:
Use of the macro zisleone(z) has been clarified. The zisleone(z) macro
tests if z <= 1. The macro zisabsleone(z) tests of z is 1, 0 or -1.
Added zislezero(z) macro. Bugs are related to this confusion have
been fixed.
Added zge64b(z) macro to zmath.h.
Added the macro zgtmaxufull(z) to determine if z will fit into a FULL.
Added the macro zgtmaxlong(z) to determine if z will fit into a long.
Added the macro zgtmaxulong(z) to determine if z will fit into a unsigned
long.
Added the macro ztoulong(z) to convert an absolute value of a ZVALUE to
an unsigned long, or to convert the low order bits of a ZVALUE.
Added the macro ztolong(z) to convert an absolute value of a ZVALUE to
an long, or to convert the low order bits of a ZVALUE.
Some non-ANSI C compilers define __STDC__ to be 0, whereas all ANSI
C compiles define it as non-zero. Code that depends on ANSI C now
uses #if defined(__STDC__) && __STDC__ != 0.
Fixed ptest(a,b) bug where (a mod 2^32) < b. Previously ptest()
incorrectly returned 1 in certain cases.
The second ptest() argument, which is now optional, defaults to 1.
This ptest(x) is the same as ptest(x,1).
Added an optional 3rd argument to ptest(). The 3rd arg tells how many
tests to skip. Thus ptest(a,10) performs the same probabilistic
tests as ptest(a,3) and ptest(a,7,3).
The ptest() builtin by default will determine if a value is divisible
by a trivial prime. Thus, ptest(a,0) will only perform a quick trivial
factor check. If the test count is < 0, then this trivial factor check
is omitted. Thus ptest(a,10) performs the same amount of work as
ptest(a,3) and ptest(a,-7,3) and the same amount of work as
ptest(a,-3) and ptest(a,7,3).
Added nextcand(a[,b[,c]]) and prevcand(a[,b[,c]]) to search for the
next/previous value v > a (or v < a) that passes ptest(v[,b[,c]]).
The nextcand() and prevcand() builtins take the same arguments
as ptest().
Added nextprime(x) and and prevprime(x) return the next and
previous primes with respect to x respectively. As of this
release, x must be < 2^32. With one argument, they will return
an error if x is out of range. With two arguments, they will
not generate an error but instead will return y.
Fixed some memory leaks, particularly those related with pmod().
Fixed some of the array bounds reference problems in domult().
Added a hack-a-round fix for the uninitialized memory reference
problems in zsquare/dosquare.
The LIBRARY file has been updated to include a note about calling
zio_init() first. Also some additional useful macros have been noted.
The lfactor() function returns -1 when given a negative value.
It will not search for factors beyond 2^32 or 203280221 primes.
Performance of lfactor() has been improved.
Added factor(x,y) to look for the smallest factor < min(sqrt(x),y).
Added libcalcerr.a for a math_error() routine for the convince of
progs that make use of libcalc.a. This routine by default will
print an message on stderr and exit. It can also be made to
longjump instead. See the file LIBRARY under ERROR HANDING.
Added isprime() to test if a value is prime. As of this release,
isprime() is limited to values < 2^32. With one argument,
isprime(x) will return an error if x is out of range. With
two arguments, isprime(x,y) will not generate an error but
instead will return y.
Added pix(x) to return the number of primes <= x. As of this
release, x must be < 2^32. With one argument, pix(x) will
return an error if x is out of range. With two arguments,
pix(x,y) will not generate an error but instead will return y.
Fixed the way *.h files are formed. Each file guards against
multiple inclusion.
Fixed numeric I/O on 64 bit systems. Previously the print and
constant conversion routines assumed a base of 2^16.
Added support for 'long long' type. If the Makefile is setup
with 'LONGLONG_BITS=', then it will attempt to detect support
for the 'long long' type. If the Makefile is setup with
'LONGLONG_BITS=64', then a 64 bit 'long long' is assumed.
Currently, only 64 bit 'long long' type is supported.
Use of 'long long' allows one to double the size of the
internal base, making a number of computations much faster.
If the Makefile is setup with 'LONGLONG_BITS=0', then the
'long long' type will not be used, even if the compiler
supports it.
Fixed avg() so that it will correctly handle matrix arguments.
Fixed btrunc() limit.
The ord("string") function can now take a string of multiple
characters. However it still will only operate on the first
character.
