/* * Copyright (c) 1996 David I. Bell * Permission is granted to use, distribute, or modify this source, * provided that this copyright notice remains intact. * * Built-in functions implemented here */ #include #include #if defined(FUNCLIST) #include #define CONST /* disabled for FUNCLIST in case NATIVE_CC doesn't have it */ #else /* FUNCLIST */ #include "have_unistd.h" #if defined(HAVE_UNISTD_H) #include #endif #include "have_stdlib.h" #if defined(HAVE_STDLIB_H) #include #endif #include "have_times.h" #if defined(HAVE_TIME_H) #include #endif #if defined(HAVE_TIMES_H) #include #endif #if defined(HAVE_SYS_TIME_H) #include #endif #if defined(HAVE_SYS_TIMES_H) #include #endif #include "have_const.h" #include "calc.h" #include "calcerr.h" #include "opcodes.h" #include "token.h" #include "func.h" #include "string.h" #include "symbol.h" #include "prime.h" #include "file.h" #include "zrand.h" /* * forward declarations */ static NUMBER *base_value(long mode); static long zsize(ZVALUE z); static long qsize(NUMBER *q); static long lsizeof(VALUE *vp); static int strscan(char *s, int count, VALUE **vals); static int filescan(FILEID id, int count, VALUE **vals); static VALUE f_eval(VALUE *vp); /* * external declarations */ extern int errno; /* last system error */ extern char *sys_errlist[]; /* system error messages */ extern int sys_nerr; /* number of system errors */ extern char cmdbuf[]; /* command line expression */ extern CONST char *error_table[E__COUNT+2]; /* calc coded error messages */ extern void matrandperm(MATRIX *M); extern void listrandperm(LIST *lp); extern int idungetc(FILEID id, int ch); /* * if HZ & CLK_TCK are not defined, pick typical values, hope for the best */ #if !defined(HZ) # define HZ 60 #endif #if !defined(CLK_TCK) # undef CLK_TCK # define CLK_TCK HZ #endif /* * used defined error strings */ static short nexterrnum = E_USERDEF; static STRINGHEAD newerrorstr; #endif /* !FUNCLIST */ /* * arg count definitons */ #define IN 100 /* maximum number of arguments */ #define FE 0x01 /* flag to indicate default epsilon argument */ #define FA 0x02 /* preserve addresses of variables */ /* * builtins - List of primitive built-in functions */ struct builtin { char *b_name; /* name of built-in function */ short b_minargs; /* minimum number of arguments */ short b_maxargs; /* maximum number of arguments */ short b_flags; /* special handling flags */ short b_opcode; /* opcode which makes the call quick */ NUMBER *(*b_numfunc)(); /* routine to calculate numeric function */ VALUE (*b_valfunc)(); /* routine to calculate general values */ char *b_desc; /* description of function */ }; #if !defined(FUNCLIST) static VALUE f_eval(VALUE *vp) { FUNC *oldfunc; FUNC *newfunc; VALUE result; if (vp->v_type != V_STR) return error_value(E_EVAL2); switch (openstring(vp->v_str)) { case -2: return error_value(E_EVAL3); case -1: return error_value(E_EVAL4); } oldfunc = curfunc; enterfilescope(); if (evaluate(TRUE)) { exitfilescope(); freevalue(stack--); newfunc = curfunc; curfunc = oldfunc; result = newfunc->f_savedvalue; newfunc->f_savedvalue.v_type = V_NULL; if (newfunc != oldfunc) free(newfunc); return result; } exitfilescope(); newfunc = curfunc; curfunc = oldfunc; freevalue(&newfunc->f_savedvalue); newfunc->f_savedvalue.v_type = V_NULL; if (newfunc != oldfunc) free(newfunc); return error_value(E_EVAL); } static VALUE f_prompt(VALUE *vp) { VALUE result; char *cp; char *newcp; if (inputisterminal()) { printvalue(vp, PRINT_SHORT); math_flush(); } cp = nextline(); if (cp == NULL) { math_error("End of file while prompting"); /*NOTREACHED*/ } if (*cp == '\0') { result.v_type = V_STR; result.v_subtype = V_STRLITERAL; result.v_str = ""; return result; } newcp = (char *)malloc(strlen(cp) + 1); if (newcp == NULL) { math_error("Cannot allocate string"); /*NOTREACHED*/ } strcpy(newcp, cp); result.v_str = newcp; result.v_type = V_STR; result.v_subtype = V_STRALLOC; return result; } static VALUE f_str(VALUE *vp) { VALUE result; static char *cp; switch (vp->v_type) { case V_STR: copyvalue(vp, &result); return result; case V_NULL: result.v_str = ""; result.v_type = V_STR; result.v_subtype = V_STRLITERAL; return result; case V_NUM: math_divertio(); qprintnum(vp->v_num, MODE_DEFAULT); cp = math_getdivertedio(); break; case