Files
calc/zmath.h
Lucas Heitzmann Gabrielli 41b11ab785 Add engineering output mode
Similar to scientific mode, engineering mode also displays numbers in
base 10 exponential notation, with the difference that exponents are
always multiples of 3, to facilitate the interpretation in terms of
SI prefixes.

The mode is activated in config thru "engineering" or "eng. For base
and base2, it uses the special value 1000.
2021-06-07 14:11:07 -03:00

690 lines
23 KiB
C

/*
* zmath - declarations for extended precision integer arithmetic
*
* Copyright (C) 1999-2007,2014,2021 David I. Bell
*
* Calc is open software; you can redistribute it and/or modify it under
* the terms of the version 2.1 of the GNU Lesser General Public License
* as published by the Free Software Foundation.
*
* Calc is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General
* Public License for more details.
*
* A copy of version 2.1 of the GNU Lesser General Public License is
* distributed with calc under the filename COPYING-LGPL. You should have
* received a copy with calc; if not, write to Free Software Foundation, Inc.
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Under source code control: 1993/07/30 19:42:48
* File existed as early as: 1993
*
* Share and enjoy! :-) http://www.isthe.com/chongo/tech/comp/calc/
*/
/*
* Data structure declarations for extended precision integer arithmetic.
* The assumption made is that a long is 32 bits and shorts are 16 bits,
* and longs must be addressable on word boundaries.
*/
#if !defined(INCLUDE_ZMATH_H)
#define INCLUDE_ZMATH_H
#if defined(CALC_SRC) /* if we are building from the calc source tree */
# include "decl.h"
# include "alloc.h"
# include "endian_calc.h"
# include "longbits.h"
# include "byteswap.h"
# include "have_stdlib.h"
#else
# include <calc/decl.h>
# include <calc/alloc.h>
# include <calc/endian_calc.h>
# include <calc/longbits.h>
# include <calc/byteswap.h>
# include <calc/have_stdlib.h>
#endif
#ifdef HAVE_STDLIB_H
# include <stdlib.h>
#endif
#ifndef ALLOCTEST
# define freeh(p) { if (((void *)p != (void *)_zeroval_) && \
((void *)p != (void *)_oneval_)) free((void *)p); }
#endif
#if !defined(TRUE)
#define TRUE ((BOOL) 1) /* booleans */
#endif
#if !defined(FALSE)
#define FALSE ((BOOL) 0)
#endif
/*
* NOTE: FULL must be twice the storage size of a HALF
* HALF must be BASEB bits long
*/
#if defined(HAVE_B64)
#define BASEB 32 /* use base 2^32 */
typedef USB32 HALF; /* unit of number storage */
typedef SB32 SHALF; /* signed HALF */
typedef USB64 FULL; /* double unit of number storage */
typedef SB64 SFULL; /* signed FULL */
#define SWAP_HALF_IN_B64(dest, src) SWAP_B32_IN_B64(dest, src)
#define SWAP_HALF_IN_B32(dest, src) (*(dest) = *(src))
#define SWAP_HALF_IN_FULL(dest, src) SWAP_B32_IN_B64(dest, src)
#define SWAP_HALF_IN_HASH(dest, src) SWAP_B16_IN_HASH(dest, src)
#define SWAP_HALF_IN_FLAG(dest, src) SWAP_B16_IN_FLAG(dest, src)
#define SWAP_HALF_IN_BOOL(dest, src) SWAP_B16_IN_BOOL(dest, src)
#define SWAP_HALF_IN_LEN(dest, src) SWAP_B16_IN_LEN(dest, src)
#define SWAP_B32_IN_FULL(dest, src) SWAP_B32_IN_B64(dest, src)
#define SWAP_B16_IN_FULL(dest, src) SWAP_B16_IN_B64(dest, src)
#define SWAP_B16_IN_HALF(dest, src) SWAP_B16_IN_B32(dest, src)
#define SWAP_B8_IN_FULL(dest, src) SWAP_B8_IN_B64(dest, src)
#define SWAP_B8_IN_HALF(dest, src) SWAP_B8_IN_B32(dest, src)
#else