Renamed stdarg.h to std_arg.h and endian.h endian_calc.h to
avoid name conflicts with /usr/include on some systems that
have make utilities that are too smart for their own good.
Added additive 55 shuffle generator functions rand(), randbits()
and its seed function srand(). Calling rand(a,b) produces a
random value over the open half interval [a,b). With one arg,
rand(a) is equivalent to rand(0,a). Calling rand() produces
64 random bits and is equivalent to rand(0,2^64).
Calling randbit(x>0) produces x random bits. Calling randbit(skip<0)
skips -skip bits and returns -skip.
The srand() function will return the current state. The call
srand(0) returns the initial state. Calling srand(x), where
x > 0 will seed the generator to a different state. Calling
srand(mat55) (mat55 is a matrix of integers at least 55 elements long)
will seed the internal table with the matrix elements mod 2^64.
Finally calling srand(state) where state is a generator state
also sets/seeds the generator.
The cryrand.cal library has been modified to use the builtin
rand() number generator. The output of this generator is
different from pervious versions of this generator because
the rand() builtin does not match the additive 55 / shuffle
generators from the old cryrand.cal file.
Added Makfile support for building BSD/386 releases.
The cmp() builtin can now compare complex values.
Added the errno() builtin to return the meaning of errno numbers.
Added fputc(), fputs(), fgets(), ftell(), fseek() builtins.
Added fsize() builtin to determine the size of an open file.
Supports systems where file positions and offsets are longer than 2^32
byte, longer than long and/or are not a simple type.
When a file file is printed, the file number is also printed:
FILE 3 "/etc/motd" (reading, pos 127)
Added matsum() to sum all numeric values in a matrix.
The following code now works, thanks to a fix by ernie@neumann.une.edu.au
(Ernest Bowen):
mat A[3] = {1, 2, 3};
A[0] = A;
print A[0];
Also thanks to ernie, calc can process compound expressions
such as 1 ? 2 ? 3 : 4 : 5.
Also^2 thanks to ernie, the = operator is more general:
(a = 3) = 4 (same as a = 3; a = 4)
(a += 3) *= 4 (same as a += 3; a *= 4)
matfill(B = A, 4) (same as B = A; matfill(B, 4);)
Also^3 thanks to ernie, the ++ and -- operators are more general.
a = 3
++(b = a) (a == 3, b == 4)
++++a (a == 5)
(++a)++ == 6 (a == 7)
(++a) *= b (a == 32, b == 4)
Fixed a bug related to calling epsilon(variable) thanks to ernie.
Removed trailing whitespace from source and help files.
Some compilers do not support the const type. The file have_const.h,
which is built from have_const.c will determine if we can or should
use const. See the Makefile for details.
Some systems do not have uid_t. The file have_uid_t.h, which is
built from have_uid_t.c will determine if we can or should depend
on uid_t being typefed by the system include files. See the Makefile
for details.
Some systems do not have memcpy(), memset() and strchr(). The
file have_newstr.h, which is built from have_newstr.c will
determine if we can or should depend libc providing these
functions. See the Makefile for details.
The Makefile symbol DONT_HAVE_VSPRINTF is now called HAVE_VSPRINTF.
The file have_vs.h, which is built from have_vs.c will determine if
we can or should depend libc providing vsprintf(). See the Makefile
for details.
Removed UID_T and OLD_BSD symbols from the Makefile.
A make all of the upper level Makefile will cause the all rule
of the lib and help subdirs to be made as well.
Fixed bug where reserved keyword used as symbol name caused a core dump.
Following is the change from calc version 2.9.3t7 to 2.9.3t8:
WARNING: This patch is an beta test patch by chongo@toad.com
(Landon Curt Noll).
The 'show' command by itself will issue an error message
that will remind one of the possible show arguments.
(thanks to Ha S. Lam <hl@kuhep4.phsx.ukans.edu>)
Fixed an ANSI-C related problem with the use of stringindex()
by the show command. ANSI-C interprets "bar\0foo..." as if
it were "bar\017oo...".
Added a cd command to change the current directory.
(thanks to Ha S. Lam <hl@kuhep4.phsx.ukans.edu>)
Calc will not output the initial version string, startup
message and command prompt if stdin is not a tty. Thus
the shell command:
echo "fact(100)" | calc
only prints the result. (thanks to Ha S. Lam <hl@kuhep4.phsx.ukans.edu>)
The zmath.h macro zisbig() macro was replaced with zlt16b(),
zge24b(), zge31b(), zge32b() and zgtmaxfull() which are
independent of word size.