V_COM: math_divertio(); comprint(vp->v_com); cp = math_getdivertedio(); break; default: return error_value(E_STR); } result.v_str = cp; result.v_type = V_STR; result.v_subtype = V_STRALLOC; return result; } static VALUE f_poly(int count, VALUE **vals) { VALUE *x; VALUE result, tmp; LIST *clist, *lp; if (vals[0]->v_type == V_LIST) { clist = vals[0]->v_list; lp = listalloc(); while (--count > 0) { if ((*++vals)->v_type == V_LIST) insertitems(lp, (*vals)->v_list); else insertlistlast(lp, *vals); } if (!evalpoly(clist, lp->l_first, &result)) { result.v_type = V_NUM; result.v_num = qlink(&_qzero_); } listfree(lp); return result; } x = vals[--count]; copyvalue(*vals++, &result); while (--count > 0) { mulvalue(&result, x, &tmp); freevalue(&result); addvalue(*vals++, &tmp, &result); freevalue(&tmp); } return result; } static NUMBER * f_mne(NUMBER *val1, NUMBER *val2, NUMBER *val3) { NUMBER *tmp, *res; tmp = qsub(val1, val2); res = itoq((long) !qdivides(tmp, val3)); qfree(tmp); return res; } static NUMBER * f_isrel(NUMBER *val1, NUMBER *val2) { if (qisfrac(val1) || qisfrac(val2)) { math_error("Non-integer for isrel"); /*NOTREACHED*/ } return itoq((long) zrelprime(val1->num, val2->num)); } static NUMBER * f_issquare(NUMBER *vp) { return itoq((long) qissquare(vp)); } static NUMBER * f_isprime(int count, NUMBER **vals) { NUMBER *err; /* error return, NULL => use math_error */ /* determine the way we report problems */ if (count == 2) { if (qisfrac(vals[1])) { math_error("2nd isprime arg must be an integer"); /*NOTREACHED*/ } err = vals[1]; } else { err = NULL; } /* firewall - must be an integer */ if (qisfrac(vals[0])) { if (err) { return qlink(err); } math_error("non-integral arg for builtin function isprime"); /*NOTREACHED*/ } /* test the integer */ switch (zisprime(vals[0]->num)) { case 0: return qlink(&_qzero_); case 1: return qlink(&_qone_); } /* error return */ if (!err) { math_error("isprime argument is an odd value > 2^32"); /*NOTREACHED*/ } return qlink(err); } static NUMBER * f_nprime(int count, NUMBER **vals) { NUMBER *err; /* error return, NULL => use math_error */ FULL nxt_prime; /* next prime or 0 */ /* determine the way we report problems */ if (count == 2) { if (qisfrac(vals[1])) { math_error("2nd nprime arg must be an integer"); /*NOTREACHED*/ } err = vals[1]; } else { err = NULL; } /* firewall - must be an integer */ if (qisfrac(vals[0])) { if (err) { return qlink(err); } math_error("non-integral arg 1 for builtin function nprime"); /*NOTREACHED*/ } /* test the integer */ nxt_prime = znprime(vals[0]->num); if (nxt_prime > 1) { return utoq(nxt_prime); } else if (nxt_prime == 0) { /* return 2^32+15 */ return qlink(&_nxtprime_); } /* error return */ if (!err) { math_error("nprime arg 1 is >= 2^32"); /*NOTREACHED*/ } return qlink(err); } static NUMBER * f_pprime(int count, NUMBER **vals) { NUMBER *err; /* error return, NULL => use math_error */ FULL prev_prime; /* previous prime or 0 */ /* determine the way we report problems */ if (count == 2) { if (qisfrac(vals[1])) { math_error("2nd pprime arg must be an integer"); /*NOTREACHED*/ } err = vals[1]; } else { err = NULL; } /* firewall - must be an integer */ if (qisfrac(vals[0])) { if (err) { return qlink(err); } math_error("non-integral arg 1 for builtin function pprime"); /*NOTREACHED*/ } /* test the integer */ prev_prime = zpprime(vals[0]->num); if (prev_prime > 1) { return utoq(prev_prime); } if (prev_prime == 0) { return qlink(&_qzero_); } /* error return */ if (!err) { if (prev_prime == 0) { math_error("pprime arg 1 is <= 2"); /*NOTREACHED*/ } else { math_error("pprime arg 1 is >= 2^32"); /*NOTREACHED*/ } } return qlink(err); } static NUMBER * f_factor(int count, NUMBER **vals) { NUMBER *err; /* error return, NULL => use math_error */ ZVALUE limit; /* highest prime factor in search */ ZVALUE n; /* number to factor */ NUMBER *factor; /* the prime factor found */ int res; /* -1 => error, 0 => not found, 1 => factor found */ /* * parse args */ if (count == 3) { if (qisfrac(vals[2])) { math_error("3rd factor arg must be an integer"); /*NOTREACHED*/ } err = vals[2]; } else { err = NULL; } if (count >= 2) { if (qisfrac(vals[1])) { if (err) { return qlink(err); } math_error("non-integral arg 2 for builtin