Files
calc/shs1.c
2017-05-21 15:38:29 -07:00

699 lines
18 KiB
C

/*
* shs1 - implements new NIST Secure Hash Standard-1 (SHS1)
*
* Written 2 September 1992, Peter C. Gutmann.
*
* This file was Modified/Re-written by:
*
* Landon Curt Noll
* http://reality.sgi.com/chongo
*
* chongo <was here> /\../\
*
* This code has been placed in the public domain. Please do not
* copyright this code.
*
* LANDON CURT NOLL DISCLAIMS ALL WARRANTIES WITH REGARD TO
* THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MER-
* CHANTABILITY AND FITNESS. IN NO EVENT SHALL LANDON CURT
* NOLL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL
* DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
* USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
* NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <stdio.h>
#include "longbits.h"
#include "align32.h"
#include "endian_calc.h"
#include "value.h"
#include "hash.h"
#include "shs.h"
/*
* The SHS1 f()-functions. The f1 and f3 functions can be optimized
* to save one boolean operation each - thanks to Rich Schroeppel,
* rcs@cs.arizona.edu for discovering this.
*
* f1: ((x&y) | (~x&z)) == (z ^ (x&(y^z)))
* f3: ((x&y) | (x&z) | (y&z)) == ((x&y) | (z&(x|y)))
*/
#define f1(x,y,z) (z ^ (x&(y^z))) /* Rounds 0-19 */
#define f2(x,y,z) (x^y^z) /* Rounds 20-39 */
#define f3(x,y,z) ((x&y) | (z&(x|y))) /* Rounds 40-59 */
#define f4(x,y,z) (x^y^z) /* Rounds 60-79 */
/* The SHS1 Mysterious Constants */
#define K1 0x5A827999L /* Rounds 0-19 */
#define K2 0x6ED9EBA1L /* Rounds 20-39 */
#define K3 0x8F1BBCDCL /* Rounds 40-59 */
#define K4 0xCA62C1D6L /* Rounds 60-79 */
/* SHS1 initial values */
#define h0init 0x67452301L
#define h1init 0xEFCDAB89L
#define h2init 0x98BADCFEL
#define h3init 0x10325476L
#define h4init 0xC3D2E1F0L
/* 32-bit rotate left - kludged with shifts */
#define LEFT_ROT(X,n) (((X)<<(n)) | ((X)>>(32-(n))))
/*
*
* The initial expanding function. The hash function is defined over an
* 80-word expanded input array W, where the first 16 are copies of the input
* data, and the remaining 64 are defined by
*
* W[i] = LEFT_ROT(W[i-16] ^ W[i-14] ^ W[i-8] ^ W[i-3], 1)
*
* NOTE: The expanding function used in rounds 16 to 79 was changed from the
* original SHA (in FIPS Pub 180) to one that also left circular shifted
* by one bit for Secure Hash Algorithm-1 (FIPS Pub 180-1).
*/
#define exor(W,i,t) \
(t = (W[i&15] ^ W[(i-14)&15] ^ W[(i-8)&15] ^ W[(i-3)&15]), \
W[i&15] = LEFT_ROT(t, 1))
/*
* The prototype SHS1 sub-round. The fundamental sub-round is:
*
* a' = e + LEFT_ROT(a,5) + f(b,c,d) + k + data;
* b' = a;
* c' = LEFT_ROT(b,30);
* d' = c;
* e' = d;
*
* but this is implemented by unrolling the loop 5 times and renaming the
* variables ( e, a, b, c, d ) = ( a', b', c', d', e' ) each iteration.
* This code is then replicated 20 times for each of the 4 functions, using
* the next 20 values from the W[] array each time.
