/* * sha1 - implements new NIST Secure Hash Standard-1 (SHA1) * * Written 2 September 1992, Peter C. Gutmann. * * This file is not covered under version 2.1 of the GNU LGPL. * This file is covered under "The unlicense": * * https://unlicense.org * * In particular: * * This is free and unencumbered software released into the public domain. * * Anyone is free to copy, modify, publish, use, compile, sell, or * distribute this software, either in source code form or as a compiled * binary, for any purpose, commercial or non-commercial, and by any * means. * * In jurisdictions that recognize copyright laws, the author or authors * of this software dedicate any and all copyright interest in the * software to the public domain. We make this dedication for the benefit * of the public at large and to the detriment of our heirs and * successors. We intend this dedication to be an overt act of * relinquishment in perpetuity of all present and future rights to this * software under copyright law. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * For more information, please refer to */ #include #include "alloc.h" #include "longbits.h" #include "align32.h" #include "endian_calc.h" #include "value.h" #include "hash.h" #include "sha1.h" #include "errtbl.h" #include "banned.h" /* include after system header <> includes */ /* * The SHA1 f()-functions. The f1 and f3 functions can be optimized * to save one boolean operation each - thanks to Rich Schroeppel, * rcs@cs.arizona.edu for discovering this. * * f1: ((x&y) | (~x&z)) == (z ^ (x&(y^z))) * f3: ((x&y) | (x&z) | (y&z)) == ((x&y) | (z&(x|y))) */ #define f1(x,y,z) (z ^ (x&(y^z))) /* Rounds 0-19 */ #define f2(x,y,z) (x^y^z) /* Rounds 20-39 */ #define f3(x,y,z) ((x&y) | (z&(x|y))) /* Rounds 40-59 */ #define f4(x,y,z) (x^y^z) /* Rounds 60-79 */ /* The SHA1 Mysterious Constants */ #define K1 0x5A827999L /* Rounds 0-19 */ #define K2 0x6ED9EBA1L /* Rounds 20-39 */ #define K3 0x8F1BBCDCL /* Rounds 40-59 */ #define K4 0xCA62C1D6L /* Rounds 60-79 */ /* SHA1 initial values */ #define h0init 0x67452301L #define h1init 0xEFCDAB89L #define h2init 0x98BADCFEL #define h3init 0x10325476L #define h4init 0xC3D2E1F0L /* 32-bit rotate left - kludged with shifts */ #define LEFT_ROT(X,n) (((X)<<(n)) | ((X)>>(32-(n)))) /* * * The initial expanding function. The hash function is defined over an * 80-word expanded input array W, where the first 16 are copies of the input * data, and the remaining 64 are defined by * * W[i] = LEFT_ROT(W[i-16] ^ W[i-14] ^ W[i-8] ^ W[i-3], 1) * * NOTE: The expanding function used in rounds 16 to 79 was changed from the * original SHA (in FIPS Pub 180) to one that also left circular shifted * by one bit for Secure Hash Algorithm-1 (FIPS Pub 180-1). */ #define exor(W,i,t) \ (t = (W[i&15] ^ W[(i-14)&15] ^ W[(i-8)&15] ^ W[(i-3)&15]), \ W[i&15] = LEFT_ROT(t, 1)) /* * The prototype SHA1 sub-round. The fundamental sub-round is: * * a' = e + LEFT_ROT(a,5) + f(b,c,d) + k + data; * b' = a; * c' = LEFT_ROT(b,30); * d' = c; * e' = d; * * but this is implemented by unrolling the loop 5 times and renaming the * variables ( e, a, b, c, d ) = ( a', b', c', d', e' ) each iteration. * This code is then replicated 20 times for each of the 4 functions, using * the next 20 values from the W[] array each time. */ #define subRound(a, b, c, d, e, f, k, data) \ (e += LEFT_ROT(a,5) + f(b,c,d) + k + data, b = LEFT_ROT(b,30)) /* forward declarations */ S_FUNC void sha1Init(HASH*); S_FUNC void sha1Transform(USB32*, USB32*); S_FUNC void sha1Update(HASH*, USB8*, USB32); S_FUNC void sha1Final(HASH*); S_FUNC