The 'too large' limit for factorial operations (e.g., fact, pfact,
lcmfact, perm and comb) is now 2^24. Previously it depended on the
word size which in the case of 64 bit systems was way too large.
The 'too large' limit for exponentiation, bit position (isset,
digit, ), matrix operations (size, index, creation), scaling,
shifting, rounding and computing a Fibonacci number is 2^31.
For example, one cannot raise a number by a power >= 2^31.
One cannot test for a bit position >= 2^31. One cannot round
a value to 2^31 decimal digit places. One cannot compute
the Fibonacci number F(2^31).
Andy Fingerhut <jaf@dworkin.wustl.edu> (thanks!) supplied a fix to
a subtle bug in the code generation routines. The basic problem was
that addop() is sometimes used to add a label to the opcode table
of a function. The addop() function did some optimization tricks,
and if one of these labels happens to be an opcode that triggers
optimization, incorrect opcodes were generated.
Added utoz(), ztou() to zmath.c, and utoq(), qtou() to qmath.c
in preparation for 2.9.3t9 mods.
Following is the change from calc version 2.9.2 to 2.9.3t7:
WARNING: This patch is an beta test patch by chongo@toad.com
(Landon Curt Noll).
Calc can now compile on OSF/1, SGI and IBM RS6000 systems.
A number of systems that have both <varargs.h> and <stdarg.h> do
not correctly implement both types. On some System V, MIPS and DEC
systems, vsprintf() and <stdarg.h> do not mix. While calc will
pass the regression test, use of undefined variables will cause
problems. The Makefile has been modified to look for this problem
and work around it.
Added randmprime.cal which find a prime of the form h*2^n-1 >= 2^x
for some given x. The initial search points for 'h' and 'n'
are selected by a cryptographic pseudo-random generator.
The library script nextprim.cal is now a link to nextprime.cal.
The lib/Makefile will take care of this link and install.
The show command now takes singular forms. For example, the
command 'show builtin' does the same as 'show builtins'. This
allows show to match the historic singular names used in
the help system.
Synced 'show builtin' output with 'help builtin' output.
Fixed the ilog2() builtin. Previously ilog2(2^-20) returned
-21 instead of -20.
The internal function qprecision() has been fixed. The changes
ensure that for any e for which 0 < e <= 1:
1/4 < sup(abs(appr(x,e) - x))/e <= 1/2.
Here 'sup' denotes the supremum or least upper bound over values of x.
Previousld calc did: 1/4 <= sup(abs(appr(x,e) - x))/e < 1.
Certain 64 bit processors such as the Alpha are now supported.
Added -once to the READ command. The command:
read -once filename
like the regular READ expect that it will ignore filename if
is has been previously read.
Improved the makefile. One now can select the compiler type. The
make dependency lines are now simple foo.o: bar.h lines. While
this makes for a longer list, it is easier to maintain and will
make future Makefile patches smaller. Added special options for
gcc version 1 & 2, and for cc on RS6000 systems.
Calc compiles cleanly under the watchful eye of gcc version 2.4.5
with the exception of warnings about 'aggregate has a partly
bracketed initializer'. (gcc v2 should allow you to disable
this type of warning with using -Wall)
Fixed a longjmp bug that clobbered a local variable in main().
Fixed a number of cases where local variables or malloced storage was
being used before being set.
Fixed a number of fence post errors resulting in reads or writes
just outside of malloced storage.
A certain parallel processor optimizer would give up on
code in cases where math_error() was called. The obscure
work-a-rounds involved initializing or making static, certain
local variables.
The cryrand.cal library has been improved. Due to the way
the initial quadratic residues are selected, the random numbers
produced differ from previous versions.
The printing of a leading '~' on rounded values is now a config
option. By default, tilde is still printed. See help/config for
details.
The builtin function base() may be used to set the output mode or
base. Calling base(16) is a convenient shorthand for typing
config("mode","hex"). See help/builtin.
The printing of a leading tab is now a config option. This does not
alter the format of functions such as print or printf. By default,
a tab is printed. See help/config for details.
The value atan2(0,0) now returns 0 value in conformance with
the 4.3BSD ANSI/IEEE 754-1985 math library.
