/* * zrand - subtractive 100 shuffle generator * * Copyright (C) 1999-2007,2014 Landon Curt Noll * * Calc is open software; you can redistribute it and/or modify it under * the terms of the version 2.1 of the GNU Lesser General Public License * as published by the Free Software Foundation. * * Calc is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General * Public License for more details. * * A copy of version 2.1 of the GNU Lesser General Public License is * distributed with calc under the filename COPYING-LGPL. You should have * received a copy with calc; if not, write to Free Software Foundation, Inc. * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * @(#) $Revision: 30.3 $ * @(#) $Id: zrand.h,v 30.3 2014/08/24 21:56:51 chongo Exp $ * @(#) $Source: /usr/local/src/bin/calc/RCS/zrand.h,v $ * * Under source code control: 1995/01/07 09:45:26 * File existed as early as: 1994 * * chongo /\oo/\ http://www.isthe.com/chongo/ * Share and enjoy! :-) http://www.isthe.com/chongo/tech/comp/calc/ */ /* * random number generator - see zrand.c for details */ #if !defined(INCLUDE_ZRAND_H) #define INCLUDE_ZRAND_H #if defined(CALC_SRC) /* if we are building from the calc source tree */ # include "value.h" # include "have_const.h" #else # include # include #endif /* * s100 generator defines * * NOTE: SBITS must be a power of two to make the (&= (SBITS-1)) * in slotcp() to work. */ #define SBITS (64) /* size of subtractive or shuffle entry in bits */ #define SBYTES (SBITS/8) /* size of subtractive or shuffle entry in bytes */ #define SHALFS (SBYTES/sizeof(HALF)) /* size in HALFs */ /* * seed defines */ #define SEEDXORBITS 64 /* low bits of s100 seed devoted to xor */ /* * shuffle table defines */ #define SHUFPOW 8 /* power of 2 size of the shuffle table */ #define SHUFCNT (1 << SHUFPOW) /* size of shuffle table */ #define SHUFLEN (SLEN*SHUFCNT) /* length of shuffle table in FULLs */ #define SHUFMASK (SHUFLEN-1) /* mask for shuffle table entry selection */ /* * subtractive 100 constants */ #define S100 100 /* slots in an subtractive 100 table */ #define INIT_J 36 /* initial first walking table index */ #define INIT_K 99 /* initial second walking table index */ /* * subtractive 100 table defines * * SLEN - length in FULLs of an subtractive 100 slot * * SLOAD(s,i,z) - load table slot i from subtractive 100 state s with zvalue z * s: type RAND * i: type int, s.slot[i] slot index * z: type ZVALUE, what to load into s.slot[i] * * SSUB(s,k,j) - slot[k] -= slot[j] * s: type RAND * k: type int, s.slot[k] slot index, what to gets changed * j: type int, s.slot[j] slot index, what to add to s.slot[k] * (may use local variable tmp) * * SINDX(s,k) - select the shuffle table entry from slot[k] (uses top bits) * s: type RAND * k: type int, s.slot[k] slot index, selects shuffle entry * result type int, refers to s.shuf[SINDX(s,k)] * * SBUFFER(s,t) - load s100 buffer with t * s: type RAND * t: type int, s.shuf[t] entry index, replace buffer with it * * SSHUF(s,t,k) - save slot[k] into shuffle entry t * s: type RAND * t: type int, s.shuf[t] entry index, what gets changed * k: type int, s.slot[k] slot index, load into s.shuf[t] * * SSWAP(s,j,k) - swap slot[j] with slot[k] * s: type RAND * j: type int, s.slot[j] slot index, goes into s.slot[k] * k: type int, s.slot[k] slot index, goes into s.slot[j] * (uses local variable tmp) * * SMOD64(t,z) - t = seed z mod 2^64 * t: type FULL*, array of FULLs that get z mod 2^64 * z: type