#define BASEB 16 /* use base 2^16 */
typedef USB16 HALF; /* unit of number storage */
typedef SB16 SHALF; /* signed HALF */
typedef USB32 FULL; /* double unit of number storage */
typedef SB32 SFULL; /* signed FULL */
#define SWAP_HALF_IN_B64(dest, src) SWAP_B16_IN_B64(dest, src)
#define SWAP_HALF_IN_B32(dest, src) SWAP_B16_IN_B32(dest, src)
#define SWAP_HALF_IN_FULL(dest, src) SWAP_B16_IN_B32(dest, src)
#define SWAP_HALF_IN_HASH(dest, src) SWAP_B16_IN_HASH(dest, src)
#define SWAP_HALF_IN_FLAG(dest, src) SWAP_B16_IN_FLAG(dest, src)
#define SWAP_HALF_IN_BOOL(dest, src) SWAP_B16_IN_BOOL(dest, src)
#define SWAP_HALF_IN_LEN(dest, src) SWAP_B16_IN_LEN(dest, src)
#define SWAP_B32_IN_FULL(dest, src) (*(dest) = *(src))
#define SWAP_B16_IN_FULL(dest, src) SWAP_B16_IN_B32(dest, src)
#define SWAP_B16_IN_HALF(dest, src) (*(dest) = *(src))
#define SWAP_B8_IN_FULL(dest, src) SWAP_B8_IN_B32(dest, src)
#define SWAP_B8_IN_HALF(dest, src) SWAP_B8_IN_B16(dest, src)
#endif
#define BASE ((FULL)1<<BASEB) /* base for calculations */
#define BASE1 (BASE - (FULL)1) /* one less than base */
#define BASEDIG ((BASEB/16)*5) /* number of digits in base */
#define FULL_BITS (2*BASEB) /* bits in a FULL */
#define HALF_LEN (sizeof(HALF)) /* length of HALF in bites */
#define FULL_LEN (sizeof(FULL)) /* length of FULL in bites */
/*
* ROUNDUP(value, mult) - round up value to the next multiple of mult
*
* NOTE: value and mult musty be of an integer type.
*
* NOTE: mult must != 0
*
* NOTE: If value is a multiple of mult, then ROUNDUP(value, mult)
* will just return value.
*/
#define ROUNDUP(value, mult) ( ( ((value)+(mult)-1) / (mult) ) * (mult) )
#define TOPHALF ((FULL)1 << (BASEB-1)) /* highest bit in a HALF */
#define MAXHALF (TOPHALF - (FULL)1) /* largest SHALF value */
#define TOPFULL ((FULL)1 << (FULL_BITS-1)) /* highest bit in FULL */
#define MAXFULL (TOPFULL - (FULL)1) /* largest SFULL value */
#define MINSFULL ((SFULL)(TOPFULL)) /* most negative SFULL value */
#define MAXUFULL (MAXFULL | TOPFULL) /* largest FULL value */
#define TOPLONG ((unsigned long)1 << (LONG_BITS-1)) /* top long bit */
#define MAXLONG ((long) (TOPLONG - (unsigned long)1)) /* largest long val */
#define MAXULONG (MAXLONG | TOPLONG) /* largest unsigned long val */
/*
* other misc typedefs
*/
typedef USB32 QCKHASH; /* 32 bit hash value */
#if defined(HAVE_B64) && LONG_BITS == 32
typedef HALF PRINT; /* cast for zio printing functions */
#define SWAP_B16_IN_PRINT(dest, src) SWAP_B16_IN_HALF(dest, src)
#define SWAP_B8_IN_PRINT(dest, src) SWAP_B8_IN_HALF(dest, src)
#else
typedef FULL PRINT; /* cast for zio printing functions */
#define SWAP_B16_IN_PRINT(dest, src) SWAP_B16_IN_FULL(dest, src)
#define SWAP_B8_IN_PRINT(dest, src) SWAP_B8_IN_FULL(dest, src)
#endif
typedef SB32 FLAG; /* small value (e.g. comparison) */
typedef SB32 BOOL; /* TRUE or FALSE value */
typedef SB32 LEN; /* unit of length storage */
#define SWAP_B32_IN_HASH(dest, src) (*(dest) = *(src))
#define SWAP_B16_IN_HASH(dest, src) SWAP_B16_IN_B32(dest, src)
#define SWAP_B8_IN_HASH(dest, src) SWAP_B8_IN_B32(dest, src)
#define SWAP_B32_IN_FLAG(dest, src) (*(dest) = *(src))
#define SWAP_B16_IN_FLAG(dest, src) SWAP_B16_IN_B32(dest, src)
#define SWAP_B8_IN_FLAG(dest, src) SWAP_B8_IN_B32(dest, src)
#define SWAP_B32_IN_BOOL(dest, src) (*(dest) = *(src))
#define SWAP_B16_IN_BOOL(dest, src) SWAP_B16_IN_B32(dest, src)
