Files
calc/lib/bernoulli.cal
2017-05-21 15:38:27 -07:00

63 lines
1.5 KiB
Plaintext

/*
* Copyright (c) 1995 David I. Bell
* Permission is granted to use, distribute, or modify this source,
* provided that this copyright notice remains intact.
*
* Calculate the Nth Bernoulli number B(n).
* This uses the following symbolic formula to calculate B(n):
*
* (b+1)^(n+1) - b^(n+1) = 0
*
* where b is a dummy value, and each power b^i gets replaced by B(i).
* For example, for n = 3:
* (b+1)^4 - b^4 = 0
* b^4 + 4*b^3 + 6*b^2 + 4*b + 1 - b^4 = 0
* 4*b^3 + 6*b^2 + 4*b + 1 = 0
* 4*B(3) + 6*B(2) + 4*B(1) + 1 = 0
* B(3) = -(6*B(2) + 4*B(1) + 1) / 4
*
* The combinatorial factors in the expansion of the above formula are
* calculated interatively, and we use the fact that B(2i+1) = 0 if i > 0.
* Since all previous B(n)'s are needed to calculate a particular B(n), all
* values obtained are saved in an array for ease in repeated calculations.
*/
static Bnmax;
static mat Bn[1001];
define B(n)
{
local nn, np1, i, sum, mulval, divval, combval;
if (!isint(n) || (n < 0))
quit "Non-negative integer required for Bernoulli";
if (n == 0)
return 1;
if (n == 1)
return -1/2;
if (isodd(n))
return 0;
if (n > 1000)
quit "Very large Bernoulli";
if (n <= Bnmax)
return Bn[n];
for (nn = Bnmax + 2; nn <= n; nn+=2) {
np1 = nn + 1;
mulval = np1;
divval = 1;
combval = 1;
sum = 1 - np1 / 2;
for (i = 2; i < np1; i+=2) {
combval = combval * mulval-- / divval++;
combval = combval * mulval-- / divval++;
sum += combval * Bn[i];
}
Bn[nn] = -sum / np1;
}
Bnmax = n;
return Bn[n];
}