Files
calc/zio.c
Landon Curt Noll db77e29a23 convert ASCII TABs to ASCII SPACEs
Converted all ASCII tabs to ASCII spaces using a 8 character
tab stop, for all files, except for all Makefiles (plus rpm.mk).
The `git diff -w` reports no changes.
2024-07-11 22:03:52 -07:00

830 lines
25 KiB
C

/*
* zio - scanf and printf routines for arbitrary precision integers
*
* Copyright (C) 1999-2007,2021-2023 David I. Bell
*
* Calc is open software; you can redistribute it and/or modify it under
* the terms of the version 2.1 of the GNU Lesser General Public License
* as published by the Free Software Foundation.
*
* Calc is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General
* Public License for more details.
*
* A copy of version 2.1 of the GNU Lesser General Public License is
* distributed with calc under the filename COPYING-LGPL. You should have
* received a copy with calc; if not, write to Free Software Foundation, Inc.
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Under source code control: 1993/07/30 19:42:48
* File existed as early as: 1993
*
* Share and enjoy! :-) http://www.isthe.com/chongo/tech/comp/calc/
*/
#include <stdio.h>
#include "alloc.h"
#include "config.h"
#include "zmath.h"
#include "args.h"
#include "errtbl.h"
#include "banned.h" /* include after system header <> includes */
#define OUTBUFSIZE 200 /* realloc size for output buffers */
#define PUTCHAR(ch) math_chr(ch)
#define PUTSTR(str) math_str(str)
#define PRINTF1(fmt, a1) math_fmt(fmt, a1)
#define PRINTF2(fmt, a1, a2) math_fmt(fmt, a1, a2)
#define PRINTF3(fmt, a1, a2, a3) math_fmt(fmt, a1, a2, a3)
#define PRINTF4(fmt, a1, a2, a3, a4) math_fmt(fmt, a1, a2, a3, a4)
/*
* Output state that has been saved when diversions are done.
*/
typedef struct iostate IOSTATE;
struct iostate {
IOSTATE *oldiostates; /* previous saved state */
long outdigits; /* digits for output */
int outmode; /* output mode */
int outmode2; /* secondary output mode */
FILE *outfp; /* file unit for output (if any) */
char *outbuf; /* output string buffer (if any) */
size_t outbufsize; /* current size of string buffer */
size_t outbufused; /* space used in string buffer */
bool outputisstring; /* true if output is to string buffer */
};
STATIC IOSTATE *oldiostates = NULL; /* list of saved output states */
STATIC FILE *outfp = NULL; /* file unit for output */
STATIC char *outbuf = NULL; /* current diverted buffer */
STATIC bool outputisstring = false;
STATIC size_t outbufsize;
STATIC size_t outbufused;
/*
* zio_init - perform needed initialization work
*
* On some systems, one cannot initialize a pointer to a FILE *.
* This routine, called once at startup is a work-a-round for
* systems with such bogons.
*/
void
zio_init(void)
{
STATIC int done = 0; /* 1 => routine already called */
if (!done) {
outfp = stdout;
done = 1;
}
}
/*
* Routine to output a character either to a FILE
* handle or into a string.
*/
void
math_chr(int ch)
{
char *cp;
if (!outputisstring) {
fputc(ch, outfp);
return;
}
if (outbufused >= outbufsize) {
cp = (char *)realloc(outbuf, outbufsize + OUTBUFSIZE + 1);
if (cp == NULL) {
math_error("Cannot realloc output string");
not_reached();
}
outbuf = cp;
outbufsize += OUTBUFSIZE;
}
outbuf[outbufused++] = (char)ch;
}
/*
* Routine to output a null-terminated string either
* to a FILE handle or into a string.
*/
void
math_str(char *str)
{
char *cp;
size_t len;
/* firewall */
if (str == NULL) {
math_error("%s: str NULL", __func__);
not_reached();
}
if (!outputisstring) {
fputs(str, outfp);
return;
}
len = strlen(str);
if ((outbufused + len) > outbufsize) {
cp = (char *)realloc(outbuf, outbufsize + len + OUTBUFSIZE + 1);
if (cp == NULL) {
math_error("Cannot realloc output string");
not_reached();
}
outbuf = cp;
outbufsize += (len + OUTBUFSIZE);
}
memcpy(&outbuf[outbufused], str, len);
outbufused += len;
}
/*
* Output a null-terminated string either to a FILE handle or into a string,
* padded with spaces as needed so as to fit within the specified width.