factor"); /*NOTREACHED*/ } limit = vals[1]->num; } else { /* default limit is 2^32-1 */ utoz((FULL)0xffffffff, &limit); } if (qisfrac(vals[0])) { if (count < 2) zfree(limit); if (err) { return qlink(err); } math_error("non-integral arg 1 for builtin pfactor"); /*NOTREACHED*/ } n = vals[0]->num; /* * find the smallest prime factor in the range */ factor = qalloc(); res = zfactor(n, limit, &(factor->num)); if (res < 0) { /* error processing */ if (err) { return qlink(err); } math_error("limit >= 2^32 for builtin factor"); /*NOTREACHED*/ } else if (res == 0) { if (count < 2) zfree(limit); /* no factor found - qalloc set factor to 1, return 1 */ return factor; } /* * return the factor found */ if (count < 2) zfree(limit); return factor; } static NUMBER * f_pix(int count, NUMBER **vals) { NUMBER *err; /* error return, NULL => use math_error */ long value; /* primes <= x, or 0 ==> error */ /* determine the way we report problems */ if (count == 2) { if (qisfrac(vals[1])) { math_error("2nd pix arg must be an integer"); /*NOTREACHED*/ } err = vals[1]; } else { err = NULL; } /* firewall - must be an integer */ if (qisfrac(vals[0])) { if (err) { return qlink(err); } math_error("non-integral arg 1 for builtin function pix"); /*NOTREACHED*/ } /* determine the number of primes <= x */ value = zpix(vals[0]->num); if (value >= 0) { return utoq(value); } /* error return */ if (!err) { math_error("pix arg 1 is >= 2^32"); /*NOTREACHED*/ } return qlink(err); } static NUMBER * f_prevcand(int count, NUMBER **vals) { ZVALUE zmodulus; ZVALUE zresidue; ZVALUE zskip; ZVALUE *zcount = NULL; /* ptest trial count */ ZVALUE tmp; NUMBER *ans; /* candidate for primality */ zmodulus = _one_; zresidue = _zero_; zskip = _one_; /* * check on the number of args passed and that args passed are ints */ switch (count) { case 5: if (!qisint(vals[4])) { math_error( "prevcand 5th arg must both be integer"); /*NOTREACHED*/ } zmodulus = vals[4]->num; /*FALLTHRU*/ case 4: if (!qisint(vals[3])) { math_error( "prevcand 4th arg must both be integer"); /*NOTREACHED*/ } zresidue = vals[3]->num; /*FALLTHRU*/ case 3: if (!qisint(vals[2])) { math_error( "prevcand skip arg (3rd) must be an integer or omitted"); /*NOTREACHED*/ } zskip = vals[2]->num; /*FALLTHRU*/ case 2: if (!qisint(vals[1])) { math_error( "prevcand count arg (2nd) must be an integer or omitted"); /*NOTREACHED*/ } zcount = &vals[1]->num; /*FALLTHRU*/ case 1: if (!qisint(vals[0])) { math_error( "prevcand search arg (1st) must be an integer"); /*NOTREACHED*/ } break; default: math_error("invalid number of args passed to prevcand"); /*NOTREACHED*/ } if (zcount == NULL) { count = 1; /* default is 1 ptest */ } else { if (zge24b(*zcount)) { math_error("prevcand count arg (2nd) must be < 2^24"); /*NOTREACHED*/ } count = ztoi(*zcount); } /* * find the candidate */ if (zprevcand(vals[0]->num, count, zskip, zresidue, zmodulus, &tmp)) { ans = qalloc(); ans->num = tmp; return ans; } return qlink(&_qzero_); } static NUMBER * f_nextcand(int count, NUMBER **vals) { ZVALUE zmodulus; ZVALUE zresidue; ZVALUE zskip; ZVALUE *zcount = NULL; /* ptest trial count */ ZVALUE tmp; NUMBER *ans; /* candidate for primality */ zmodulus = _one_; zresidue = _zero_; zskip = _one_; /* * check on the number of args passed and that args passed are ints */ switch (count) { case 5: if (!qisint(vals[4])) { math_error( "nextcand 5th args must be integer"); /*NOTREACHED*/ } zmodulus = vals[4]->num; /*FALLTHRU*/ case 4: if (!qisint(vals[3])) { math_error( "nextcand 5th args must be integer"); /*NOTREACHED*/ } zresidue = vals[3]->num; /*FALLTHRU*/ case 3: if (!qisint(vals[2])) { math_error( "nextcand skip arg (3rd) must be an integer or omitted"); /*NOTREACHED*/ } zskip = vals[2]->num; /*FALLTHRU*/ case 2: if (!qisint(vals[1])) { math_error( "nextcand count arg (2nd) must be an integer or omitted"); /*NOTREACHED*/ } zcount = &vals[1]->num; /*FALLTHRU*/ case 1: if (!qisint(vals[0])) { math_error( "nextcand search arg (1st) must be an integer"); /*NOTREACHED*/ } break; default: math_error("invalid number of args passed to nextcand"); /*NOTREACHED*/ } /* * check ranges on integers passed */ if (zcount == NULL) { count = 1; /* default is 1 ptest */ } else { if (zge24b(*zcount)) { math_error("prevcand count