For all values of x, x^0 yields 1. The major change here is
that 0^0 yields 1 instead of an error.
Fixed gcd() bug that caused gcd(2,3,1/2) to ignore the 1/2 arg.
Fixed ltol() rounding so that exact results are returned, similar
to the way sqrt() and hypot() round, when they exist.
Fixed a bug involving ilog2().
Fixed quomod(a,b,c,d) to give correct value for d when a is between
0 and -b.
Fixed hmean() to perform the necessary multiplication by the number of
arguments.
The file help/full is now being built.
The man page is not installed by default. One may install either
the man page source or the cat (formatted man) page. See the
Makefile for details.
Added a quit binding. The file lib/bindings2 shows how this new
binding may be used.
One can now do a 'make check' to run the calc regression test
within in the source tree.
The regression test code is now more extensive.
Updated the help/todo list. A BUGS file was added. Volunteers are
welcome to send in patches!
Following is the change from calc version 2.9.1 to 2.9.2:
Fixed floor() for values -1 < x < 0.
Fixed ceil() for values -1 < x < 0.
Fixed frac() for values < 0 so that int(x) + frac(x) == x.
Fixed wild fetch bug in zdiv, zquo and zmod code.
Fixed bug which caused regression test #719 to fail on some machines.
Added more regression test code.
Following is the change from calc version 2.9.0 to 2.9.1:
A major bug was fixed in subtracting two numbers when the first
number was zero. The problem caused wrong answers and core dumps.
Following is a list of visible changes to calc from version 1.27.0 to 2.9.0:
Full prototypes have been provided for all C functions, and are used
if calc is compiled with an ANSI compiler.
Newly defined variables are now initialized to the value of zero instead
of to the null value. The elements of new objects are also initialized
to the value of zero instead of null.
The gcd, lcm, and ismult functions now work for fractional values.
A major bug in the // division for fractions with a negative divisor
was fixed.
A major bug in the calculation of ln for small values was fixed.
A major bug in the calculation of the ln and power functions for complex
numbers was fixed.
A major lack of precision for sin and tan for small values was fixed.
A major lack of precision for complex square roots was fixed.
The "static" keyword has been implemented for variables. So permanent
variables can be defined to have either file scope or function scope.
Initialization of variables during their declaration are now allowed.
This is most convenient for the initialization of static variables.
The matrix definition statement can now be used within a declaration
statement, to immediately define a variable as a matrix.
Initializations of the elements of matrices are now allowed. One-
dimensional matrices may have implicit bounds when initialization is
used.
The obj definition statement can now be used within a declaration
statement, to immediately define a variable as an object.
Object definitions can be repeated as long as they are exactly the same
as the previous definition. This allows the rereading of files which
happen to define objects.
The integer, rational, and complex routines have been made into a
'libcalc.a' library so that they can be used in other programs besides
the calculator. The "math.h" include file has been split into three
include files: "zmath.h", "qmath.h", and "cmath.h".
Following is a list of visible changes to calc from version 1.26.4 to 1.27.0:
Added an assoc function to return a new type of value called an
association. Such values are indexed by one or more arbitrary values.
They are stored in a hash table for quick access.
Added a hash() function which accepts one or more values and returns
a quickly calculated small non-negative hash value for those values.
Following is a list of visible changes to calc from version 1.26.2 to 1.26.4:
Misc fixes to Makefiles.
Misc lint fixes.
Misc portability fixes.
Misc typo and working fixes to comments, help files and the man page.
Following is a list of visible changes to calc from version 1.24.7 to 1.26.2:
There is a new emacs-like command line editing and edit history
feature. The old history mechanism has been removed. The key
bindings for the new editing commands are slightly configurable
since they are read in from an initialization file. This file is
usually called /usr/lib/calc/bindings, but can be changed by the
CALCBINDINGS environment variable. All editing code is
self-contained in the new files hist.c and hist.h, which can be
easily extracted and used in other programs.
Two new library files have been added: chrem.cal and cryrand.cal.
The first of these solves the chinese remainder problem for a set
of modulos and remainders. The second of these implements several
very good random number generators for large numbers.
A small bug which allowed division by zero was fixed.
A major bug in the mattrans function was fixed.
A major bug in the acos function for negative arguments was fixed.
A major bug in the strprintf function when objects were being printed
was fixed.
A small bug in the library file regress.cal was fixed.