* If width is positive, the spaces are added at the front of the string.
* If width is negative, the spaces are added at the end of the string.
* The complete string is always output, even if this overflows the width.
* No characters within the string are handled specially.
*/
void
math_fill(char *str, long width)
{
/* firewall */
if (str == NULL) {
math_error("%s: str NULL", __func__);
not_reached();
}
if (width > 0) {
width -= (long)strlen(str);
while (width-- > 0)
PUTCHAR(' ');
PUTSTR(str);
} else {
width += (long)strlen(str);
PUTSTR(str);
while (width++ < 0)
PUTCHAR(' ');
}
}
/*
* Routine to output a printf-style formatted string either
* to a FILE handle or into a string.
*/
void
math_fmt(char *fmt, ...)
{
va_list ap;
char buf[BUFSIZ+1];
/* firewall */
if (fmt == NULL) {
math_error("%s: fmt NULL", __func__);
not_reached();
}
va_start(ap, fmt);
vsnprintf(buf, BUFSIZ, fmt, ap);
va_end(ap);
buf[BUFSIZ] = '\0'; /* paranoia */
math_str(buf);
}
/*
* Flush the current output stream.
*/
void
math_flush(void)
{
if (!outputisstring)
fflush(outfp);
}
/*
* Divert further output so that it is saved into a string that will be
* returned later when the diversion is completed. The current state of
* output is remembered for later restoration. Diversions can be nested.
* Output diversion is only intended for saving output to "stdout".
*/
void
math_divertio(void)
{
register IOSTATE *sp;
sp = (IOSTATE *) malloc(sizeof(IOSTATE));
if (sp == NULL) {
math_error("No memory for diverting output");
not_reached();
}
sp->oldiostates = oldiostates;
sp->outdigits = conf->outdigits;
sp->outmode = conf->outmode;
sp->outmode2 = conf->outmode2;
sp->outfp = outfp;
sp->outbuf = outbuf;
sp->outbufsize = outbufsize;
sp->outbufused = outbufused;
sp->outputisstring = outputisstring;
outbufused = 0;
outbufsize = 0;
outbuf = (char *) malloc(OUTBUFSIZE + 1);
if (outbuf == NULL) {
math_error("Cannot allocate divert string");
not_reached();
}
outbufsize = OUTBUFSIZE;
outputisstring = true;
oldiostates = sp;
}
/*
* Un-divert output and return the saved output as a string. This also
* restores the output state to what it was before the diversion began.
* The string needs freeing by the caller when it is no longer needed.
*/
char *
math_getdivertedio(void)
{
register IOSTATE *sp;
char *cp;
sp = oldiostates;
if (sp == NULL) {
math_error("No diverted state to restore");
not_reached();
}
cp = outbuf;
cp[outbufused] = '\0';
oldiostates = sp->oldiostates;
conf->outdigits = sp->outdigits;
conf->outmode = sp->outmode;
conf->outmode2 = sp->outmode2;
outfp = sp->outfp;
outbuf = sp->outbuf;
outbufsize = sp->outbufsize;
outbufused = sp->outbufused;
outbuf = sp->outbuf;
outputisstring = sp->outputisstring;
free(sp);
return cp;
}
/*
* Clear all diversions and set output back to the original destination.
* This is called when resetting the global state of the program.
*/
void
math_cleardiversions(void)
{
while (oldiostates)
free(math_getdivertedio());
}
/*
* Set the output routines to output to the specified FILE stream.
* This interacts with output diversion in the following manner.
* STDOUT diversion action
* ---- --------- ------
* yes yes set output to diversion string again.
* yes no set output to stdout.
* no yes set output to specified file.
* no no set output to specified file.
*/
void
math_setfp(FILE *newfp)
{
/* firewall */
if (newfp == NULL) {
math_error("%s: newfp NULL", __func__);
not_reached();
}
outfp = newfp;
outputisstring = (oldiostates && (newfp == stdout));
}
/*
* Set the output mode for numeric output.
* This also returns the previous mode.
*/
int
math_setmode(int newmode)
{
int oldmode;
if ((newmode <= MODE_DEFAULT) || (newmode > MODE_MAX)) {
math_error("Setting illegal output mode");
not_reached();
}
oldmode = conf->outmode;
conf->outmode = newmode;
return oldmode;
}
/*
* Set the secondary output mode for numeric output.
* This also returns the previous mode.