#define SWAP_B8_IN_BOOL(dest, src) SWAP_B8_IN_B32(dest, src)
#define SWAP_B32_IN_LEN(dest, src) (*(dest) = *(src))
#define SWAP_B16_IN_LEN(dest, src) SWAP_B16_IN_B32(dest, src)
#define SWAP_B8_IN_LEN(dest, src) SWAP_B8_IN_B32(dest, src)
#if LONG_BITS == 64
#define SWAP_HALF_IN_LONG(dest, src) SWAP_HALF_IN_B64(dest, src)
#else /* LONG_BITS == 64 */
#define SWAP_HALF_IN_LONG(dest, src) SWAP_HALF_IN_B32(dest, src)
#endif /* LONG_BITS == 64 */
/*
* Quickhash basis
*
* We start the hash at a non-zero value at the beginning so that
* hashing blocks of data with all 0 bits do not map onto the same
* 0 hash value. The virgin value that we use below is the 32-bit
* FNV-0 hash value that we would get from following 32 ASCII characters:
*
* chongo <Landon Curt Noll> /\../\
*
* Note that the \'s above are not back-slashing escape characters.
* They are literal ASCII backslash 0x5c characters.
*
* The effect of this virgin initial value is the same as starting
* with 0 and pre-pending those 32 characters onto the data being
* hashed.
*
* Yes, even with this non-zero virgin value there is a set of data
* that will result in a zero hash value. Worse, appending any
* about of zero bytes will continue to produce a zero hash value.
* But that would happen with any initial value so long as the
* hash of the initial was the `inverse' of the virgin prefix string.
*
* But then again for any hash function, there exists sets of data
* which that the hash of every member is the same value. That is
* life with many to few mapping functions. All we do here is to
* prevent sets whose members consist of 0 or more bytes of 0's from
* being such an awkward set.
*
* And yes, someone can figure out what the magic 'inverse' of the
* 32 ASCII character are ... but this hash function is NOT intended
* to be a cryptographic hash function, just a fast and reasonably
* good hash function.
*/
#define QUICKHASH_BASIS ((QCKHASH)(0x811c9dc5))
/*
* The largest power of 10 we will compute for our decimal conversion
* internal constants is: 10^(2^TEN_MAX).
*/
#define TEN_MAX 31 /* 10^2^31 requires about 1.66 * 2^29 bytes */
/*
* LEN storage size must be <= FULL storage size
*/
#define MAXLEN ((LEN) 0x7fffffff >> 3) /* longest value allowed */
#define MAXREDC 256 /* number of entries in REDC cache */
#define SQ_ALG2 28 /* size for alternative squaring */
#define MUL_ALG2 28 /* size for alternative multiply */
#define POW_ALG2 20 /* size for using REDC for powers */
/* old REDC_ALG2 was 5/4 of POW_ALG2, so we will keep the same ratio */
#define REDC_ALG2 25 /* size for using alternative REDC */
typedef union {
FULL ivalue;
struct {
HALF Svalue1;
HALF Svalue2;
} sis;
} SIUNION;
#if !defined(LITTLE_ENDIAN)
#define LITTLE_ENDIAN 1234 /* Least Significant Byte first */
#endif
#if !defined(BIG_ENDIAN)
#define BIG_ENDIAN 4321 /* Most Significant Byte first */
#endif
/* PDP_ENDIAN - LSB in word, MSW in long is not supported */
#if CALC_BYTE_ORDER == LITTLE_ENDIAN
# define silow sis.Svalue1 /* low order half of full value */
# define sihigh sis.Svalue2 /* high order half of full value */
#else
# if CALC_BYTE_ORDER == BIG_ENDIAN
# define silow sis.Svalue2 /* low order half of full value */
# define sihigh sis.Svalue1 /* high order half of full value */
# else
/\oo/\ CALC_BYTE_ORDER must be BIG_ENDIAN or LITTLE_ENDIAN /\oo/\ !!!