arg (2nd) must be < 2^24"); /*NOTREACHED*/ } count = ztoi(*zcount); } /* * find the candidate */ if (znextcand(vals[0]->num, count, zskip, zresidue, zmodulus, &tmp)) { ans = qalloc(); ans->num = tmp; return ans; } return qlink(&_qzero_);; } static NUMBER * f_rand(int count, NUMBER **vals) { NUMBER *ans; /* parse args */ switch (count) { case 0: /* rand() == rand(2^64) */ /* generate a random number */ ans = qalloc(); zrand(SBITS, &ans->num); break; case 1: /* rand(limit) */ if (!qisint(vals[0])) { math_error("rand limit must be an integer"); /*NOTREACHED*/ } if (zislezero(vals[0]->num)) { math_error("rand limit must > 0"); /*NOTREACHED*/ } ans = qalloc(); zrandrange(_zero_, vals[0]->num, &ans->num); break; case 2: /* rand(low, limit) */ /* firewall */ if (!qisint(vals[0]) || !qisint(vals[1])) { math_error("rand range must be integers"); /*NOTREACHED*/ } ans = qalloc(); zrandrange(vals[0]->num, vals[1]->num, &ans->num); break; default: math_error("invalid number of args passed to rand"); /*NOTREACHED*/ return NULL; } /* return the random number */ return ans; } static NUMBER * f_randbit(int count, NUMBER **vals) { NUMBER *ans; ZVALUE ztmp; long cnt; /* bits needed or skipped */ /* parse args */ if (count == 0) { zrand(1, &ztmp); ans = ziszero(ztmp) ? qlink(&_qzero_) : qlink(&_qone_); zfree(ztmp); return ans; } /* * firewall */ if (!qisint(vals[0])) { math_error("rand bit count must be an integer"); /*NOTREACHED*/ } if (zge31b(vals[0]->num)) { math_error("huge rand bit count"); /*NOTREACHED*/ } /* * generate a random number or skip random bits */ ans = qalloc(); cnt = ztolong(vals[0]->num); if (zisneg(vals[0]->num)) { /* skip bits */ zrandskip(cnt); itoz(cnt, &ans->num); } else { /* generate bits */ zrand(cnt, &ans->num); } /* * return the random number */ return ans; } static VALUE f_srand(int count, VALUE **vals) { VALUE result; /* parse args */ switch (count) { case 0: /* get the current a55 state */ result.v_rand = zsrand(NULL, NULL); break; case 1: switch (vals[0]->v_type) { case V_NUM: /* srand(seed) */ /* seed a55 and return previous state */ if (!qisint(vals[0]->v_num)) { math_error( "srand number seed must be an integer"); /*NOTREACHED*/ } result.v_rand = zsrand(&vals[0]->v_num->num, NULL); break; case V_RAND: /* srand(state) */ /* set a55 state and return previous state */ result.v_rand = zsetrand(vals[0]->v_rand); break; case V_MAT: /* load additive 55 table and return previous state */ result.v_rand = zsrand(NULL, vals[0]->v_mat); break; default: math_error("illegal type of arg passsed to srand()"); /*NOTREACHED*/ break; } break; default: math_error("bad arg count to srand()"); /*NOTREACHED*/ break; } /* return the current state */ result.v_type = V_RAND; return result; } static VALUE f_srandom(int count, VALUE **vals) { VALUE result; /* parse args */ switch (count) { case 0: /* get the current random state */ result.v_random = zsetrandom(NULL); break; case 1: switch (vals[0]->v_type) { case V_NUM: /* srand(seed) */ /* seed Blum and return previous state */ if (!qisint(vals[0]->v_num)) { math_error( "srandom number seed must be an integer"); /*NOTREACHED*/ } result.v_random = zsrandom(vals[0]->v_num->num, NULL); break; case V_RANDOM: /* srandom(state) */ /* set a55 state and return previous state */ result.v_random = zsetrandom(vals[0]->v_random); break; default: math_error("illegal type of arg passsed to srandom()"); /*NOTREACHED*/ break; } break; default: math_error("bad arg count to srandom()"); /*NOTREACHED*/ break; } /* return the current state */ result.v_type = V_RANDOM; return result; } static NUMBER * f_primetest(int count, NUMBER **vals) { /* parse args */ switch (count) { case 1: return itoq((long) qprimetest(vals[0], &_qone_, &_qone_)); case 2: return itoq((long) qprimetest(vals[0], vals[1], &_qone_)); default: return itoq((long) qprimetest(vals[0], vals[1], vals[2])); } } static NUMBER * f_isset(NUMBER *val1, NUMBER *val2) { if (qisfrac(val2)) { math_error("Non-integral bit position"); /*NOTREACHED*/ } if (qiszero(val1) || (qisint(val1) && qisneg(val2))) return qlink(&_qzero_); if (zge31b(val2->num)) { math_error("Very large bit position"); /*NOTREACHED*/ } return itoq((long) qisset(val1, qtoi(val2))); } static NUMBER * f_digit(NUMBER *val1, NUMBER *val2) { if (qisfrac(val2)) { math_error("Non-integral digit position"); /*NOTREACHED*/ } if (qiszero(val1) || (qisint(val1) && qisneg(val2))) return qlink(&_qzero_); if (zge31b(val2->num)) { if (qisneg(val2)) { math_error("Very large digit position"); /*NOTREACHED*/ } return qlink(&_qzero_); } return itoq((long) qdigit(val1, qtoi(val2))); } static NUMBER * f_digits(NUMBER *val) { return itoq((long) qdigits(val)); } static NUMBER * f_places(NUMBER *val) { return itoq((long) qplaces(val)); } static NUMBER * f_xor(int count, NUMBER **vals) { NUMBER *val, *tmp; val = qlink(*vals); while (--count > 0) { tmp = qxor(val, *++vals); qfree(val); val = tmp; } return val; } static NUMBER * f_min(int count, NUMBER **vals) { NUMBER *val, *tmp; val = qlink(*vals); while (--count > 0) { tmp = qmin(val, *++vals); qfree(val); val = tmp; } return val; } static NUMBER * f_max(int count, NUMBER **vals) { NUMBER *val, *tmp; val = qlink(*vals); while (--count > 0) { tmp = qmax(val, *++vals); qfree(val); val = tmp; } return val; } static NUMBER * f_gcd(int count, NUMBER **vals) { NUMBER *val, *tmp; val = qabs(*vals); while (--count > 0) { tmp = qgcd(val, *++vals); qfree(val); val = tmp; } return val; } static NUMBER * f_lcm(int count, NUMBER **vals) { NUMBER *val, *tmp; val = qabs(*vals); while (--count > 0) { tmp = qlcm(val, *++vals); qfree(val); val = tmp; if (qiszero(val)) break; } return val; } static VALUE f_hash(int count, VALUE **vals) { QCKHASH hash; long lhash; VALUE result; hash = (QCKHASH)0; while (count-- > 0) hash = hashvalue(*vals++, hash); lhash = (long) hash; if (lhash < 0) lhash = -lhash; result.v_num = itoq(lhash); result.v_type = V_NUM; return result; } static VALUE f_avg(int count, VALUE **vals) { VALUE tmp; VALUE sum; VALUE div; long n; sum.v_type = V_NULL; n = 0; while (count-- > 0) { if ((*vals)->v_type == V_LIST) { addlistitems((*vals)->v_list, &sum); n += countlistitems((*vals++)->v_list); } else { addvalue(&sum, *vals++, &tmp); freevalue(&sum); sum = tmp; n++; } if (sum.v_type < 0) return sum; } if (n < 2) return sum; div.v_num = itoq(n); div.v_type = V_NUM; divvalue(&sum, &div, &tmp); freevalue(&sum); qfree(div.v_num); return tmp; } static VALUE f_hmean(int count, VALUE **vals) { VALUE sum, tmp1, tmp2; long n = 0; sum.v_type = V_NULL; while (count-- > 0) { if ((*vals)->v_type == V_LIST) { addlistinv((*vals)->v_list, &sum); n += countlistitems((*vals++)->v_list); } else { invertvalue(*vals++, &tmp1); addvalue(&sum, &tmp1, &tmp2); freevalue(&tmp1); freevalue(&sum); sum = tmp2; n++; } } if (n == 0) return sum; tmp1.v_type = V_NUM; tmp1.v_num = itoq(n); divvalue(&tmp1, &sum, &tmp2); qfree(tmp1.v_num); freevalue(&sum); return tmp2; } static VALUE f_ssq(int count, VALUE **vals) { VALUE result, tmp1, tmp2; squarevalue(*vals++, &result); while (--count > 0) { squarevalue(*vals++, &tmp1); addvalue(&tmp1, &result, &tmp2); freevalue(&tmp1); freevalue(&result); result = tmp2; } return result; } static NUMBER * f_ismult(NUMBER *val1, NUMBER *val2) { return itoq((long) qdivides(val1, val2)); } static NUMBER * f_meq(NUMBER *val1, NUMBER *val2, NUMBER *val3) { NUMBER *tmp, *res; tmp = qsub(val1, val2); res = itoq((long) qdivides(tmp, val3)); qfree(tmp); return res; } static VALUE f_exp(int count, VALUE **vals) { VALUE result; NUMBER *err; COMPLEX *c; err = conf->epsilon; if (count == 2) { if (vals[1]->v_type != V_NUM || qiszero(vals[1]->v_num)) return error_value(E_EXP1); err = vals[1]->v_num; } switch (vals[0]->v_type) { case V_NUM: result.v_num = qexp(vals[0]->v_num, err); result.v_type = V_NUM; break; case V_COM: c = cexp(vals[0]->v_com, err); result.v_com = c; result.v_type = V_COM; if (cisreal(c)) { result.v_num = qlink(c->real); result.v_type = V_NUM; comfree(c); } break; default: return error_value(E_EXP2); } return result; } static VALUE f_ln(int count, VALUE **vals) { VALUE result; COMPLEX ctmp, *c; NUMBER *err; err = conf->epsilon; if (count == 2) { if (vals[1]->v_type != V_NUM) return error_value(E_LN1); err = vals[1]->v_num; } switch (vals[0]->v_type) { case V_NUM: if (!qisneg(vals[0]->v_num) && !qiszero(vals[0]->v_num)) { result.v_num = qln(vals[0]->v_num, err); result.v_type = V_NUM; return result; } ctmp.real = vals[0]->v_num; ctmp.imag = &_qzero_; ctmp.links = 1; c = cln(&ctmp, err); break; case V_COM: c = cln(vals[0]->v_com, err); break; default: return error_value(E_LN2); } result.v_type = V_COM; result.v_com = c; if (cisreal(c)) { result.v_num = qlink(c->real); result.v_type = V_NUM; comfree(c); } return result; } static VALUE f_cos(int count, VALUE **vals) { VALUE result; COMPLEX *c; NUMBER *err; err = conf->epsilon; if (count == 2) { if (vals[1]->v_type != V_NUM || qiszero(vals[1]->v_num)) return error_value(E_COS1); err = vals[1]->v_num; } switch (vals[0]->v_type) { case V_NUM: result.v_num = qcos(vals[0]->v_num, err); result.v_type = V_NUM; break; case V_COM: c = ccos(vals[0]->v_com, err); result.v_com = c; result.v_type = V_COM; if (cisreal(c)) { result.v_num = qlink(c->real); result.v_type = V_NUM; comfree(c); } break; default: return error_value(E_COS2); } return result; } static VALUE f_sin(int count, VALUE **vals) { VALUE result; COMPLEX *c; NUMBER *err; err = conf->epsilon; if (count == 2) { if (vals[1]->v_type != V_NUM || qiszero(vals[1]->v_num)) return error_value(E_COS1); err = vals[1]->v_num; } switch (vals[0]->v_type) { case V_NUM: result.v_num = qsin(vals[0]->v_num, err); result.v_type = V_NUM; break; case V_COM: c = csin(vals[0]->v_com, err); result.v_com = c; result.v_type = V_COM; if (cisreal(c)) { result.v_num = qlink(c->real); result.v_type = V_NUM; comfree(c); } break; default: return error_value(E_COS2); } return result; } static VALUE f_arg(int count, VALUE **vals) { VALUE result; COMPLEX *c; NUMBER *err; err = conf->epsilon; if (count == 2) { if (vals[1]->v_type != V_NUM || qiszero(vals[1]->v_num)) return error_value(E_ARG1); err = vals[1]->v_num; } result.v_type = V_NUM; switch (vals[0]->v_type) { case V_NUM: if (qisneg(vals[0]->v_num)) result.v_num = qpi(err); else result.v_num = qlink(&_qzero_); break; case V_COM: c = vals[0]->v_com; if (ciszero(c)) result.v_num = qlink(&_qzero_); else result.v_num = qatan2(c->imag, c->real, err); break; default: return error_value(E_ARG2); } return result; } static NUMBER * f_legtoleg(NUMBER *val1, NUMBER *val2) { return qlegtoleg(val1, val2, FALSE); } static NUMBER * f_trunc(int count, NUMBER **vals) { NUMBER *val; val = &_qzero_; if (count == 2) val = vals[1]; return qtrunc(*vals, val); } static VALUE f_bround(int count, VALUE **vals) { VALUE tmp1, tmp2, res; if (count > 2) tmp2 = *vals[2]; else tmp2.v_type = V_NULL; if (count > 1) tmp1 = *vals[1]; else tmp1.v_type = V_NULL; broundvalue(vals[0], &tmp1, &tmp2, &res); return res; } static VALUE f_appr(int count, VALUE **vals) { VALUE tmp1, tmp2, res; if (count > 2) copyvalue(vals[2], &tmp2); else tmp2.v_type = V_NULL; if (count > 1) copyvalue(vals[1], &tmp1); else tmp1.v_type = V_NULL; apprvalue(vals[0], &tmp1, &tmp2, &res); freevalue(&tmp1); freevalue(&tmp2); return res; } static VALUE f_round(int count, VALUE **vals) { VALUE tmp1, tmp2, res; if (count > 2) tmp2 = *vals[2]; else tmp2.v_type = V_NULL; if (count > 1) tmp1 = *vals[1]; else tmp1.v_type = V_NULL; roundvalue(vals[0], &tmp1, &tmp2, &res); return res; } static NUMBER * f_btrunc(int count, NUMBER **vals) { NUMBER *val; val = &_qzero_; if (count == 2) val = vals[1]; return qbtrunc(*vals, val); } static VALUE f_quo(int count, VALUE **vals) { VALUE tmp, res; if (count > 2) tmp = *vals[2]; else tmp.v_type = V_NULL; quovalue(vals[0], vals[1], &tmp, &res); return res; } static VALUE f_mod(int count, VALUE **vals) { VALUE tmp, res; if (count > 2) tmp = *vals[2]; else tmp.v_type = V_NULL; modvalue(vals[0], vals[1], &tmp, &res); return res; } static VALUE f_mmin(VALUE *v1, VALUE *v2) { VALUE sixteen, res; sixteen.v_type = V_NUM; sixteen.v_num = itoq(16); modvalue(v1, v2, &sixteen, &res); qfree(sixteen.v_num); return res; } static NUMBER * f_near(int count, NUMBER **vals) { NUMBER *val; val = conf->epsilon; if (count == 3) val = vals[2]; return itoq((long) qnear(vals[0], vals[1], val)); } static NUMBER * f_cfsim(int count, NUMBER **vals) { long R; R = (count > 1) ? qtoi(vals[1]) : conf->cfsim; return qcfsim(vals[0], R); } static NUMBER * f_cfappr(int count, NUMBER **vals) { long R; NUMBER *q; R = (count > 2) ? qtoi(vals[2]) : conf->cfappr; q = (count > 1) ? vals[1] : conf->epsilon; return qcfappr(vals[0], q, R); } static VALUE f_ceil(VALUE *val) { VALUE tmp, res; tmp.v_type = V_NUM; tmp.v_num = qlink(&_qone_); apprvalue(val, &tmp, &tmp, &res); qfree(tmp.v_num); return res; } static VALUE f_floor(VALUE *val) { VALUE tmp1, tmp2, res; tmp1.v_type = V_NUM; tmp1.v_num = qlink(&_qone_); tmp2.v_type = V_NUM; tmp2.v_num = qlink(&_qzero_); apprvalue(val, &tmp1, &tmp2, &res); qfree(tmp1.v_num); qfree(tmp2.v_num); return res; } static NUMBER * f_highbit(NUMBER *val) { if (qiszero(val)) { math_error("Highbit of zero"); /*NOTREACHED*/ } if (qisfrac(val)) { math_error("Highbit of non-integer"); /*NOTREACHED*/ } return itoq(zhighbit(val->num)); } static NUMBER * f_lowbit(NUMBER *val) { if (qiszero(val)) { math_error("Lowbit of zero"); /*NOTREACHED*/ } if (qisfrac(val)) { math_error("Lowbit of non-integer"); /*NOTREACHED*/ } return itoq(zlowbit(val->num)); } static VALUE f_sqrt(int count, VALUE **vals) { VALUE tmp1, tmp2, result; if (count > 2) tmp2 = *vals[2]; else tmp2.v_type = V_NULL; if (count > 1) tmp1 = *vals[1]; else tmp1.v_type = V_NULL; sqrtvalue(vals[0], &tmp1, &tmp2, &result); return result; } static VALUE f_root(int count, VALUE **vals) { VALUE *vp, err, result; if (count > 2) vp = vals[2]; else { err.v_num = conf->epsilon; err.v_type = V_NUM; vp = &err; } rootvalue(vals[0], vals[1], vp, &result); return result; } static VALUE f_power(int count, VALUE **vals) { VALUE *vp, err, result; if (count > 2) vp = vals[2]; else { err.v_num = conf->epsilon; err.v_type = V_NUM; vp = &err; } powervalue(vals[0], vals[1], vp, &result); return result; } static VALUE f_polar(int count, VALUE **vals) { VALUE *vp, err, result; COMPLEX *c; if (count > 2) vp = vals[2]; else { err.v_num = conf->epsilon; err.v_type = V_NUM; vp = &err; } if ((vals[0]->v_type != V_NUM) || (vals[1]->v_type != V_NUM)) return error_value(E_POLAR1); if ((vp->v_type != V_NUM) || qisneg(vp->v_num) || qiszero(vp->v_num)) return error_value(E_POLAR2); c = cpolar(vals[0]->v_num, vals[1]->v_num, vp->v_num); result.v_com = c; result.v_type = V_COM; if (cisreal(c)) { result.v_num = qlink(c->real); result.v_type = V_NUM; comfree(c); } return result; } static NUMBER * f_ilog(NUMBER *val1, NUMBER *val2) { return itoq(qilog(val1, val2)); } static NUMBER * f_ilog2(NUMBER *val) { return itoq(qilog2(val)); } static NUMBER * f_ilog10(NUMBER *val) { return itoq(qilog10(val)); } static NUMBER * f_faccnt(NUMBER *val1, NUMBER *val2) { if (qisfrac(val1) || qisfrac(val2)) math_error("Non-integral argument for fcnt"); return itoq(zdivcount(val1->num, val2->num)); } static VALUE f_matfill(int count, VALUE **vals) { VALUE *v1, *v2, *v3; VALUE result; v1 = vals[0]; v2 = vals[1]; if (v1->v_type != V_ADDR) return error_value(E_MATFILL1); v1 = v1->v_addr; if (v1->v_type != V_MAT) return error_value(E_MATFILL2); if (v2->v_type == V_ADDR) v2 = v2->v_addr; if (count == 3) { v3 = vals[2]; if (v3->v_type == V_ADDR) v3 = v3->v_addr; } else v3 = NULL; matfill(v1->v_mat, v2, v3); result.v_type = V_NULL; return result; } static VALUE f_matsum(VALUE *vp) { VALUE result; /* firewall */ if (vp->v_type != V_MAT) return error_value(E_MATSUM); /* sum matrix */ matsum(vp->v_mat, &result); return result; } static VALUE f_isident(VALUE *vp) { VALUE result; if (vp->v_type != V_MAT) return error_value(E_ISIDENT); result.v_type = V_NUM; result.v_num = itoq((long) matisident(vp->v_mat)); return result; } static VALUE f_mattrans(VALUE *vp) { VALUE result; if (vp->v_type != V_MAT) return error_value(E_MATTRANS1); if (vp->v_mat->m_dim != 2) return error_value(E_MATTRANS2); result.v_type = V_MAT; result.v_mat = mattrans(vp->v_mat); return result; } static VALUE f_det(VALUE *vp) { MATRIX *m; if (vp->v_type != V_MAT) return error_value(E_DET1); m = vp->v_mat; if (m->m_dim != 2) return error_value(E_DET2); if ((m->m_max[0] - m->m_min[0]) != (m->m_max[1] - m->m_min[1])) return error_value(E_DET3); return matdet(vp->v_mat); } static VALUE f_matdim(VALUE *vp) { VALUE result; if (vp->v_type != V_MAT) return error_value(E_MATDIM); result.v_type = V_NUM; result.v_num = itoq((long) vp->v_mat->m_dim); return result; } static VALUE f_matmin(VALUE *v1, VALUE *v2) { VALUE result; NUMBER *q; long i; if (v1->v_type != V_MAT) return error_value(E_MATMIN1); if (v2->v_type != V_NUM) return error_value(E_MATMIN2); q = v2->v_num; if (qisfrac(q) || qisneg(q) || qiszero(q)) return