*/
int
math_setmode2(int newmode)
{
int oldmode;
if (newmode != MODE2_OFF && ((newmode <= MODE_DEFAULT) ||
(newmode > MODE_MAX))) {
math_error("Setting illegal secondary output mode");
not_reached();
}
oldmode = conf->outmode2;
conf->outmode2 = newmode;
return oldmode;
}
/*
* Set the number of digits for float or exponential output.
* This also returns the previous number of digits.
*/
LEN
math_setdigits(LEN newdigits)
{
LEN olddigits;
if (newdigits < 0) {
math_error("Setting illegal number of digits");
not_reached();
}
olddigits = conf->outdigits;
conf->outdigits = newdigits;
return olddigits;
}
/*
* Print an integer value as a hex number.
* Width is the number of columns to print the number in, including the
* sign if required. If zero, no extra output is done. If positive,
* leading spaces are typed if necessary. If negative, trailing spaces are
* typed if necessary. The special characters 0x appear to indicate the
* number is hex.
*/
/*ARGSUSED*/
void
zprintx(ZVALUE z, long width)
{
register HALF *hp; /* current word to print */
int len; /* number of halfwords to type */
char *str;
if (width) {
math_divertio();
zprintx(z, 0L);
str = math_getdivertedio();
math_fill(str, width);
free(str);
return;
}
len = z.len - 1;
if (zisneg(z))
PUTCHAR('-');
if ((len == 0) && (*z.v <= (HALF) 9)) {
len = '0' + (int)(*z.v);
PUTCHAR(len & 0xff);
return;
}
hp = z.v + len;
#if BASEB == 32
PRINTF1("0x%lx", (PRINT) *hp--);
while (--len >= 0) {
PRINTF1("%08lx", (PRINT) *hp--);
}
#else /* BASEB == 32 */
PRINTF1("0x%lx", (FULL) *hp--);
while (--len >= 0) {
PRINTF1("%04lx", (FULL) *hp--);
}
#endif /* BASEB == 32 */
}
/*
* Print an integer value as a binary number.
* The special characters 0b appear to indicate the number is binary.
*/
/*ARGSUSED*/
void
zprintb(ZVALUE z, long width)
{
register HALF *hp; /* current word to print */
int len; /* number of halfwords to type */
HALF val; /* current value */
HALF mask; /* current mask */
int didprint; /* nonzero if printed some digits */
int ch; /* current char */
char *str;
if (width) {
math_divertio();
zprintb(z, 0L);
str = math_getdivertedio();
math_fill(str, width);
free(str);
return;
}
len = z.len - 1;
if (zisneg(z))
PUTCHAR('-');
if ((len == 0) && (*z.v <= (FULL) 1)) {
len = '0' + (int)(*z.v);
PUTCHAR(len & 0xff);
return;
}
hp = z.v + len;
didprint = 0;
PUTSTR("0b");
while (len-- >= 0) {
val = ((len >= 0) ? *hp-- : *hp);
mask = ((HALF)1 << (BASEB - 1));
while (mask) {
ch = '0' + ((mask & val) != 0);
if (didprint || (ch != '0')) {
PUTCHAR(ch & 0xff);
didprint = 1;
}
mask >>= 1;
}
}
}
/*
* Print an integer value as an octal number.
* The number begins with a leading 0 to indicate that it is octal.
