Files
calc/qmod.c
Landon Curt Noll a31078bbec Remove all RCS @(#) lines and RCS strings
Some folks might think: “you still use RCS”?!?  And we will say,
hey, at least we switched from SCCS to RCS back in … I think it was
around 1994 ... at least we are keeping up! :-) :-) :-)

Logs say that SCCS version 18 became RCS version 19 on 1994 March 18.

RCS served us well.  But now it is time to move on.   And so we are
switching to git.

Calc releases produce a lot of file changes.  In the 125 releases
of calc since 1996, when I started managing calc releases, there
have been 15473 file mods!
2017-05-23 01:33:23 -07:00

427 lines
9.6 KiB
C

/*
* qmod - modular arithmetic routines for normal numbers and REDC numbers
*
* Copyright (C) 1999-2007 David I. Bell and Ernest Bowen
*
* Primary author: David I. Bell
*
* Calc is open software; you can redistribute it and/or modify it under
* the terms of the version 2.1 of the GNU Lesser General Public License
* as published by the Free Software Foundation.
*
* Calc is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General
* Public License for more details.
*
* A copy of version 2.1 of the GNU Lesser General Public License is
* distributed with calc under the filename COPYING-LGPL. You should have
* received a copy with calc; if not, write to Free Software Foundation, Inc.
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Under source code control: 1991/05/22 23:15:07
* File existed as early as: 1991
*
* Share and enjoy! :-) http://www.isthe.com/chongo/tech/comp/calc/
*/
#include <stdio.h>
#include "qmath.h"
#include "config.h"
/*
* Structure used for caching REDC information.
*/
typedef struct {
NUMBER *rnum; /* modulus being cached */
REDC *redc; /* REDC information for modulus */
long age; /* age counter for reallocation */
} REDC_CACHE;
STATIC long redc_age; /* current age counter */
STATIC REDC_CACHE redc_cache[MAXREDC]; /* cached REDC info */
S_FUNC REDC *qfindredc(NUMBER *q);
/*
* qmod(q1, q2, rnd) returns zero if q1 is a multiple of q2; it
* q1 if q2 is zero. For other q1 and q2, it returns one of
* the two remainders with absolute value less than abs(q2)
* when q1 is divided by q2; which remainder is returned is
* determined by rnd and the signs and relative sizes of q1 and q2.
*/
NUMBER *
qmod(NUMBER *q1, NUMBER *q2, long rnd)
{
ZVALUE tmp, tmp1, tmp2;
NUMBER *q;
if (qiszero(q2)) return qlink(q1);
if (qiszero(q1)) return qlink(&_qzero_);
if (qisint(q1) && qisint(q2)) { /* easy case */
zmod(q1->num, q2->num, &tmp, rnd);
if (ziszero(tmp)) {
zfree(tmp);
return qlink(&_qzero_);
}
if(zisone(tmp)) {
zfree(tmp);
return qlink(&_qone_);
}
q = qalloc();
q->num = tmp;
return q;
}
zmul(q1->num, q2->den, &tmp1);
zmul(q2->num, q1->den, &tmp2);
zmod(tmp1, tmp2, &tmp, rnd);
zfree(tmp1);
zfree(tmp2);
if (ziszero(tmp)) {
zfree(tmp);
return qlink(&_qzero_);
}
zmul(q1->den, q2->den, &tmp1);
q = qalloc();
zreduce(tmp, tmp1, &q->num, &q->den);
zfree(tmp1);
zfree(tmp);
return q;
}
/*
* Given two numbers q1, q2, qquomod(q1, q2, quo, mod, rnd) assigns
* quo(q1, q2, rnd) to quo and mod(q1, q2, rnd) to mod. The quotient
* quo is always an integer, q1 = q2 * quo + mod, and if q2 is non-zero,
* abs(mod) < abs(q2). If q2 is zero, quo is assigned the value zero and
* mod = q1.