# endif
#endif
typedef struct {
HALF *v; /* pointer to array of values */
LEN len; /* number of values in array */
BOOL sign; /* sign, nonzero is negative */
} ZVALUE;
/*
* Function prototypes for integer math routines.
*/
E_FUNC HALF * alloc(LEN len);
#ifdef ALLOCTEST
E_FUNC void freeh(HALF *);
#endif
/*
* Input, output, and conversion routines.
*/
E_FUNC void zcopy(ZVALUE z, ZVALUE *res);
E_FUNC void itoz(long i, ZVALUE *res);
E_FUNC void utoz(FULL i, ZVALUE *res);
E_FUNC void stoz(SFULL i, ZVALUE *res);
E_FUNC void str2z(char *s, ZVALUE *res);
E_FUNC long ztoi(ZVALUE z);
E_FUNC FULL ztou(ZVALUE z);
E_FUNC SFULL ztos(ZVALUE z);
E_FUNC void zprintval(ZVALUE z, long decimals, long width);
E_FUNC void zprintx(ZVALUE z, long width);
E_FUNC void zprintb(ZVALUE z, long width);
E_FUNC void zprinto(ZVALUE z, long width);
E_FUNC void fitzprint(ZVALUE, long, long);
/*
* Basic numeric routines.
*/
E_FUNC void zmuli(ZVALUE z, long n, ZVALUE *res);
E_FUNC long zdivi(ZVALUE z, long n, ZVALUE *res);
E_FUNC long zmodi(ZVALUE z, long n);
E_FUNC void zadd(ZVALUE z1, ZVALUE z2, ZVALUE *res);
E_FUNC void zsub(ZVALUE z1, ZVALUE z2, ZVALUE *res);
E_FUNC void zmul(ZVALUE z1, ZVALUE z2, ZVALUE *res);
E_FUNC long zdiv(ZVALUE z1, ZVALUE z2, ZVALUE *res, ZVALUE *rem, long R);
E_FUNC long zquo(ZVALUE z1, ZVALUE z2, ZVALUE *res, long R);
E_FUNC long zmod(ZVALUE z1, ZVALUE z2, ZVALUE *rem, long R);
E_FUNC void zequo(ZVALUE z1, ZVALUE z2, ZVALUE *res);
E_FUNC BOOL zdivides(ZVALUE z1, ZVALUE z2);
E_FUNC void zor(ZVALUE z1, ZVALUE z2, ZVALUE *res);
E_FUNC void zand(ZVALUE z1, ZVALUE z2, ZVALUE *res);
E_FUNC void zxor(ZVALUE z1, ZVALUE z2, ZVALUE *res);
E_FUNC void zandnot(ZVALUE z1, ZVALUE z2, ZVALUE *res);
E_FUNC long zpopcnt(ZVALUE z, int bitval);
E_FUNC void zshift(ZVALUE z, long n, ZVALUE *res);
E_FUNC void zsquare(ZVALUE z, ZVALUE *res);
E_FUNC long zlowbit(ZVALUE z);
E_FUNC LEN zhighbit(ZVALUE z);
E_FUNC void zbitvalue(long n, ZVALUE *res);
E_FUNC BOOL zisset(ZVALUE z, long n);
E_FUNC BOOL zisonebit(ZVALUE z);
E_FUNC BOOL zisallbits(ZVALUE z);
E_FUNC FLAG ztest(ZVALUE z);
E_FUNC FLAG zrel(ZVALUE z1, ZVALUE z2);
E_FUNC FLAG zabsrel(ZVALUE z1, ZVALUE z2);
E_FUNC BOOL zcmp(ZVALUE z1, ZVALUE z2);
/*
* More complicated numeric functions.
