Files
calc/cal/factorial.cal
Landon Curt Noll db77e29a23 convert ASCII TABs to ASCII SPACEs
Converted all ASCII tabs to ASCII spaces using a 8 character
tab stop, for all files, except for all Makefiles (plus rpm.mk).
The `git diff -w` reports no changes.
2024-07-11 22:03:52 -07:00

201 lines
5.4 KiB
Plaintext

/*
* factorial - implementation of different algorithms for the factorial
*
* Copyright (C) 2013 Christoph Zurnieden
*
* Calc is open software; you can redistribute it and/or modify it under
* the terms of the version 2.1 of the GNU Lesser General Public License
* as published by the Free Software Foundation.
*
* Calc is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General
* Public License for more details.
*
* A copy of version 2.1 of the GNU Lesser General Public License is
* distributed with calc under the filename COPYING-LGPL. You should have
* received a copy with calc; if not, write to Free Software Foundation, Inc.
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Under source code control: 2013/08/11 01:31:28
* File existed as early as: 2013
*/
/*
* hide internal function from resource debugging
*/
static resource_debug_level;
resource_debug_level = config("resource_debug", 0);
/*
get dependencies
*/
read -once toomcook;
/* A simple list to keep things...uhm...simple?*/
static __CZ__primelist = list();
/* Helper for primorial: fill list with primes in range a,b */
define __CZ__fill_prime_list(a,b)
{
local k;
k=a;
if(isprime(k))k--;
while(1){
k = nextprime(k);
if(k > b) break;
append(__CZ__primelist,k );
}
}
/* Helper for factorial: how often prime p divides the factorial of n */
define __CZ__prime_divisors(n,p)
{
local q,m;
q = n;
m = 0;
if (p > n) return 0;
if (p > n/2) return 1;
while (q >= p) {
q = q//p;
m += q;
}
return m;
}
/*
Wrapper. Please set cut-offs to own taste and hardware.
*/
define factorial(n){
local prime result shift prime_list k k1 k2 expo_list pix cut primorial;
result = 1;
prime = 2;
if(!isint(n)) {
return newerror("factorial(n): n is not an integer"); ## or gamma(n)?
}
if(n < 0) return newerror("factorial(n): n < 0");
if(n < 9000 && !isdefined("test8900")) {
## builtin is implemented with splitting but only with
## Toom-Cook 2 (by Karatsuba (the father))
return n!;
}
shift = __CZ__prime_divisors(n,prime);
prime = 3;
cut = n//2;
pix = pix(cut);
prime_list = mat[pix];
expo_list = mat[pix];
k = 0;
/*
Peter Borwein's algorithm
@Article{journals/jal/Borwein85,
author = {Borwein, Peter B.},
title = {On the Complexity of Calculating Factorials.},
journal = {J. Algorithms},
year = {1985},
number = {3},
url = {http://dblp.uni-trier.de/db/journals/jal/jal6.html#Borwein85}
*/
do {
prime_list[k] = prime;
expo_list[k++] = __CZ__prime_divisors(n,prime);
prime = nextprime(prime);
}while(prime <= cut);
/* size of the largest exponent in bits */
k1 = highbit(expo_list[0]);
k2 = size(prime_list)-1;
for(;k1>=0;k1--){
/*
the cut-off for T-C-4 ist still to low, using T-C-3 here
TODO: check cutoffs
*/
result = toomcook3square(result);
/*
almost all time is spend in this loop, so cutting of the
upper half of the primes makes sense
*/
for(k=0; k<=k2; k++) {
if((expo_list[k] & (1 << k1)) != 0) {
result *= prime_list[k];
}
}
}
primorial = primorial( cut, n);
result *= primorial;
result <<= shift;
return result;
}
/*
Helper for primorial: do the product with binary splitting
TODO: do it without the intermediate list
*/
define __CZ__primorial__lowlevel( a, b ,p)
{
local c;
if( b == a) return p ;
if( b-a > 1){
c= (b + a) >> 1;
return __CZ__primorial__lowlevel( a , c , __CZ__primelist[a] )
* __CZ__primorial__lowlevel( c+1 , b , __CZ__primelist[b] ) ;
}
return __CZ__primelist[a] * __CZ__primelist[b];
}
/*
Primorial, Product of consecutive primes in range a,b
Originally meant to do primorials with a start different from 2, but
found out that this is faster at about a=1,b>=10^5 than the builtin
function pfact(). With the moderately small list a=1,b=10^6 (78498
primes) it is 3 times faster. A quick look-up showed what was already
guessed: pfact() does it linearly. (BTW: what is the time complexity
of the primorial with the naive algorithm?)
*/
define primorial(a,b)
{
local C1 C2;
if(!isint(a)) return newerror("primorial(a,b): a is not an integer");
else if(!isint(b)) return newerror("primorial(a,b): b is not an integer");
else if(a < 0) return newerror("primorial(a,b): a < 0");
else if( b < 2 ) return newerror("primorial(a,b): b < 2");
else if( b < a) return newerror("primorial(a,b): b < a");
else{
/* last prime < 2^32 is also max. prime for nextprime()*/
if(b >= 4294967291) return newerror("primorial(a,b): max. prime exceeded");
if(b == 2) return 2;
/*
Can be extended by way of pfact(b)/pfact(floor(a-1/2)) for small a
*/
if(a<=2 && b < 10^5) return pfact(b);
/* TODO: use pix() and a simple array (mat[])instead*/
__CZ__primelist = list();
__CZ__fill_prime_list(a,b);
C1 = size(__CZ__primelist)-1;
return __CZ__primorial__lowlevel( 0, C1,1)
}
}
/*
* restore internal function from resource debugging
* report important interface functions
*/
config("resource_debug", resource_debug_level),;
if (config("resource_debug") & 3) {
print "factorial(n)";
print "primorial(a, b)";
}