*/
/*ARGSUSED*/
void
zprinto(ZVALUE z, long width)
{
register HALF *hp; /* current word to print */
int len; /* number of halfwords to type */
#if BASEB == 32 /* Yes, the larger base needs a smaller type! */
HALF num1='0'; /* numbers to type */
HALF num2=(HALF)0; /* numbers to type */
HALF num3; /* numbers to type */
HALF num4; /* numbers to type */
#else
FULL num1='0'; /* numbers to type */
FULL num2=(FULL)0; /* numbers to type */
#endif
int rem; /* remainder number of halfwords */
char *str;
if (width) {
math_divertio();
zprinto(z, 0L);
str = math_getdivertedio();
math_fill(str, width);
free(str);
return;
}
if (zisneg(z))
PUTCHAR('-');
len = z.len;
if ((len == 1) && (*z.v <= (FULL) 7)) {
num1 = '0' + (int)(*z.v);
PUTCHAR((int)(num1 & 0xff));
return;
}
hp = z.v + len - 1;
rem = len % 3;
#if BASEB == 32
switch (rem) { /* handle odd amounts first */
case 0:
num1 = ((hp[0]) >> 8);
num2 = (((hp[0] & 0xff) << 16) + (hp[-1] >> 16));
num3 = (((hp[-1] & 0xffff) << 8) + (hp[-2] >> 24));
num4 = (hp[-2] & 0xffffff);
if (num1) {
PRINTF4("0%lo%08lo%08lo%08lo",
(PRINT) num1, (PRINT) num2,
(PRINT) num3, (PRINT) num4);
} else {
PRINTF3("0%lo%08lo%08lo",
(PRINT) num2, (PRINT) num3, (PRINT) num4);
}
rem = 3;
break;
case 1:
PRINTF1("0%lo", (PRINT) hp[0]);
break;
case 2:
num1 = ((hp[0]) >> 16);
num2 = (((hp[0] & 0xffff) << 8) + (hp[-1] >> 24));
num3 = (hp[-1] & 0xffffff);
if (num1) {
PRINTF3("0%lo%08lo%08lo",
(PRINT) num1, (PRINT) num2, (PRINT) num3);
} else {
PRINTF2("0%lo%08lo", (PRINT) num2, (PRINT) num3);
}
break;
}
len -= rem;
if (len > 0) {
hp -= rem;
while (len > 0) { /* finish in groups of 3 words */
PRINTF4("%08lo%08lo%08lo%08lo",
(PRINT) ((hp[0]) >> 8),
(PRINT) (((hp[0] & 0xff) << 16) + (hp[-1] >> 16)),
(PRINT) (((hp[-1] & 0xffff) << 8) + (hp[-2] >> 24)),
(PRINT) (hp[-2] & 0xffffff));
hp -= 3;
len -= 3;
}
}
#else
switch (rem) { /* handle odd amounts first */
case 0:
num1 = ((((FULL) hp[0]) << 8) + (((FULL) hp[-1]) >> 8));
num2 = ((((FULL) (hp[-1] & 0xff)) << 16) + ((FULL) hp[-2]));
rem = 3;
break;
case 1:
num1 = 0;
num2 = (FULL) hp[0];
break;
case 2:
num1 = (((FULL) hp[0]) >> 8);
num2 = ((((FULL) (hp[0] & 0xff)) << 16) + ((FULL) hp[-1]));
break;
}
if (num1) {
PRINTF2("0%lo%08lo", num1, num2);
} else {
PRINTF1("0%lo", num2);
}
len -= rem;
if (len > 0) {
hp -= rem;
while (len > 0) { /* finish in groups of 3 halfwords */
PRINTF2("%08lo%08lo",
((((FULL) hp[0]) << 8) + (((FULL) hp[-1]) >> 8)),
((((FULL) (hp[-1] & 0xff))<<16) + ((FULL) hp[-2])));
hp -= 3;
len -= 3;
}
}
#endif
}
/*
* Print a decimal integer to the terminal.
* This works by dividing the number by 10^2^N for some N, and
* then doing this recursively on the quotient and remainder.
* Decimals supplies number of decimal places to print, with a decimal
* point at the right location, with zero meaning no decimal point.
* Width is the number of columns to print the number in, including the
* decimal point and sign if required. If zero, no extra output is done.
* If positive, leading spaces are typed if necessary. If negative, trailing
* spaces are typed if necessary. As examples of the effects of these values,
* (345,0,0) = "345", (345,2,0) = "3.45", (345,5,8) = " .00345".
*
* given:
* z number to be printed
* decimals number of decimal places
* width number of columns to print in
*/
void
zprintval(ZVALUE z, long decimals, long width)
{
int depth; /* maximum depth */
int n; /* current index into array */
long i; /* number to print */
long leadspaces; /* number of leading spaces to print */
long putpoint; /* digits until print decimal point */
long digits; /* number of digits of raw number */
bool output; /* true if have output something */
bool neg; /* true if negative */
ZVALUE quo, rem; /* quotient and remainder */
ZVALUE leftnums[32]; /* left parts of the number */
ZVALUE rightnums[32]; /* right parts of the number */
if (decimals < 0)
decimals = 0;
if (width < 0)
width = 0;
neg = (z.sign != 0);
leadspaces = width - neg - (decimals > 0);
z.sign = 0;
/*
* Find the 2^N power of ten which is greater than or equal
* to the number, calculating it the first time if necessary.