*/
E_FUNC FULL uugcd(FULL i1, FULL i2);
E_FUNC long iigcd(long i1, long i2);
E_FUNC void zgcd(ZVALUE z1, ZVALUE z2, ZVALUE *res);
E_FUNC void zlcm(ZVALUE z1, ZVALUE z2, ZVALUE *res);
E_FUNC void zreduce(ZVALUE z1, ZVALUE z2, ZVALUE *z1res, ZVALUE *z2res);
E_FUNC void zfact(ZVALUE z, ZVALUE *dest);
E_FUNC void zperm(ZVALUE z1, ZVALUE z2, ZVALUE *res);
E_FUNC int zcomb(ZVALUE z1, ZVALUE z2, ZVALUE *res);
E_FUNC FLAG zjacobi(ZVALUE z1, ZVALUE z2);
E_FUNC void zfib(ZVALUE z, ZVALUE *res);
E_FUNC void zpowi(ZVALUE z1, ZVALUE z2, ZVALUE *res);
E_FUNC void ztenpow(long power, ZVALUE *res);
E_FUNC void zpowermod(ZVALUE z1, ZVALUE z2, ZVALUE z3, ZVALUE *res);
E_FUNC BOOL zmodinv(ZVALUE z1, ZVALUE z2, ZVALUE *res);
E_FUNC BOOL zrelprime(ZVALUE z1, ZVALUE z2);
E_FUNC long zlog(ZVALUE z1, ZVALUE z2);
E_FUNC long zlog10(ZVALUE z, BOOL *was_10_power);
E_FUNC long zdivcount(ZVALUE z1, ZVALUE z2);
E_FUNC long zfacrem(ZVALUE z1, ZVALUE z2, ZVALUE *rem);
E_FUNC long zgcdrem(ZVALUE z1, ZVALUE z2, ZVALUE *res);
E_FUNC long zdigits(ZVALUE z1);
E_FUNC long zdigit(ZVALUE z1, long n);
E_FUNC FLAG zsqrt(ZVALUE z1, ZVALUE *dest, long R);
E_FUNC void zroot(ZVALUE z1, ZVALUE z2, ZVALUE *dest);
E_FUNC BOOL zissquare(ZVALUE z);
E_FUNC void zhnrmod(ZVALUE v, ZVALUE h, ZVALUE zn, ZVALUE zr, ZVALUE *res);
/*
* Prime related functions.
*/
E_FUNC FLAG zisprime(ZVALUE z);
E_FUNC FULL znprime(ZVALUE z);
E_FUNC FULL next_prime(FULL v);
E_FUNC FULL zpprime(ZVALUE z);
E_FUNC void zpfact(ZVALUE z, ZVALUE *dest);
E_FUNC BOOL zprimetest(ZVALUE z, long count, ZVALUE skip);
E_FUNC BOOL zredcprimetest(ZVALUE z, long count, ZVALUE skip);
E_FUNC BOOL znextcand(ZVALUE z1, long count, ZVALUE skip, ZVALUE res,
ZVALUE mod, ZVALUE *cand);
E_FUNC BOOL zprevcand(ZVALUE z1, long count, ZVALUE skip, ZVALUE res,
ZVALUE mod, ZVALUE *cand);
E_FUNC FULL zlowfactor(ZVALUE z, long count);
E_FUNC FLAG zfactor(ZVALUE z1, ZVALUE z2, ZVALUE *res);
E_FUNC long zpix(ZVALUE z1);
E_FUNC void zlcmfact(ZVALUE z, ZVALUE *dest);
/*
* Misc misc functions. :-)
*/
E_FUNC void zsquaremod(ZVALUE z1, ZVALUE z2, ZVALUE *res);
E_FUNC void zminmod(ZVALUE z1, ZVALUE z2, ZVALUE *res);
E_FUNC BOOL zcmpmod(ZVALUE z1, ZVALUE z2, ZVALUE z3);
E_FUNC void zio_init(void);
/*
* These functions are for internal use only.
