/* * commath - extended precision complex arithmetic primitive routines * * Copyright (C) 1999-2007 David I. Bell * * Calc is open software; you can redistribute it and/or modify it under * the terms of the version 2.1 of the GNU Lesser General Public License * as published by the Free Software Foundation. * * Calc is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General * Public License for more details. * * A copy of version 2.1 of the GNU Lesser General Public License is * distributed with calc under the filename COPYING-LGPL. You should have * received a copy with calc; if not, write to Free Software Foundation, Inc. * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * @(#) $Revision: 30.1 $ * @(#) $Id: commath.c,v 30.1 2007/03/16 11:09:46 chongo Exp $ * @(#) $Source: /usr/local/src/bin/calc/RCS/commath.c,v $ * * Under source code control: 1990/02/15 01:48:10 * File existed as early as: before 1990 * * Share and enjoy! :-) http://www.isthe.com/chongo/tech/comp/calc/ */ #include "cmath.h" COMPLEX _czero_ = { &_qzero_, &_qzero_, 1 }; COMPLEX _cone_ = { &_qone_, &_qzero_, 1 }; COMPLEX _conei_ = { &_qzero_, &_qone_, 1 }; STATIC COMPLEX _cnegone_ = { &_qnegone_, &_qzero_, 1 }; /* * Add two complex numbers. */ COMPLEX * c_add(COMPLEX *c1, COMPLEX *c2) { COMPLEX *r; if (ciszero(c1)) return clink(c2); if (ciszero(c2)) return clink(c1); r = comalloc(); if (!qiszero(c1->real) || !qiszero(c2->real)) { qfree(r->real); r->real = qqadd(c1->real, c2->real); } if (!qiszero(c1->imag) || !qiszero(c2->imag)) { qfree(r->imag); r->imag = qqadd(c1->imag, c2->imag); } return r; } /* * Subtract two complex numbers. */ COMPLEX * c_sub(COMPLEX *c1, COMPLEX *c2) { COMPLEX *r; if ((c1->real == c2->real) && (c1->imag == c2->imag)) return clink(&_czero_); if (ciszero(c2)) return clink(c1); r = comalloc(); if (!qiszero(c1->real) || !qiszero(c2->real)) { qfree(r->real); r->real = qsub(c1->real, c2->real); } if (!qiszero(c1->imag) || !qiszero(c2->imag)) { qfree(r->imag); r->imag = qsub(c1->imag, c2->imag); } return r; } /* * Multiply two complex numbers. * This saves one multiplication over the obvious algorithm by * trading it for several extra additions, as follows. Let * q1 = (a + b) * (c + d) * q2 = a * c * q3 = b * d * Then (a+bi) * (c+di) = (q2 - q3) + (q1 - q2 - q3)i. */ COMPLEX * c_mul(COMPLEX *c1, COMPLEX *c2) { COMPLEX *r; NUMBER *q1, *q2, *q3, *q4; if (ciszero(c1) || ciszero(c2)) return clink(&_czero_); if (cisone(c1)) return clink(c2); if (cisone(c2)) return clink(c1); if (cisreal(c2)) return c_mulq(c1, c2->real); if (cisreal(c1)) return c_mulq(c2, c1->real); /* * Need to do the full calculation. */ r = comalloc(); q2 = qqadd(c1->real, c1->imag); q3 = qqadd(c2->real, c2->imag); q1 = qmul(q2, q3); qfree(q2); qfree(q3); q2 = qmul(c1->real, c2->real); q3 = qmul(c1->imag, c2->imag); q4 = qqadd(q2, q3); qfree(r->real); r->real = qsub(q2, q3); qfree(r->imag); r->imag = qsub(q1, q4); qfree(q1); qfree(q2); qfree(q3); qfree(q4); return r; } /* * Square a complex number. */ COMPLEX * c_square(COMPLEX *c) { COMPLEX *r; NUMBER *q1, *q2; if (ciszero(c)) return clink(&_czero_); if (cisrunit(c)) return clink(&_cone_); if (cisiunit(c)) return clink(&_cnegone_); r = comalloc(); if (cisreal(c)) { qfree(r->real); r->real = qsquare(c->real); return r; } if (cisimag(c)) { qfree(r->real); q1 = qsquare(c->imag); r->real = qneg(q1); qfree(q1); return r; } q1 = qsquare(c->real); q2 = qsquare(c->imag); qfree(r->real); r->real = qsub(q1, q2); qfree(q1); qfree(q2); qfree(r->imag); q1 = qmul(c->real, c->imag); r->imag = qscale(q1, 1L); qfree(q1); return r; } /* * Divide two complex numbers. */ COMPLEX * c_div(COMPLEX *c1, COMPLEX *c2) { COMPLEX *r; NUMBER *q1, *q2, *q3, *den; if (ciszero(c2)) { math_error("Division by zero"); /*NOTREACHED*/ } if ((c1->real == c2->real) && (c1->imag == c2->imag)) return clink(&_cone_); r = comalloc(); if (cisreal(c1) && cisreal(c2)) { qfree(r->real); r->real = qqdiv(c1->real, c2->real); return r; } if (cisimag(c1) && cisimag(c2)) { qfree(r->real); r->real = qqdiv(c1->imag, c2->imag); return r; } if (cisimag(c1) && cisreal(c2)) { qfree(r->imag); r->imag = qqdiv(c1->imag, c2->real); return r; } if (cisreal(c1) && cisimag(c2)) { qfree(r->imag); q1 = qqdiv(c1->real, c2->imag); r->imag = qneg(q1); qfree(q1); return r; } if (cisreal(c2)) { qfree(r->real); qfree(r->imag); r->real = qqdiv(c1->real, c2->real); r->imag = qqdiv(c1->imag, c2->real); return r; } q1 = qsquare(c2->real); q2 = qsquare(c2->imag); den = qqadd(q1, q2); qfree(q1); qfree(q2); q1 = qmul(c1->real, c2->real); q2 = qmul(c1->imag, c2->imag); q3 = qqadd(q1, q2); qfree(q1); qfree(q2); qfree(r->real); r->real = qqdiv(q3, den); qfree(q3); q1 = qmul(c1->real, c2->imag); q2 = qmul(c1->imag, c2->real); q3 = qsub(q2, q1); qfree(q1); qfree(q2); qfree(r->imag); r->imag = qqdiv(q3, den); qfree(q3); qfree(den); return r; } /* * Invert a complex number. */ COMPLEX * c_inv(COMPLEX *c) { COMPLEX *r; NUMBER *q1, *q2, *den; if (ciszero(c)) { math_error("Inverting zero"); /*NOTREACHED*/ } r = comalloc(); if (cisreal(c)) { qfree(r->real); r->real = qinv(c->real); return r; } if (cisimag(c)) { q1 = qinv(c->imag); qfree(r->imag); r->imag = qneg(q1); qfree(q1); return r; } q1 = qsquare(c->real); q2 = qsquare(c->imag); den = qqadd(q1, q2); qfree(q1); qfree(q2); qfree(r->real); r->real = qqdiv(c->real, den); q1 = qqdiv(c->imag, den); qfree(r->imag); r->imag = qneg(q1); qfree(q1); qfree(den); return r; } /* * Negate a complex number. */ COMPLEX * c_neg(COMPLEX *c) { COMPLEX *r; if (ciszero(c)) return clink(&_czero_); r = comalloc(); if (!qiszero(c->real)) { qfree(r->real); r->real = qneg(c->real); } if (!qiszero(c->imag)) { qfree(r->imag); r->imag = qneg(c->imag); } return r; } /* * Take the integer part of a complex number. * This means take the integer part of both components. */ COMPLEX * c_int(COMPLEX *c) { COMPLEX *r; if (cisint(c)) return clink(c); r = comalloc(); qfree(r->real); r->real = qint(c->real); qfree(r->imag); r->imag = qint(c->imag); return r; } /* * Take the fractional part of a complex number. * This means take the fractional part of both components. */ COMPLEX * c_frac(COMPLEX *c) { COMPLEX *r; if (cisint(c)) return clink(&_czero_); r = comalloc(); qfree(r->real); r->real = qfrac(c->real); qfree(r->imag); r->imag = qfrac(c->imag); return r; } /* * Take the conjugate of a complex number. * This negates the complex part. */ COMPLEX * c_conj(COMPLEX *c) { COMPLEX *r; if (cisreal(c)) return clink(c); r = comalloc(); if (!qiszero(c->real)) { qfree(r->real); r->real = qlink(c->real); } qfree(r->imag); r->imag = qneg(c->imag); return r; } /* * Return the real part of a complex number. */ COMPLEX * c_real(COMPLEX *c) { COMPLEX *r; if (cisreal(c)) return clink(c); r = comalloc(); if (!qiszero(c->real)) { qfree(r->real); r->real = qlink(c->real); } return r; } /* * Return the imaginary part of a complex number as a real. */ COMPLEX * c_imag(COMPLEX *c) { COMPLEX *r; if (cisreal(c)) return clink(&_czero_); r = comalloc(); qfree(r->real); r->real = qlink(c->imag); return r; } /* * Add a real number to a complex number. */ COMPLEX * c_addq(COMPLEX *c, NUMBER *q) { COMPLEX *r; if (qiszero(q)) return clink(c); r = comalloc(); qfree(r->real); qfree(r->imag); r->real = qqadd(c->real, q); r->imag = qlink(c->imag); return r; } /* * Subtract a real number from a complex number. */ COMPLEX * c_subq(COMPLEX *c, NUMBER *q) { COMPLEX *r; if (qiszero(q)) return clink(c); r = comalloc(); qfree(r->real); qfree(r->imag); r->real = qsub(c->real, q); r->imag = qlink(c->imag); return r; } /* * Shift the components of a complex number left by the specified * number of bits. Negative values shift to the right. */ COMPLEX * c_shift(COMPLEX *c, long n) { COMPLEX *r; if (ciszero(c) || (n == 0)) return clink(c); r = comalloc(); qfree(r->real); qfree(r->imag); r->real = qshift(c->real, n); r->imag = qshift(c->imag, n); return r; } /* * Scale a complex number by a power of two. */ COMPLEX * c_scale(COMPLEX *c, long n) { COMPLEX *r; if (ciszero(c) || (n == 0)) return clink(c); r = comalloc(); qfree(r->real); qfree(r->imag); r->real = qscale(c->real, n); r->imag = qscale(c->imag, n); return r; } /* * Multiply a complex number by a real number. */ COMPLEX * c_mulq(COMPLEX *c, NUMBER *q) { COMPLEX *r; if (qiszero(q)) return clink(&_czero_); if (qisone(q)) return clink(c); if (qisnegone(q)) return c_neg(c); r = comalloc(); qfree(r->real); qfree(r->imag); r->real = qmul(c->real, q); r->imag = qmul(c->imag, q); return r; } /* * Divide a complex number by a real number. */ COMPLEX * c_divq(COMPLEX *c, NUMBER *q) { COMPLEX *r; if (qiszero(q)) { math_error("Division by zero"); /*NOTREACHED*/ } if (qisone(q)) return clink(c); if (qisnegone(q)) return c_neg(c); r = comalloc(); qfree(r->real); qfree(r->imag); r->real = qqdiv(c->real, q); r->imag = qqdiv(c->imag, q); return r; } /* * Construct a complex number given the real and imaginary components. */ COMPLEX * qqtoc(NUMBER *q1, NUMBER *q2) { COMPLEX *r; if (qiszero(q1) && qiszero(q2)) return clink(&_czero_); r = comalloc(); qfree(r->real); qfree(r->imag); r->real = qlink(q1); r->imag = qlink(q2); return r; } /* * Compare two complex numbers for equality, returning FALSE if they are equal, * and TRUE if they differ. */ BOOL c_cmp(COMPLEX *c1, COMPLEX *c2) { BOOL i; i = qcmp(c1->real, c2->real); if (!i) i = qcmp(c1->imag, c2->imag); return i; } /* * Compare two complex numbers and return a complex number with real and * imaginary parts -1, 0 or 1 indicating relative values of the real and * imaginary parts of the two numbers. */ COMPLEX * c_rel(COMPLEX *c1, COMPLEX *c2) { COMPLEX *c; c = comalloc(); qfree(c->real); qfree(c->imag); c->real = itoq((long) qrel(c1->real, c2->real)); c->imag = itoq((long) qrel(c1->imag, c2->imag)); return c; } /* * Allocate a new complex number. */ COMPLEX * comalloc(void) { COMPLEX *r; r = (COMPLEX *) malloc(sizeof(COMPLEX)); if (r == NULL) { math_error("Cannot allocate complex number"); /*NOTREACHED*/ } r->links = 1; r->real = qlink(&_qzero_); r->imag = qlink(&_qzero_); return r; } /* * Free a complex number. */ void comfree(COMPLEX *c) { if (--(c->links) > 0) return; qfree(c->real); qfree(c->imag); free(c); }