ZVALUE, what gets (mod 2^64) placed into t * * SOXR(s,i,v) - xor slot[i] with lower 64 bits of slot value v * s: type RAND * i: type int, s.slot[i] slot index, what gets xored * v: type FULL*, 64 bit value to xor into s.slot[i] * * SCNT - length of an subtractive 100 table in FULLs */ #if FULL_BITS == SBITS # define SLEN 1 /* a 64 bit slot can be held in a FULL */ #define SLOAD(s,i,z) ((s).slot[i] = ztofull(z)) #define SSUB(s,k,j) ((s).slot[k] -= (s).slot[j]) #define SINDX(s,k) ((int)((s).slot[k] >> (FULL_BITS - SHUFPOW))) #define SBUFFER(s,t) {(s).buffer[0] = ((s).shuf[t] & BASE1); \ (s).buffer[1] = ((s).shuf[t] >> BASEB); \ } #define SSHUF(s,t,k) ((s).shuf[t] = (s).slot[k]) #define SSWAP(s,j,k) {FULL tmp = (s).slot[j]; \ (s).slot[j] = (s).slot[k]; \ (s).slot[k] = tmp; \ } #define SMOD64(t,z) ((t)[0] = ztofull(z)) #define SXOR(s,i,v) ((s).slot[i] ^= (v)[0]) #elif 2*FULL_BITS == SBITS # define SLEN 2 /* a 64 bit slot needs 2 FULLs */ #define SLOAD(s,i,z) {(s).slot[(i)<<1] = ztofull(z); \ (s).slot[1+((i)<<1)] = \ (((z).len <= 2) ? (FULL)0 : \ (((z).len == 3) ? (FULL)((z).v[2]) : \ ((FULL)((z).v[2]) + ((FULL)((z).v[3]) << BASEB)))); \ } #define SSUB(s,k,j) {FULL tmp = (s).slot[(k)<<1]; \ (s).slot[(k)<<1] -= (s).slot[(j)<<1]; \ (s).slot[1+((k)<<1)] -= ((tmp <= (s).slot[(k)<<1]) ? \ (s).slot[1+((j)<<1)] : \ (s).slot[1+((j)<<1)] + 1); \ } #define SINDX(s,k) ((int)((s).slot[1+((k)<<1)] >> (FULL_BITS - SHUFPOW))) #define SBUFFER(s,t) {(s).buffer[0] = ((s).shuf[(t)<<1] & BASE1); \ (s).buffer[1] = ((s).shuf[(t)<<1] >> BASEB); \ (s).buffer[2] = ((s).shuf[1+((t)<<1)] & BASE1); \ (s).buffer[3] = ((s).shuf[1+((t)<<1)] >> BASEB); \ } #define SSHUF(s,t,k) {(s).shuf[(t)<<1] = (s).slot[(k)<<1]; \ (s).shuf[1+((t)<<1)] = (s).slot[1+((k)<<1)]; \ } #define SSWAP(s,j,k) {FULL tmp = (s).slot[(j)<<1]; \ (s).slot[(j)<<1] = (s).slot[(k)<<1]; \ (s).slot[(k)<<1] = tmp; \ tmp = (s).slot[1+((j)<<1)]; \ (s).slot[1+((j)<<1)] = (s).slot[1+((k)<<1)]; \ (s).slot[1+((k)<<1)] = tmp; \ } #define SMOD64(t,z) {(t)[0] = ztofull(z); \ (t)[1] = (((z).len <= 2) ? (FULL)0 : \ (((z).len == 3) ? (FULL)((z).v[2]) : \ ((FULL)((z).v[2]) + ((FULL)((z).v[3]) << BASEB)))); \ } #define SXOR(s,i,v) {(s).slot[(i)<<1] ^= (v)[0]; \ (s).slot[1+((i)<<1)] ^= (v)[1]; \ } #else /\../\ FULL_BITS must be 32 or 64 /\../\ !!! #endif #define SCNT (SLEN*S100) /* length of subtractive 100 table in FULLs */ #define RAND_CONSEQ_USE (100) /* use this many before skipping */ #define RAND_SKIP (1009-RAND_CONSEQ_USE) /* skip this many after use */ /* * s100 generator state */ struct rand { int seeded; /* 1 => state has been seeded */ int bits; /* buffer bit count */ FULL buffer[SLEN]; /* unused random bits from last call */ int j; /* first walking table index */ int k; /* second walking table index */ int need_to_skip; /* 1 => skip the next 909 values */ FULL slot[SCNT]; /* subtractive 100 table */ FULL shuf[SHUFLEN]; /* shuffle table entries */ }; /* * s100 generator function declarations */ E_FUNC RAND *zsrand(CONST ZVALUE *seed, CONST MATRIX *pmat100); E_FUNC RAND *zsetrand(CONST RAND *state); E_FUNC void zrandskip(long count); E_FUNC void zrand(long count, ZVALUE *res); E_FUNC void zrandrange(CONST ZVALUE low, CONST ZVALUE beyond, ZVALUE *res); E_FUNC long irand(long s); E_FUNC RAND *randcopy(CONST RAND *rand); E_FUNC void randfree(RAND *rand); E_FUNC BOOL randcmp(CONST RAND *s1, CONST RAND *s2); E_FUNC void randprint(CONST RAND *state, int flags); #endif /* !INCLUDE_ZRAND_H */