*/
E_FUNC void ztrim(ZVALUE *z);
E_FUNC void zshiftr(ZVALUE z, long n);
E_FUNC void zshiftl(ZVALUE z, long n);
E_FUNC HALF *zalloctemp(LEN len);
/*
* Modulo arithmetic definitions.
* Structure holding state of REDC initialization.
* Multiple instances of this structure can be used allowing
* calculations with more than one modulus at the same time.
* Len of zero means the structure is not initialized.
*/
typedef struct {
LEN len; /* number of words in binary modulus */
ZVALUE mod; /* modulus REDC is computing with */
ZVALUE inv; /* inverse of modulus in binary modulus */
ZVALUE one; /* REDC format for the number 1 */
} REDC;
E_FUNC REDC *zredcalloc(ZVALUE z1);
E_FUNC void zredcfree(REDC *rp);
E_FUNC void zredcencode(REDC *rp, ZVALUE z1, ZVALUE *res);
E_FUNC void zredcdecode(REDC *rp, ZVALUE z1, ZVALUE *res);
E_FUNC void zredcmul(REDC *rp, ZVALUE z1, ZVALUE z2, ZVALUE *res);
E_FUNC void zredcsquare(REDC *rp, ZVALUE z1, ZVALUE *res);
E_FUNC void zredcpower(REDC *rp, ZVALUE z1, ZVALUE z2, ZVALUE *res);
/*
* macro expansions to speed this thing up
*/
#define ziseven(z) (!(*(z).v & 0x1))
#define zisodd(z) (*(z).v & 0x1)
#define ziszero(z) ((*(z).v == 0) && ((z).len == 1))
#define zisneg(z) ((z).sign)
#define zispos(z) (((z).sign == 0) && (*(z).v || ((z).len > 1)))
#define zisunit(z) ((*(z).v == 1) && ((z).len == 1))
#define zisone(z) ((*(z).v == 1) && ((z).len == 1) && !(z).sign)
#define zisnegone(z) ((*(z).v == 1) && ((z).len == 1) && (z).sign)
#define zltnegone(z) (zisneg(z) && (((z).len > 1) || *(z).v > 1))
#define zistwo(z) ((*(z).v == 2) && ((z).len == 1) && !(z).sign)
#define zisabstwo(z) ((*(z).v == 2) && ((z).len == 1))
#define zisabsleone(z) ((*(z).v <= 1) && ((z).len == 1))
#define zislezero(z) (zisneg(z) || ziszero(z))
#define zisleone(z) (zisneg(z) || zisabsleone(z))
#define zistiny(z) ((z).len == 1)
/*
* zgtmaxfull(z) TRUE if abs(z) > MAXFULL
*/
#define zgtmaxfull(z) (((z).len > 2) || (((z).len == 2) && \
(((SHALF)(z).v[1]) < 0)))
/*
* zgtmaxufull(z) TRUE if abs(z) will not fit into a FULL (> MAXUFULL)
*/
#define zgtmaxufull(z) ((z).len > 2)
/*
* zgtmaxulong(z) TRUE if abs(z) > MAXULONG
*/
#if BASEB >= LONG_BITS
#define zgtmaxulong(z) ((z).len > 1)
#else
#define zgtmaxulong(z) zgtmaxufull(z)
#endif
/*
* zgtmaxlong(z) TRUE if abs(z) > MAXLONG
*/
#if BASEB >= LONG_BITS
#define zgtmaxlong(z) (((z).len > 1) || (((z).len == 1) && \
(((SHALF)(z).v[0]) < 0)))
#else
#define zgtmaxlong(z) zgtmaxfull(z)
#endif
/*
* Some algorithms testing for values of a certain length. Macros such as
* zistiny() do this well. In other cases algorithms require tests for values
* in comparison to a given power of 2. In the later case, zistiny() compares
* against a different power of 2 on a 64 bit machine. The macros below
* provide a tests against powers of 2 that are independent of the work size.