*/
#define subRound(a, b, c, d, e, f, k, data) \
(e += LEFT_ROT(a,5) + f(b,c,d) + k + data, b = LEFT_ROT(b,30))
/* forward declarations */
static void shs1Init(HASH*);
static void shs1Transform(USB32*, USB32*);
static void shs1Update(HASH*, USB8*, USB32);
static void shs1Final(HASH*);
static void shs1_chkpt(HASH*);
static void shs1_note(int, HASH*);
static void shs1_type(int, HASH*);
void shs1_init_state(HASH*);
static ZVALUE shs1_final_state(HASH*);
static int shs1_cmp(HASH*, HASH*);
static void shs1_print(HASH*);
/*
* shs1Init - initialize the SHS1 state
*/
static void
shs1Init(HASH *state)
{
SHS1_INFO *dig = &state->h_union.h_shs1; /* digest state */
/* Set the h-vars to their initial values */
dig->digest[0] = h0init;
dig->digest[1] = h1init;
dig->digest[2] = h2init;
dig->digest[3] = h3init;
dig->digest[4] = h4init;
/* Initialise bit count */
dig->countLo = 0;
dig->countHi = 0;
dig->datalen = 0;
}
/*
* shs1Transform - perform the SHS1 transformatio
*
* Note that this code, like MD5, seems to break some optimizing compilers.
* It may be necessary to split it into sections, eg based on the four
* subrounds. One may also want to roll each subround into a loop.
*/
static void
shs1Transform(USB32 *digest, USB32 *W)
{
USB32 A, B, C, D, E; /* Local vars */
USB32 t; /* temp storage for exor() */
/* Set up first buffer and local data buffer */
A = digest[0];
B = digest[1];
C = digest[2];
D = digest[3];
E = digest[4];
/* Heavy mangling, in 4 sub-rounds of 20 interations each. */
subRound(A, B, C, D, E, f1, K1, W[ 0]);
subRound(E, A, B, C, D, f1, K1, W[ 1]);
subRound(D, E, A, B, C, f1, K1, W[ 2]);
subRound(C, D, E, A, B, f1, K1, W[ 3]);
subRound(B, C, D, E, A, f1, K1, W[ 4]);
subRound(A, B, C, D, E, f1, K1, W[ 5]);
subRound(E, A, B, C, D, f1, K1, W[ 6]);
subRound(D, E, A, B, C, f1, K1, W[ 7]);
subRound(C, D, E, A, B, f1, K1, W[ 8]);
subRound(B, C, D, E, A, f1, K1, W[ 9]);
subRound(A, B, C, D, E, f1, K1, W[10]);
subRound(E, A, B, C, D, f1, K1, W[11]);
subRound(D, E, A, B, C, f1, K1, W[12]);
subRound(C, D, E, A, B, f1, K1, W[13]);
subRound(B, C, D, E, A, f1, K1, W[14]);
subRound(A, B, C, D, E, f1, K1, W[15]);
subRound(E, A, B, C, D, f1, K1, exor(W,16,t));
subRound(D, E, A, B, C, f1, K1, exor(W,17,t));
subRound(C, D, E, A, B, f1, K1, exor(W,18,t));
subRound(B, C, D, E, A, f1, K1, exor(W,19,t));
subRound(A, B, C, D, E, f2, K2, exor(W,20,t));
subRound(E, A, B, C, D, f2, K2, exor(W,21,t));
subRound(D, E, A, B, C, f2, K2, exor(W,22,t));
subRound(C, D, E, A, B, f2, K2, exor(W,23,t));
subRound(B, C, D, E, A, f2, K2, exor(W,24,t));
subRound(A, B, C, D, E, f2, K2, exor(W,25,t));
subRound(E, A, B, C, D, f2, K2, exor(W,26,t));
subRound(D, E, A, B, C, f2, K2, exor(W,27,t));
subRound(C, D, E, A, B, f2, K2, exor(W,28,t));
subRound(B, C, D, E, A, f2, K2, exor(W,29,t));