* Which of the two possible quotient-remainder pairs is assigned
* to quo and mod is determined by the fifth argument rnd.
* If rnd is zero, the remainder has the sign of q2
* and the quotient is rounded towards zero.
*
* The function returns TRUE or FALSE according as the remainder is
* nonzero or zero
*
* Given:
* q1 number to be divided
* q2 divisor
* quo quotient
* mod remainder
* rnd rounding-type specifier
*/
BOOL
qquomod(NUMBER *q1, NUMBER *q2, NUMBER **quo, NUMBER **mod, long rnd)
{
NUMBER *qq, *qm;
ZVALUE tmp1, tmp2, tmp3, tmp4;
if (qiszero(q2)) { /* zero divisor case */
qq = qlink(&_qzero_);
qm = qlink(q1);
} else if (qisint(q1) && qisint(q2)) { /* integer args case */
zdiv(q1->num, q2->num, &tmp1, &tmp2, rnd);
if (ziszero(tmp1)) {
zfree(tmp1);
zfree(tmp2);
qq = qlink(&_qzero_);
qm = qlink(q1);
} else {
qq = qalloc();
qq->num = tmp1;
if (ziszero(tmp2)) {
zfree(tmp2);
qm = qlink(&_qzero_);
} else {
qm = qalloc();
qm->num = tmp2;
}
}
} else { /* fractional case */
zmul(q1->num, q2->den, &tmp1);
zmul(q2->num, q1->den, &tmp2);
zdiv(tmp1, tmp2, &tmp3, &tmp4, rnd);
zfree(tmp1);
zfree(tmp2);
if (ziszero(tmp3)) {
zfree(tmp3);
zfree(tmp4);
qq = qlink(&_qzero_);
qm = qlink(q1);
} else {
qq = qalloc();
qq->num = tmp3;
if (ziszero(tmp4)) {
zfree(tmp4);
qm = qlink(&_qzero_);
} else {
qm = qalloc();
zmul(q1->den, q2->den, &tmp1);
zreduce(tmp4, tmp1, &qm->num, &qm->den);
zfree(tmp1);
zfree(tmp4);
}
}
}
*quo = qq;
*mod = qm;
return !qiszero(qm);
}
/*
* Return whether or not two integers are congruent modulo a third integer.
* Returns TRUE if the numbers are not congruent, and FALSE if they are.
*/
BOOL
qcmpmod(NUMBER *q1, NUMBER *q2, NUMBER *q3)
{
if (qisneg(q3) || qiszero(q3))
math_error("Non-positive modulus");
if (qisfrac(q1) || qisfrac(q2) || qisfrac(q3))
math_error("Non-integers for qcmpmod");
if (q1 == q2)
return FALSE;
return zcmpmod(q1->num, q2->num, q3->num);
}
/*
* Convert an integer into REDC format for use in faster modular arithmetic.
* The number can be negative or out of modulus range.
*
* given:
* q1 number to convert into REDC format
* q2 modulus
*/
NUMBER *
qredcin(NUMBER *q1, NUMBER *q2)
{
REDC *rp; /* REDC information */
NUMBER *r; /* result */
if (qisfrac(q1))
math_error("Non-integer for qredcin");
rp = qfindredc(q2);
r = qalloc();
zredcencode(rp, q1->num, &r->num);
if (qiszero(r)) {
qfree(r);
return qlink(&_qzero_);
}
return r;
}
/*
* Convert a REDC format number back into a normal integer.
* The resulting number is in the range 0 to the modulus - 1.
*
* given:
* q1 number to convert into REDC format
* q2 modulus
*/
NUMBER *
qredcout(NUMBER *q1, NUMBER *q2)
{
REDC *rp; /* REDC information */
NUMBER *r; /* result */
if (qisfrac(q1))
math_error("Non-integer argument for rcout");
rp = qfindredc(q2);
if (qiszero(q1) || qisunit(q2))
return qlink(&_qzero_);
r = qalloc();
zredcdecode(rp, q1->num, &r->num);
if (zisunit(r->num)) {
qfree(r);
r = qlink(&_qone_);
}
return r;
}
/*
* Multiply two REDC format numbers together producing a REDC format result.
* This multiplication is done modulo the specified modulus.
*
* given:
* q1 REDC numbers to be multiplied
* q2 REDC numbers to be multiplied
* q3 modulus
*/
NUMBER *
qredcmul(NUMBER *q1, NUMBER *q2, NUMBER *q3)
{
REDC *rp; /* REDC information */