*
* zge16b(z) TRUE if abs(z) >= 2^16
* zge24b(z) TRUE if abs(z) >= 2^24
* zge31b(z) TRUE if abs(z) >= 2^31
* zge32b(z) TRUE if abs(z) >= 2^32
* zge64b(z) TRUE if abs(z) >= 2^64
* zge128b(z) TRUE if abs(z) >= 2^128
* zge256b(z) TRUE if abs(z) >= 2^256
* zge512b(z) TRUE if abs(z) >= 2^512
* zge1024b(z) TRUE if abs(z) >= 2^1024
* zge2048b(z) TRUE if abs(z) >= 2^2048
* zge4096b(z) TRUE if abs(z) >= 2^4096
* zge8192b(z) TRUE if abs(z) >= 2^8192
*/
#if BASEB == 32
#define zge16b(z) (!zistiny(z) || ((z).v[0] >= (HALF)0x10000))
#define zge24b(z) (!zistiny(z) || ((z).v[0] >= (HALF)0x1000000))
#define zge31b(z) (!zistiny(z) || (((SHALF)(z).v[0]) < 0))
#define zge32b(z) (!zistiny(z))
#define zge64b(z) ((z).len > 2)
#define zge128b(z) ((z).len > 4)
#define zge256b(z) ((z).len > 8)
#define zge512b(z) ((z).len > 16)
#define zge1024b(z) ((z).len > 32)
#define zge2048b(z) ((z).len > 64)
#define zge4096b(z) ((z).len > 128)
#define zge8192b(z) ((z).len > 256)
#else
#define zge16b(z) (!zistiny(z))
#define zge24b(z) (((z).len > 2) || (((z).len == 2) && \
((z).v[1] >= (HALF)0x100)))
#define zge31b(z) (((z).len > 2) || (((z).len == 2) && \
(((SHALF)(z).v[1]) < 0)))
#define zge32b(z) ((z).len > 2)
#define zge64b(z) ((z).len > 4)
#define zge128b(z) ((z).len > 8)
#define zge256b(z) ((z).len > 16)
#define zge512b(z) ((z).len > 32)
#define zge1024b(z) ((z).len > 64)
#define zge2048b(z) ((z).len > 128)
#define zge4096b(z) ((z).len > 256)
#define zge8192b(z) ((z).len > 512)
#endif
/*
* ztofull - convert an absolute value of a ZVALUE to a FULL if possible
*
* If the value is too large, only the low order bits that are able to
* be converted into a FULL will be used.
*/
#define ztofull(z) (zistiny(z) ? ((FULL)((z).v[0])) : \
((FULL)((z).v[0]) + \
((FULL)((z).v[1]) << BASEB)))
#define z1tol(z) ((long)((z).v[0]))
#define z2tol(z) ((long)(((z).v[0]) + \
(((z).v[1] & MAXHALF) << BASEB)))
/*
* ztoulong - convert an absolute value of a ZVALUE to an unsigned long
*
* If the value is too large, only the low order bits that are able to
* be converted into a long will be used.
*/
#if BASEB >= LONG_BITS
# define ztoulong(z) ((unsigned long)z1tol(z))
#else
# define ztoulong(z) ((unsigned long)ztofull(z))
#endif
/*
* ztolong - convert an absolute value of a ZVALUE to a long
*
* If the value is too large, only the low order bits that are able to
* be converted into a long will be used.
*/
#define ztolong(z) ((long)(ztoulong(z) & MAXLONG))
#define zclearval(z) memset((z).v, 0, (z).len * sizeof(HALF))
#define zcopyval(z1,z2) memcpy((z2).v, (z1).v, (z1).len * sizeof(HALF))
#define zquicktrim(z) {if (((z).len > 1) && ((z).v[(z).len-1] == 0)) \
(z).len--;}
#define zfree(z) freeh((z).v)
/*
* Output modes for numeric displays.