subRound(A, B, C, D, E, f2, K2, exor(W,30,t));
subRound(E, A, B, C, D, f2, K2, exor(W,31,t));
subRound(D, E, A, B, C, f2, K2, exor(W,32,t));
subRound(C, D, E, A, B, f2, K2, exor(W,33,t));
subRound(B, C, D, E, A, f2, K2, exor(W,34,t));
subRound(A, B, C, D, E, f2, K2, exor(W,35,t));
subRound(E, A, B, C, D, f2, K2, exor(W,36,t));
subRound(D, E, A, B, C, f2, K2, exor(W,37,t));
subRound(C, D, E, A, B, f2, K2, exor(W,38,t));
subRound(B, C, D, E, A, f2, K2, exor(W,39,t));
subRound(A, B, C, D, E, f3, K3, exor(W,40,t));
subRound(E, A, B, C, D, f3, K3, exor(W,41,t));
subRound(D, E, A, B, C, f3, K3, exor(W,42,t));
subRound(C, D, E, A, B, f3, K3, exor(W,43,t));
subRound(B, C, D, E, A, f3, K3, exor(W,44,t));
subRound(A, B, C, D, E, f3, K3, exor(W,45,t));
subRound(E, A, B, C, D, f3, K3, exor(W,46,t));
subRound(D, E, A, B, C, f3, K3, exor(W,47,t));
subRound(C, D, E, A, B, f3, K3, exor(W,48,t));
subRound(B, C, D, E, A, f3, K3, exor(W,49,t));
subRound(A, B, C, D, E, f3, K3, exor(W,50,t));
subRound(E, A, B, C, D, f3, K3, exor(W,51,t));
subRound(D, E, A, B, C, f3, K3, exor(W,52,t));
subRound(C, D, E, A, B, f3, K3, exor(W,53,t));
subRound(B, C, D, E, A, f3, K3, exor(W,54,t));
subRound(A, B, C, D, E, f3, K3, exor(W,55,t));
subRound(E, A, B, C, D, f3, K3, exor(W,56,t));
subRound(D, E, A, B, C, f3, K3, exor(W,57,t));
subRound(C, D, E, A, B, f3, K3, exor(W,58,t));
subRound(B, C, D, E, A, f3, K3, exor(W,59,t));
subRound(A, B, C, D, E, f4, K4, exor(W,60,t));
subRound(E, A, B, C, D, f4, K4, exor(W,61,t));
subRound(D, E, A, B, C, f4, K4, exor(W,62,t));
subRound(C, D, E, A, B, f4, K4, exor(W,63,t));
subRound(B, C, D, E, A, f4, K4, exor(W,64,t));
subRound(A, B, C, D, E, f4, K4, exor(W,65,t));
subRound(E, A, B, C, D, f4, K4, exor(W,66,t));
subRound(D, E, A, B, C, f4, K4, exor(W,67,t));
subRound(C, D, E, A, B, f4, K4, exor(W,68,t));
subRound(B, C, D, E, A, f4, K4, exor(W,69,t));
subRound(A, B, C, D, E, f4, K4, exor(W,70,t));
subRound(E, A, B, C, D, f4, K4, exor(W,71,t));
subRound(D, E, A, B, C, f4, K4, exor(W,72,t));
subRound(C, D, E, A, B, f4, K4, exor(W,73,t));
subRound(B, C, D, E, A, f4, K4, exor(W,74,t));
subRound(A, B, C, D, E, f4, K4, exor(W,75,t));
subRound(E, A, B, C, D, f4, K4, exor(W,76,t));
subRound(D, E, A, B, C, f4, K4, exor(W,77,t));
subRound(C, D, E, A, B, f4, K4, exor(W,78,t));
subRound(B, C, D, E, A, f4, K4, exor(W,79,t));
/* Build message digest */
digest[0] += A;
digest[1] += B;
digest[2] += C;
digest[3] += D;
digest[4] += E;
}
/*
* shs1Update - update SHS1 with arbitrary length data
*/
void
shs1Update(HASH *state, USB8 *buffer, USB32 count)
{
SHS1_INFO *dig = &state->h_union.h_shs1; /* digest state */
USB32 datalen = dig->datalen;
USB32 cpylen;
#if CALC_BYTE_ORDER == LITTLE_ENDIAN
int i;
#endif
/*
* Update the full count, even if some of it is buffered for later