void sha1_chkpt(HASH*); S_FUNC void sha1_note(int, HASH*); S_FUNC void sha1_type(int, HASH*); void sha1_init_state(HASH*); S_FUNC ZVALUE sha1_final_state(HASH*); S_FUNC int sha1_cmp(HASH*, HASH*); S_FUNC void sha1_print(HASH*); /* * sha1Init - initialize the SHA1 state */ S_FUNC void sha1Init(HASH *state) { SHA1_INFO *dig = &state->h_union.h_sha1; /* digest state */ /* Set the h-vars to their initial values */ dig->digest[0] = h0init; dig->digest[1] = h1init; dig->digest[2] = h2init; dig->digest[3] = h3init; dig->digest[4] = h4init; /* Initialize bit count */ dig->countLo = 0; dig->countHi = 0; dig->datalen = 0; } /* * sha1Transform - perform the SHA1 transformation * * Note that this code, like MD5, seems to break some optimizing compilers. * It may be necessary to split it into sections, e.g., based on the four * sub-rounds. One may also want to roll each sub-round into a loop. */ S_FUNC void sha1Transform(USB32 *digest, USB32 *W) { USB32 A, B, C, D, E; /* Local vars */ USB32 t; /* temp storage for exor() */ /* Set up first buffer and local data buffer */ A = digest[0]; B = digest[1]; C = digest[2]; D = digest[3]; E = digest[4]; /* Heavy mangling, in 4 sub-rounds of 20 iterations each. */ subRound(A, B, C, D, E, f1, K1, W[ 0]); subRound(E, A, B, C, D, f1, K1, W[ 1]); subRound(D, E, A, B, C, f1, K1, W[ 2]); subRound(C, D, E, A, B, f1, K1, W[ 3]); subRound(B, C, D, E, A, f1, K1, W[ 4]); subRound(A, B, C, D, E, f1, K1, W[ 5]); subRound(E, A, B, C, D, f1, K1, W[ 6]); subRound(D, E, A, B, C, f1, K1, W[ 7]); subRound(C, D, E, A, B, f1, K1, W[ 8]); subRound(B, C, D, E, A, f1, K1, W[ 9]); subRound(A, B, C, D, E, f1, K1, W[10]); subRound(E, A, B, C, D, f1, K1, W[11]); subRound(D, E, A, B, C, f1, K1, W[12]); subRound(C, D, E, A, B, f1, K1, W[13]); subRound(B, C, D, E, A, f1, K1, W[14]); subRound(A, B, C, D, E, f1, K1, W[15]); subRound(E, A, B, C, D, f1, K1, exor(W,16,t)); subRound(D, E, A, B, C, f1, K1, exor(W,17,t)); subRound(C, D, E, A, B, f1, K1, exor(W,18,t)); subRound(B, C, D, E, A, f1, K1, exor(W,19,t)); subRound(A, B, C, D, E, f2, K2, exor(W,20,t)); subRound(E, A, B, C, D, f2, K2, exor(W,21,t)); subRound(D, E, A, B, C, f2, K2, exor(W,22,t)); subRound(C, D, E, A, B, f2, K2, exor(W,23,t)); subRound(B, C, D, E, A, f2, K2, exor(W,24,t)); subRound(A, B, C, D, E, f2, K2, exor(W,25,t)); subRound(E, A, B, C, D, f2, K2, exor(W,26,t)); subRound(D, E, A, B, C, f2, K2, exor(W,27,t)); subRound(C, D, E, A, B, f2, K2, exor(W,28,t)); subRound(B, C, D, E, A, f2, K2, exor(W,29,t)); subRound(A, B, C, D, E, f2, K2, exor(W,30,t)); subRound(E, A, B, C, D, f2, K2, exor(W,31,t)); subRound(D, E, A, B, C, f2, K2, exor(W,32,t)); subRound(C, D, E, A, B, f2, K2, exor(W,33,t)); subRound(B, C, D, E, A, f2, K2, exor(W,34,t)); subRound(A, B, C, D, E, f2, K2, exor(W,35,t)); subRound(E, A, B, C, D, f2, K2, exor(W,36,t)); subRound(D, E, A, B, C, f2, K2, exor(W,37,t)); subRound(C, D, E, A, B, f2, K2, exor(W,38,t)); subRound(B, C, D, E, A, f2, K2, exor(W,39,t)); subRound(A, B, C, D, E, f3, K3, exor(W,40,t)); subRound(E, A, B, C, D, f3, K3, exor(W,41,t)); subRound(D, E, A, B, C, f3, K3, exor(W,42,t)); subRound(C, D, E, A, B, f3, K3, exor(W,43,t)); subRound(B, C, D, E, A, f3, K3, exor(W,44,t)); subRound(A, B, C, D, E, f3, K3, exor(W,45,t)); subRound(E, A, B, C, D, f3, K3, exor(W,46,t)); subRound(D, E, A, B, C, f3, K3, exor(W,47,t)); subRound(C, D, E, A, B, f3, K3, exor(W,48,t)); subRound(B, C, D, E, A, f3, K3, exor(W,49,t)); subRound(A, B, C, D, E, f3, K3, exor(W,50,t)); subRound(E, A, B, C, D, f3, K3, exor(W,51,t)); subRound(D, E, A, B, C, f3, K3, exor(W,52