NUMBER *r; /* result */
if (qisfrac(q1) || qisfrac(q2))
math_error("Non-integer argument for rcmul");
rp = qfindredc(q3);
if (qiszero(q1) || qiszero(q2) || qisunit(q3))
return qlink(&_qzero_);
r = qalloc();
zredcmul(rp, q1->num, q2->num, &r->num);
return r;
}
/*
* Square a REDC format number to produce a REDC format result.
* This squaring is done modulo the specified modulus.
*
* given:
* q1 REDC numbers to be squared
* q2 modulus
*/
NUMBER *
qredcsquare(NUMBER *q1, NUMBER *q2)
{
REDC *rp; /* REDC information */
NUMBER *r; /* result */
if (qisfrac(q1))
math_error("Non-integer argument for rcsq");
rp = qfindredc(q2);
if (qiszero(q1) || qisunit(q2))
return qlink(&_qzero_);
r = qalloc();
zredcsquare(rp, q1->num, &r->num);
return r;
}
/*
* Raise a REDC format number to the indicated power producing a REDC
* format result. This is done modulo the specified modulus. The
* power to be raised to is a normal number.
*
* given:
* q1 REDC number to be raised
* q2 power to be raised to
* q3 modulus
*/
NUMBER *
qredcpower(NUMBER *q1, NUMBER *q2, NUMBER *q3)
{
REDC *rp; /* REDC information */
NUMBER *r; /* result */
if (qisfrac(q1) || qisfrac(q2) || qisfrac(q2))
math_error("Non-integer argument for rcpow");
if (qisneg(q2))
math_error("Negative exponent argument for rcpow");
rp = qfindredc(q3);
r = qalloc();
zredcpower(rp, q1->num, q2->num, &r->num);
return r;
}
/*
* Search for and return the REDC information for the specified number.
* The information is cached into a local table so that future calls
* for this information will be quick. If the table fills up, then
* the oldest cached entry is reused.
*
* given:
* q modulus to find REDC information of
*/
S_FUNC REDC *
qfindredc(NUMBER *q)
{
register REDC_CACHE *rcp;
REDC_CACHE *bestrcp;
/*
* First try for an exact pointer match in the table.
*/
for (rcp = redc_cache; rcp <= &redc_cache[MAXREDC-1]; rcp++) {
if (q == rcp->rnum) {
rcp->age = ++redc_age;
return rcp->redc;
}
}
/*
* Search the table again looking for a value which matches.
*/
for (rcp = redc_cache; rcp <= &redc_cache[MAXREDC-1]; rcp++) {
if (rcp->age && (qcmp(q, rcp->rnum) == 0)) {
rcp->age = ++redc_age;
return rcp->redc;
}
}
/*
* Must invalidate an existing entry in the table.
* Find the oldest (or first unused) entry.
* But first make sure the modulus will be reasonable.
*/
if (qisfrac(q) || qisneg(q)) {
math_error("REDC modulus must be positive odd integer");
/*NOTREACHED*/
}
bestrcp = NULL;
for (rcp = redc_cache; rcp <= &redc_cache[MAXREDC-1]; rcp++) {
if ((bestrcp == NULL) || (rcp->age < bestrcp->age))
bestrcp = rcp;
}
/*
* Found the best entry.
* Free the old information for the entry if necessary,
* then initialize it.
*/
rcp = bestrcp;
if (rcp->age) {
rcp->age = 0;
qfree(rcp->rnum);
zredcfree(rcp->redc);
}
rcp->redc = zredcalloc(q->num);
rcp->rnum = qlink(q);
rcp->age = ++redc_age;
return rcp->redc;
}
void
showredcdata(void)
{
REDC_CACHE *rcp;
long i;
for (i = 0, rcp = redc_cache; i < MAXREDC; i++, rcp++) {
if (rcp->age > 0) {
printf("%-8ld%-8ld", i, rcp->age);
qprintnum(rcp->rnum, 0);
printf("\n");
}
}
}
void
freeredcdata(void)
{
REDC_CACHE *rcp;
long i;
for (i = 0, rcp = redc_cache; i < MAXREDC; i++, rcp++) {
if (rcp->age > 0) {
rcp->age = 0;
qfree(rcp->rnum);
zredcfree(rcp->redc);
}
}
}