*/
SHS1COUNT(dig, count);
/* determine the size we need to copy */
cpylen = SHS1_CHUNKSIZE - datalen;
/* case: new data will not fill the buffer */
if (cpylen > count) {
memcpy((char *)dig->data+datalen,
(char *)buffer, count);
dig->datalen = datalen+count;
return;
}
/* case: buffer will be filled */
memcpy((char *)dig->data + datalen, (char *)buffer, cpylen);
/*
* Process data in SHS1_CHUNKSIZE chunks
*/
for (;;) {
#if CALC_BYTE_ORDER == LITTLE_ENDIAN
if (state->bytes) {
for (i=0; i < SHS1_CHUNKWORDS; ++i) {
SWAP_B8_IN_B32(dig->data+i, dig->data+i);
}
}
#endif
shs1Transform(dig->digest, dig->data);
buffer += cpylen;
count -= cpylen;
if (count < SHS1_CHUNKSIZE)
break;
cpylen = SHS1_CHUNKSIZE;
memcpy(dig->data, buffer, cpylen);
}
/*
* Handle any remaining bytes of data.
* This should only happen once on the final lot of data
*/
if (count > 0) {
memcpy((char *)dig->data, (char *)buffer, count);
}
dig->datalen = count;
}
/*
* shs1Final - perform final SHS1 transforms
*
* At this point we have less than a full chunk of data remaining
* (and possibly no data) in the shs1 state data buffer.
*
* First we append a final 0x80 byte.
*
* Next if we have more than 56 bytes, we will zero fill the remainder
* of the chunk, transform and then zero fill the first 56 bytes.
* If we have 56 or fewer bytes, we will zero fill out to the 56th
* chunk byte. Regardless, we wind up with 56 bytes data.
*
* Finally we append the 64 bit length on to the 56 bytes of data
* remaining. This final chunk is transformed.
*/
void
shs1Final(HASH *state)
{
SHS1_INFO *dig = &state->h_union.h_shs1; /* digest state */
long count = (long)(dig->datalen);
USB32 lowBitcount;
USB32 highBitcount;
USB8 *data = (USB8 *) dig->data;
#if CALC_BYTE_ORDER == LITTLE_ENDIAN
int i;
#endif
/* Pad to end of chunk */
memset(data + count, 0, SHS1_CHUNKSIZE - count);
/*
* If processing bytes, set the first byte of padding to 0x80.
* if processing words: on a big-endian machine set the first
* byte of padding to 0x80, on a little-endian machine set
* the first four bytes to 0x00000080
* This is safe since there is always at least one byte or word free
*/
memset(data + count, 0, SHS1_CHUNKSIZE - count);
#if CALC_BYTE_ORDER == LITTLE_ENDIAN
if (state->bytes) {
data[count] = 0x80;
for (i=0; i < SHS1_CHUNKWORDS; ++i) {
SWAP_B8_IN_B32(dig->data+i, dig->data+i);
}
}
else {
if (count % 4) {
math_error("This should not happen in shs1Final");
/*NOTREACHED*/
}
data[count + 3] = 0x80;
}
#else
data[count] = 0x80;
#endif
if (count >= SHS1_CHUNKSIZE-8) {
shs1Transform(dig->digest, dig->data);
/* Now load another chunk with 56 bytes of padding */
memset(data, 0, SHS1_CHUNKSIZE-8);
}
/*
* Append length in bits and transform
*
* We assume that bit count is a multiple of 8 because we have
* only processed full bytes.