,t)); subRound(C, D, E, A, B, f3, K3, exor(W,53,t)); subRound(B, C, D, E, A, f3, K3, exor(W,54,t)); subRound(A, B, C, D, E, f3, K3, exor(W,55,t)); subRound(E, A, B, C, D, f3, K3, exor(W,56,t)); subRound(D, E, A, B, C, f3, K3, exor(W,57,t)); subRound(C, D, E, A, B, f3, K3, exor(W,58,t)); subRound(B, C, D, E, A, f3, K3, exor(W,59,t)); subRound(A, B, C, D, E, f4, K4, exor(W,60,t)); subRound(E, A, B, C, D, f4, K4, exor(W,61,t)); subRound(D, E, A, B, C, f4, K4, exor(W,62,t)); subRound(C, D, E, A, B, f4, K4, exor(W,63,t)); subRound(B, C, D, E, A, f4, K4, exor(W,64,t)); subRound(A, B, C, D, E, f4, K4, exor(W,65,t)); subRound(E, A, B, C, D, f4, K4, exor(W,66,t)); subRound(D, E, A, B, C, f4, K4, exor(W,67,t)); subRound(C, D, E, A, B, f4, K4, exor(W,68,t)); subRound(B, C, D, E, A, f4, K4, exor(W,69,t)); subRound(A, B, C, D, E, f4, K4, exor(W,70,t)); subRound(E, A, B, C, D, f4, K4, exor(W,71,t)); subRound(D, E, A, B, C, f4, K4, exor(W,72,t)); subRound(C, D, E, A, B, f4, K4, exor(W,73,t)); subRound(B, C, D, E, A, f4, K4, exor(W,74,t)); subRound(A, B, C, D, E, f4, K4, exor(W,75,t)); subRound(E, A, B, C, D, f4, K4, exor(W,76,t)); subRound(D, E, A, B, C, f4, K4, exor(W,77,t)); subRound(C, D, E, A, B, f4, K4, exor(W,78,t)); subRound(B, C, D, E, A, f4, K4, exor(W,79,t)); /* Build message digest */ digest[0] += A; digest[1] += B; digest[2] += C; digest[3] += D; digest[4] += E; } /* * sha1Update - update SHA1 with arbitrary length data */ void sha1Update(HASH *state, USB8 *buffer, USB32 count) { SHA1_INFO *dig = &state->h_union.h_sha1; /* digest state */ USB32 datalen = dig->datalen; USB32 cpylen; #if CALC_BYTE_ORDER == LITTLE_ENDIAN unsigned int i; #endif /* * Update the full count, even if some of it is buffered for later */ SHA1COUNT(dig, count); /* determine the size we need to copy */ cpylen = SHA1_CHUNKSIZE - datalen; /* case: new data will not fill the buffer */ if (cpylen > count) { memcpy((char *)dig->data+datalen, (char *)buffer, count); dig->datalen = datalen+count; return; } /* case: buffer will be filled */ memcpy((char *)dig->data + datalen, (char *)buffer, cpylen); /* * Process data in SHA1_CHUNKSIZE chunks */ for (;;) { #if CALC_BYTE_ORDER == LITTLE_ENDIAN if (state->bytes) { for (i=0; i < SHA1_CHUNKWORDS; ++i) { SWAP_B8_IN_B32(dig->data+i, dig->data+i); } } #endif sha1Transform(dig->digest, dig->data); buffer += cpylen; count -= cpylen; if (count < SHA1_CHUNKSIZE) break; cpylen = SHA1_CHUNKSIZE; memcpy(dig->data, buffer, cpylen); } /* * Handle any remaining bytes of data. * This should only happen once on the final lot of data */ if (count > 0) { memcpy((char *)dig->data, (char *)buffer, count); } dig->datalen = count; } /* * sha1Final - perform final SHA1 transforms * * At this point we have less than a full chunk of data remaining * (and possibly no data) in the sha1 state data buffer. * * First we append a final 0x80 byte. * * Next if we have more than 56 bytes, we will zero fill the remainder * of the chunk, transform and then zero fill the first 56 bytes. * If we have 56 or fewer bytes, we will zero fill out to the 56th * chunk byte. Regardless, we wind up with 56 bytes data. * * Finally we append the 64 bit length on to the 56 bytes of data * remaining. This final chunk is transformed. */ void sha1Final(HASH *state) { SHA1_INFO *dig = &state->h_union.h_sha1; /* digest state */ long count = (long)(dig->datalen); USB32 lowBitcount; USB32 highBitcount; USB8 *data = (USB8 *) dig->data; #if CALC_BYTE_ORDER == LITTLE_ENDIAN unsigned int i; #endif /* Pad to end of chunk */ memset(data + count, 0, SHA1_CHUNKSIZE - count); /* * If processing bytes, set the first byte of padding to 0x80. * if processing words: on a big-endian machine set the first * byte of padding to 0x80, on a little-endian machine set * the first four bytes to 0x00000080 * This is safe since there is always at least one byte or word free */ memset(data + count, 0, SHA1_CHUNKSIZE - count); #if CALC_BYTE_ORDER == LITTLE_ENDIAN if (state->bytes) { data[count] = 0x80; for (i=0; i < SHA1_CHUNKWORDS; ++i) { SWAP_B8_IN_B32(dig->data+i, dig->data+i); } } else { if (count % 4) { math_error("This should not happen in sha1Final"); not_reached(); } data[count + 3] = 0x80; } #else data[count] = 0x80; #endif if (count >= SHA1_CHUNKSIZE-8) { sha1Transform(dig->digest, dig->data); /* Now load another chunk with 56 bytes of padding */ memset(data, 0, SHA1_CHUNKSIZE-8); } /* * Append length in bits and transform * * We assume that bit count is a multiple of 8 because we have * only processed full bytes. */ highBitcount = dig->countHi; lowBitcount = dig->countLo; dig->data[SHA1_HIGH] = (highBitcount << 3) | (lowBitcount >> 29); dig->data[SHA1_LOW] = (lowBitcount << 3); sha1Transform(dig->digest, dig->data); dig->datalen = 0; } /* * sha1_chkpt - checkpoint a SHA1 state * * given: * state the state to checkpoint * * This function will ensure that the hash chunk buffer is empty. * Any partially hashed data will be padded out with 0's and hashed. */ S_FUNC void sha1_chkpt(HASH *state) { SHA1_INFO *dig = &state->h_union.h_sha1; /* digest state */ #if CALC_BYTE_ORDER == LITTLE_ENDIAN unsigned int i; #endif /* * checkpoint if partial buffer exists */ if (dig->datalen > 0) { /* pad to the end of the chunk */ memset((USB8 *)dig->data + dig->datalen, 0, SHA1_CHUNKSIZE-dig->datalen); #if CALC_BYTE_ORDER == LITTLE_ENDIAN if (state->bytes) { for (i=0; i < SHA1_CHUNKWORDS; ++i) { SWAP_B8_IN_B32(dig->data+i, dig->data+i); } } #endif /* transform padded chunk */ sha1Transform(dig->digest, dig->data); SHA1COUNT(dig, SHA1_CHUNKSIZE-dig->datalen); /* empty buffer */ dig->datalen = 0; } return; } /* * sha1_note - note a special value * * given: * state the state to hash * special a special value (SHA1_HASH_XYZ) to note * * This function will note that a special value is about to be hashed. * Types include negative values, complex values, division, zero numeric * and array of HALFs. */ S_FUNC void sha1_note(int special, HASH *state) { SHA1_INFO *dig = &state->h_union.h_sha1; /* digest state */ unsigned int i; /* * change state to reflect a special value */ dig->digest[0] ^= special; for (i=1; i < SHA1_DIGESTWORDS; ++i) { dig->digest[i] ^= (special + dig->digest[i-1] + i); } return; } /* * sha1_type - note a VALUE type * * given: * state the state to hash * type the VALUE type to note * * This function will note that a type of value is about to be hashed. * The type of a VALUE will be noted. For purposes of hash comparison, * we will do nothing with V_NUM and V_COM so that the other functions * can hash to the same value regardless of if sha1_value() is called * or not. We also do nothing with V_STR so that a hash of a string * will produce the same value as the standard hash function. */ S_FUNC void sha1_type(int type, HASH *state) { SHA1_INFO *dig = &state->h_union.h_sha1; /* digest state */ unsigned int i; /* * ignore NUMBER and COMPLEX */ if (type == V_NUM || type == V_COM || type == V_STR) { return; } /* * change state to reflect a VALUE type */ dig->digest[0] += type; for (i=1; i < SHA1_DIGESTWORDS; ++i) { dig->digest[i] += ((type+i) ^ dig->digest[i-1]); } return; } /* * sha1_init_state - initialize a