*/
_tenpowers_[0] = _ten_;
depth = 0;
while ((_tenpowers_[depth].len < z.len) ||
(zrel(_tenpowers_[depth], z) <= 0)) {
depth++;
if (_tenpowers_[depth].len == 0) {
if (depth <= TEN_MAX) {
zsquare(_tenpowers_[depth-1],
&_tenpowers_[depth]);
} else {
math_error("cannot compute 10^2^(TEN_MAX+1)");
not_reached();
}
}
}
/*
* Divide by smaller 2^N powers of ten until the parts are small
* enough to output. This algorithm walks through a binary tree
* where each node is a piece of the number to print, and such that
* we visit left nodes first. We do the needed recursion in line.
*/
digits = 1;
output = false;
n = 0;
putpoint = 0;
rightnums[0].len = 0;
leftnums[0] = z;
for (;;) {
while (n < depth) {
i = depth - n - 1;
zdiv(leftnums[n], _tenpowers_[i], &quo, &rem, 0);
if (!ziszero(quo))
digits += (1L << i);
n++;
leftnums[n] = quo;
rightnums[n] = rem;
}
i = (long)(leftnums[n].v[0]);
if (output || i || (n == 0)) {
if (!output) {
output = true;
if (decimals < digits)
leadspaces -= digits;
else
leadspaces -= decimals+conf->leadzero;
while (--leadspaces >= 0)
PUTCHAR(' ');
if (neg)
PUTCHAR('-');
if (decimals) {
putpoint = (digits - decimals);
if (putpoint <= 0) {
if (conf->leadzero)
PUTCHAR('0');
PUTCHAR('.');
while (++putpoint <= 0)
PUTCHAR('0');
putpoint = 0;
}
}
}
i += '0';
PUTCHAR((int)(i & 0xff));
if (--putpoint == 0)
PUTCHAR('.');
}
while (rightnums[n].len == 0) {
if (n <= 0)
return;
if (leftnums[n].len)
zfree(leftnums[n]);
n--;
}
zfree(leftnums[n]);
leftnums[n] = rightnums[n];
rightnums[n].len = 0;
}
}
/*
* Read an integer value in decimal, hex, octal, or binary.
* Hex numbers are indicated by a leading "0x", binary with a leading "0b",
* and octal by a leading "0". Periods are skipped over, but any other
* extraneous character stops the scan.
*/
void
str2z(char *s, ZVALUE *res)
{
ZVALUE z, ztmp, digit;
HALF digval;
bool minus;
long shift;
/* firewall */
if (s == NULL) {
math_error("%s: s NULL", __func__);
not_reached();
}
if (res == NULL) {
math_error("%s: res NULL", __func__);
not_reached();
}
minus = false;
shift = 0;
if (*s == '+')
s++;
else if (*s == '-') {
minus = true;
s++;
}
if (*s == '0') { /* possibly hex, octal, or binary */
s++;
if ((*s >= '0') && (*s <= '7')) {
shift = 3;
} else if ((*s == 'x') || (*s == 'X')) {
shift = 4;
s++;
} else if ((*s == 'b') || (*s == 'B')) {
shift = 1;
s++;
}
}
digit.v = &digval;
digit.len = 1;
digit.sign = 0;
z = _zero_;
while (*s) {
digval = *s++;
if ((digval >= '0') && (digval <= '9'))
digval -= '0';
else if ((digval >= 'a') && (digval <= 'f') && shift)
digval -= ('a' - 10);
else if ((digval >= 'A') && (digval <= 'F') && shift)
digval -= ('A' - 10);
else if (digval == '.')
continue;
else
break;
if (shift)
zshift(z, shift, &ztmp);
else
zmuli(z, 10L, &ztmp);
zfree(z);
zadd(ztmp, digit, &z);
zfree(ztmp);
}
ztrim(&z);
if (minus && !ziszero(z))
z.sign = 1;
*res = z;
}
void
fitzprint(ZVALUE z, long digits, long show)
{
ZVALUE ztmp1, ztmp2;
long i;
if (digits <= show) {
zprintval(z, 0, 0);
return;
}
show /= 2;
ztenpow(digits - show, &ztmp1);
(void) zquo(z, ztmp1, &ztmp2, 1);
zprintval(ztmp2, 0, 0);
zfree(ztmp1);
zfree(ztmp2);
printf("...");
ztenpow(show, &ztmp1);
(void) zmod(z, ztmp1, &ztmp2, 0);
i = zdigits(ztmp2);
while (i++ < show)
printf("0");
zprintval(ztmp2, 0, 0);
zfree(ztmp1);
zfree(ztmp2);
}
/* END CODE */