*/
#define MODE_DEFAULT 0
#define MODE_FRAC 1
#define MODE_INT 2
#define MODE_REAL 3
#define MODE_EXP 4
#define MODE_HEX 5
#define MODE_OCTAL 6
#define MODE_BINARY 7
#define MODE_REAL_AUTO 8
#define MODE_ENG 9
#define MODE_MAX 9
#define MODE2_OFF (MODE_MAX+1)
/* XXX - perhaps we need the MODE_REAL_AUTO vs MODE_REAL as a config mode? */
#if 0 /* XXX - can we safely set MODE_INITIAL to MODE_REAL_AUTO ?? */
#define MODE_INITIAL MODE_REAL_AUTO
#else
#define MODE_INITIAL MODE_REAL
#endif
#define MODE2_INITIAL MODE2_OFF
/*
* Output routines for either FILE handles or strings.
*/
E_FUNC void math_chr(int ch);
E_FUNC void math_str(char *str);
E_FUNC void math_fill(char *str, long width);
E_FUNC void math_flush(void);
E_FUNC void math_divertio(void);
E_FUNC void math_cleardiversions(void);
E_FUNC char *math_getdivertedio(void);
E_FUNC int math_setmode(int mode);
E_FUNC int math_setmode2(int mode);
E_FUNC LEN math_setdigits(LEN digits);
E_FUNC void math_fmt(char *, ...) PRINTF_FORMAT(1, 2);
/*
* The error routine.
*/
E_FUNC void math_error(char *, ...) PRINTF_FORMAT(1, 2);
/*
* external swap functions
*/
E_FUNC HALF *swap_b8_in_HALFs(HALF *dest, HALF *src, LEN len);
E_FUNC ZVALUE *swap_b8_in_ZVALUE(ZVALUE *dest, ZVALUE *src, BOOL all);
E_FUNC HALF *swap_b16_in_HALFs(HALF *dest, HALF *src, LEN len);
E_FUNC ZVALUE *swap_b16_in_ZVALUE(ZVALUE *dest, ZVALUE *src, BOOL all);
E_FUNC ZVALUE *swap_HALF_in_ZVALUE(ZVALUE *dest, ZVALUE *src, BOOL all);
/*
* constants used often by the arithmetic routines
*/
EXTERN HALF _zeroval_[], _oneval_[], _twoval_[], _threeval_[], _fourval_[];
EXTERN HALF _fiveval_[], _sixval_[], _sevenval_[], _eightval_[], _nineval_[];
EXTERN HALF _tenval_[], _elevenval_[], _twelveval_[], _thirteenval_[];
EXTERN HALF _fourteenval_[], _fifteenval_[];
EXTERN HALF _sqbaseval_[];
EXTERN HALF _fourthbaseval_[];
EXTERN ZVALUE zconst[]; /* ZVALUE integers from 0 thru 15 */
EXTERN ZVALUE _zero_, _one_, _two_, _ten_, _neg_one_;
EXTERN ZVALUE _sqbase_, _pow4base_, _pow8base_;
EXTERN ZVALUE _b32_, _b64_;
EXTERN BOOL _math_abort_; /* nonzero to abort calculations */
EXTERN ZVALUE _tenpowers_[]; /* table of 10^2^n */
/*
* Bit fiddling functions and types
*/
EXTERN HALF bitmask[]; /* bit rotation, norm 0 */
EXTERN HALF lowhalf[]; /* bit masks from low end of HALF */
EXTERN HALF rlowhalf[]; /* reversed bit masks from low end of HALF */
EXTERN HALF highhalf[]; /* bit masks from high end of HALF */
EXTERN HALF rhighhalf[]; /* reversed bit masks from high end of HALF */
#define HAVE_REVERSED_MASKS /* allows old code to know libcalc.a has them */
/*
* BITSTR - string of bits within an array of HALFs
*
* This typedef records a location of a bit in an array of HALFs.
* Bit 0 in a HALF is assumed to be the least significant bit in that HALF.
*
* The most significant bit is found at (loc,bit). Bits of lesser
* significance may be found in previous bits and HALFs.
*/
typedef struct {
HALF *loc; /* half address of most significant bit */
int bit; /* bit position within half of most significant bit */
int len; /* length of string in bits */
} BITSTR;
#endif /* !INCLUDE_ZMATH_H*/