*/
highBitcount = dig->countHi;
lowBitcount = dig->countLo;
dig->data[SHS1_HIGH] = (highBitcount << 3) | (lowBitcount >> 29);
dig->data[SHS1_LOW] = (lowBitcount << 3);
shs1Transform(dig->digest, dig->data);
dig->datalen = 0;
}
/*
* shs1_chkpt - checkpoint a SHS1 state
*
* given:
* state the state to checkpoint
*
* This function will ensure that the the hash chunk buffer is empty.
* Any partially hashed data will be padded out with 0's and hashed.
*/
static void
shs1_chkpt(HASH *state)
{
SHS1_INFO *dig = &state->h_union.h_shs1; /* digest state */
#if CALC_BYTE_ORDER == LITTLE_ENDIAN
int i;
#endif
/*
* checkpoint if partial buffer exists
*/
if (dig->datalen > 0) {
/* pad to the end of the chunk */
memset((USB8 *)dig->data + dig->datalen, 0,
SHS1_CHUNKSIZE-dig->datalen);
#if CALC_BYTE_ORDER == LITTLE_ENDIAN
if (state->bytes) {
for (i=0; i < SHS1_CHUNKWORDS; ++i) {
SWAP_B8_IN_B32(dig->data+i, dig->data+i);
}
}
#endif
/* transform padded chunk */
shs1Transform(dig->digest, dig->data);
SHS1COUNT(dig, SHS1_CHUNKSIZE-dig->datalen);
/* empty buffer */
dig->datalen = 0;
}
return;
}
/*
* shs1_note - note a special value
*
* given:
* state the state to hash
* special a special value (SHS1_HASH_XYZ) to note
*
* This function will note that a special value is about to be hashed.
* Types include negative values, complex values, division, zero numeric
* and array of HALFs.
*/
static void
shs1_note(int special, HASH *state)
{
SHS1_INFO *dig = &state->h_union.h_shs1; /* digest state */
int i;
/*
* change state to reflect a special value
*/
dig->digest[0] ^= special;
for (i=1; i < SHS1_DIGESTWORDS; ++i) {
dig->digest[i] ^= (special + dig->digest[i-1] + i);
}
return;
}
/*
* shs1_type - note a VALUE type
*
* given:
* state the state to hash
* type the VALUE type to note
*
* This function will note that a type of value is about to be hashed.
* The type of a VALUE will be noted. For purposes of hash comparison,
* we will do nothing with V_NUM and V_COM so that the other functions
* can hash to the same value regardless of if shs1_value() is called
* or not. We also do nothing with V_STR so that a hash of a string
* will produce the same value as the standard hash function.
*/
static void
shs1_type(int type, HASH *state)
{
SHS1_INFO *dig = &state->h_union.h_shs1; /* digest state */
int i;
/*
* ignore NUMBER and COMPLEX
*/
if (type == V_NUM || type == V_COM || type == V_STR) {
return;
}
/*
* change state to reflect a VALUE type
*/
dig->digest[0] += type;
for (i=1; i < SHS1_DIGESTWORDS; ++i) {
dig->digest[i] += ((type+i) ^ dig->digest[i-1]);
}
return;
}
/*
* shs1_init_state - initialize a hash state structure for this hash
*
* given:
* state - pointer to the hfunction element to initialize
*/
void
shs1_init_state(HASH *state)
{
/*
* initalize state
*/
state->hashtype = SHS1_HASH_TYPE;
state->bytes = TRUE;
state->update = shs1Update;
state->chkpt = shs1_chkpt;
state->note = shs1_note;
state->type = shs1_type;
state->final = shs1_final_state;
state->cmp = shs1_cmp;
state->print = shs1_print;
state->base = SHS1_BASE;
