NAME pmod - integral power of an integer modulo a specified integer SYNOPSIS pmod(x, n, md) TYPES x integer n nonnegative integer md integer return integer DESCRIPTION pmod(x, n, md) returns the integer value of the canonical residue of x^n modulo md, where the set of canonical residues is determined by md and bits 0, 2, and 4 of config("mod") (other bits are ignored). If md is zero, the value is simply x^n. For nonzero md, the canonical residues v modulo md are as follows: config("mod") md > 0 md < 0 0 0 < v < md md < v < 0 1 -md < v < 0 0 < v < -md 4 0 < v < md 0 < v < -md 5 -md < v < 0 md < v < 0 16 -md/2 < v <= md/2 md/2 <= v < -md/2 17 -md/2 <= v < md/2 md/2 < v <= -md/2 20 -md/2 < v <= md/2 md/2 < v <= -md/2 21 -md/2 <= v < md/2 md/2 <= v < -md/2 EXAMPLE > c = config("mod",0) > print pmod(2,3,10), pmod(2,5,10), pmod(2,3,-10), pod(2,5,-10) 8 2 -2 -8 > c = config("mod",16) > print pmod(2,3,10), pmod(2,5,10), pmod(2,3,-10), pmod(2,5,-10) -2 2 -2 2 LIMITS none LIBRARY NUMBER *qpowermod(NUMBER *x, NUMBER *n, NUMBER *md) SEE ALSO mod, minv