hash state structure for this hash * * given: * state - pointer to the function element to initialize */ void sha1_init_state(HASH *state) { /* * initialize state */ state->hashtype = SHA1_HASH_TYPE; state->bytes = true; state->update = sha1Update; state->chkpt = sha1_chkpt; state->note = sha1_note; state->type = sha1_type; state->final = sha1_final_state; state->cmp = sha1_cmp; state->print = sha1_print; state->base = SHA1_BASE; state->chunksize = SHA1_CHUNKSIZE; state->unionsize = sizeof(SHA1_INFO); /* * perform the internal init function */ memset((void *)&(state->h_union.h_sha1), 0, sizeof(SHA1_INFO)); sha1Init(state); return; } /* * sha1_final_state - complete hash state and return a ZVALUE * * given: * state the state to complete and convert * * returns: * a ZVALUE representing the state */ S_FUNC ZVALUE sha1_final_state(HASH *state) { SHA1_INFO *dig = &state->h_union.h_sha1; /* digest state */ ZVALUE ret; /* return ZVALUE of completed hash state */ int i; /* * malloc and initialize if state is NULL */ if (state == NULL) { state = (HASH *)malloc(sizeof(HASH)); if (state == NULL) { math_error("cannot malloc HASH"); not_reached(); } sha1_init_state(state); } /* * complete the hash state */ sha1Final(state); /* * allocate storage for ZVALUE */ ret.len = SHA1_DIGESTSIZE/sizeof(HALF); ret.sign = 0; ret.v = alloc(ret.len); /* * load ZVALUE */ #if BASEB == 16 && CALC_BYTE_ORDER == LITTLE_ENDIAN for (i=0; i < ret.len; i+=2) { ret.v[ret.len-i-1] = ((HALF*)dig->digest)[i+1]; ret.v[ret.len-i-2] = ((HALF*)dig->digest)[i]; } #else for (i=0; i < ret.len; ++i) { ret.v[ret.len-i-1] = ((HALF*)dig->digest)[i]; } #endif ztrim(&ret); /* * return ZVALUE */ return ret; } /* * sha1_cmp - compare two hash states * * given: * a first hash state * b second hash state * * returns: * true => hash states are different * false => hash states are the same */ S_FUNC int sha1_cmp(HASH *a, HASH *b) { /* * firewall and quick check */ if (a == b) { /* pointers to the same object */ return false; } if (a == NULL || b == NULL) { /* one is NULL, so they differ */ return true; } /* * compare data-reading modes */ if (a->bytes != b->bytes) return true; /* * compare bit counts */ if (a->h_union.h_sha1.countLo != b->h_union.h_sha1.countLo || a->h_union.h_sha1.countHi != b->h_union.h_sha1.countHi) { /* counts differ */ return true; } /* * compare pending buffers */ if (a->h_union.h_sha1.datalen != b->h_union.h_sha1.datalen) { /* buffer lengths differ */ return true; } if (memcmp((USB8*)a->h_union.h_sha1.data, (USB8*)b->h_union.h_sha1.data, a->h_union.h_sha1.datalen) != 0) { /* buffer contents differ */ return true; } /* * compare digest */ return (memcmp((USB8*)(a->h_union.h_sha1.digest), (USB8*)(b->h_union.h_sha1.digest), SHA1_DIGESTSIZE) != 0); } /* * sha1_print - print a hash state * * given: * state the hash state to print */ S_FUNC void sha1_print(HASH *state) { /* * form the hash value */ if (conf->calc_debug & CALCDBG_HASH_STATE) { char buf[DEBUG_SIZE+1]; /* hash value buffer */ /* * print numeric debug value * * NOTE: This value represents only the hash value as of * the last full update or finalization. Thus it * may NOT be the actual hash value. */ snprintf(buf, DEBUG_SIZE, "sha1: 0x%08x%08x%08x%08x%08x data: %d octets", (int)state->h_union.h_sha1.digest[0], (int)state->h_union.h_sha1.digest[1], (int)state->h_union.h_sha1.digest[2], (int)state->h_union.h_sha1.digest[3], (int)state->h_union.h_sha1.digest[4], (int)state->h_union.h_sha1.datalen); buf[DEBUG_SIZE] = '\0'; /* paranoia */ math_str(buf); } else { math_str("sha1 hash state"); } return; }