state->chunksize = SHS1_CHUNKSIZE;
state->unionsize = sizeof(SHS1_INFO);
/*
* perform the internal init function
*/
memset((void *)&(state->h_union.h_shs), 0, sizeof(SHS1_INFO));
shs1Init(state);
return;
}
/*
* shs1_final_state - complete hash state and return a ZVALUE
*
* given:
* state the state to complete and convert
*
* returns:
* a ZVALUE representing the state
*/
static ZVALUE
shs1_final_state(HASH *state)
{
SHS1_INFO *dig = &state->h_union.h_shs1; /* digest state */
ZVALUE ret; /* return ZVALUE of completed hash state */
int i;
/*
* malloc and initialize if state is NULL
*/
if (state == NULL) {
state = (HASH *)malloc(sizeof(HASH));
if (state == NULL) {
math_error("cannot malloc HASH");
/*NOTREACHED*/
}
shs1_init_state(state);
}
/*
* complete the hash state
*/
shs1Final(state);
/*
* allocate storage for ZVALUE
*/
ret.len = SHS1_DIGESTSIZE/sizeof(HALF);
ret.sign = 0;
ret.v = alloc(ret.len);
/*
* load ZVALUE
*/
#if BASEB == 16 && CALC_BYTE_ORDER == LITTLE_ENDIAN
for (i=0; i < ret.len; i+=2) {
ret.v[ret.len-i-1] = ((HALF*)dig->digest)[i+1];
ret.v[ret.len-i-2] = ((HALF*)dig->digest)[i];
}
#else
for (i=0; i < ret.len; ++i) {
ret.v[ret.len-i-1] = ((HALF*)dig->digest)[i];
}
#endif
ztrim(&ret);
/*
* return ZVALUE
*/
return ret;
}
/*
* shs1_cmp - compare two hash states
*
* given:
* a first hash state
* b second hash state
*
* returns:
* TRUE => hash states are different
* FALSE => hash states are the same
*/
static int
shs1_cmp(HASH *a, HASH *b)
{
/*
* firewall and quick check
*/
if (a == b) {
/* pointers to the same object */
return FALSE;
}
if (a == NULL || b == NULL) {
/* one is NULL, so they differ */
return TRUE;
}
/*
* compare data-reading modes
*/
if (a->bytes != b->bytes)
return TRUE;
/*
* compare bit counts
*/
if (a->h_union.h_shs.countLo != b->h_union.h_shs.countLo ||
a->h_union.h_shs.countHi != b->h_union.h_shs.countHi) {
/* counts differ */
return TRUE;
}
/*
* compare pending buffers
*/
if (a->h_union.h_shs.datalen != b->h_union.h_shs.datalen) {
/* buffer lengths differ */
return TRUE;
}
if (memcmp((USB8*)a->h_union.h_shs.data,
(USB8*)b->h_union.h_shs.data,
a->h_union.h_shs.datalen) != 0) {
/* buffer contents differ */
return TRUE;
}
/*
* compare digest
*/
return (memcmp((USB8*)(a->h_union.h_shs.digest),
(USB8*)(b->h_union.h_shs.digest),
SHS1_DIGESTSIZE) != 0);
}
/*
* shs1_print - print a hash state
*
* given:
* state the hash state to print
*/
static void
shs1_print(HASH *state)
{
/*
* form the hash value
*/
if (conf->calc_debug > 0) {
char buf[DEBUG_SIZE+1]; /* hash value buffer */
/*
* print numeric debug value
*
* NOTE: This value represents only the hash value as of
* the last full update or finalization. Thus it
* may NOT be the actual hash value.
*/
sprintf(buf,
"sha1: 0x%08x%08x%08x%08x%08x data: %d octets",
(int)state->h_union.h_shs1.digest[0],
(int)state->h_union.h_shs1.digest[1],
(int)state->h_union.h_shs1.digest[2],
(int)state->h_union.h_shs1.digest[3],
(int)state->h_union.h_shs1.digest[4],
(int)state->h_union.h_shs1.datalen);
math_str(buf);
} else {
math_str("sha1 hash state");
}
return;
}