error_value(E_MATMIN2); i = qtoi(q); if (i > v1->v_mat->m_dim) return error_value(E_MATMIN3); result.v_type = V_NUM; result.v_num = itoq(v1->v_mat->m_min[i - 1]); return result; } static VALUE f_matmax(VALUE *v1, VALUE *v2) { VALUE result; NUMBER *q; long i; if (v1->v_type != V_MAT) return error_value(E_MATMAX1); if (v2->v_type != V_NUM) return error_value(E_MATMAX2); q = v2->v_num; if (qisfrac(q) || qisneg(q) || qiszero(q)) return error_value(E_MATMAX2); i = qtoi(q); if (i > v1->v_mat->m_dim) return error_value(E_MATMAX3); result.v_type = V_NUM; result.v_num = itoq(v1->v_mat->m_max[i - 1]); return result; } static VALUE f_cp(VALUE *v1, VALUE *v2) { MATRIX *m1, *m2; VALUE result; if ((v1->v_type != V_MAT) || (v2->v_type != V_MAT)) return error_value(E_CP1); m1 = v1->v_mat; m2 = v2->v_mat; if ((m1->m_dim != 1) || (m2->m_dim != 1)) return error_value(E_CP2); if ((m1->m_size != 3) || (m2->m_size != 3)) return error_value(E_CP3); result.v_type = V_MAT; result.v_mat = matcross(m1, m2); return result; } static VALUE f_dp(VALUE *v1, VALUE *v2) { MATRIX *m1, *m2; if ((v1->v_type != V_MAT) || (v2->v_type != V_MAT)) return error_value(E_DP1); m1 = v1->v_mat; m2 = v2->v_mat; if ((m1->m_dim != 1) || (m2->m_dim != 1)) return error_value(E_DP2); if (m1->m_size != m2->m_size) return error_value(E_DP3); return matdot(m1, m2); } static VALUE f_strlen(VALUE *vp) { VALUE result; if (vp->v_type != V_STR) return error_value(E_STRLEN); result.v_type = V_NUM; result.v_num = itoq((long) strlen(vp->v_str)); return result; } static VALUE f_strcat(int count, VALUE **vals) { register VALUE **vp; register char *cp; int i; long len; long lengths[IN]; VALUE result; len = 1; vp = vals; for (i = 0; i < count; i++) { if ((*vp)->v_type != V_STR) return error_value(E_STRCAT); lengths[i] = (long)strlen((*vp)->v_str); len += lengths[i]; vp++; } cp = (char *)malloc(len); if (cp == NULL) { math_error("No memory for strcat"); /*NOTREACHED*/ } result.v_str = cp; result.v_type = V_STR; result.v_subtype = V_STRALLOC; i = 0; for (vp = vals; count-- > 0; vp++) { strcpy(cp, (*vp)->v_str); cp += lengths[i++]; } return result; } static VALUE f_substr(VALUE *v1, VALUE *v2, VALUE *v3) { NUMBER *q1, *q2; long i1, i2, len; char *cp; VALUE result; if (v1->v_type != V_STR) return error_value(E_SUBSTR1); if ((v2->v_type != V_NUM) || (v3->v_type != V_NUM)) return error_value(E_SUBSTR2); q1 = v2->v_num; q2 = v3->v_num; if (qisfrac(q1) || qisneg(q1) || qisfrac(q2) || qisneg(q2)) return error_value(E_SUBSTR2); i1 = qtoi(q1); i2 = qtoi(q2); cp = v1->v_str; len = (long)strlen(cp); result.v_type = V_STR; if (i1 > 0) i1--; if (i1 >= len) { /* indexing off of end */ result.v_subtype = V_STRLITERAL; result.v_str = ""; return result; } cp += i1; len -= i1; if ((i2 >= len) && (v1->v_subtype == V_STRLITERAL)) { result.v_subtype = V_STRLITERAL; result.v_str = cp; return result; } if (len > i2) len = i2; if (len == 1) { result.v_subtype = V_STRLITERAL; result.v_str = charstr(*cp); return result; } result.v_subtype = V_STRALLOC; result.v_str = (char *)malloc(len + 1); if (result.v_str == NULL) { math_error("No memory for substr"); /*NOTREACHED*/ } strncpy(result.v_str, cp, len); result.v_str[len] = '\0'; return result; } static VALUE f_char(VALUE *vp) { long num; NUMBER *q; VALUE result; if (vp->v_type != V_NUM) return error_value(E_CHAR); q = vp->v_num; num = qtoi(q); if (qisneg(q) || qisfrac(q) || !zistiny(q->num) || (num > 255)) return error_value(E_CHAR); result.v_type = V_STR; result.v_subtype = V_STRLITERAL; result.v_str = charstr((int) num); return result; } static VALUE f_ord(VALUE *vp) { char *str; VALUE result; if (vp->v_type != V_STR) return error_value(E_ORD); str = vp->v_str; result.v_type = V_NUM; result.v_num = itoq((long) (*str & 0xff)); return result; } static VALUE f_size(VALUE *vp) { long count; VALUE result; switch (vp->v_type) { case V_NULL: count = 0; break; case V_MAT: count = vp->v_mat->m_size; break; case V_LIST: count = vp->v_list->l_count; break; case V_ASSOC: count = vp->v_assoc->a_count; break; case V_OBJ: count = vp->v_obj->o_actions->count; break; case V_FILE: count = filesize(vp->v_file); break; case V_STR: count = (long)strlen(vp->v_str); break; default: count = 1; break; } result.v_type = V_NUM; result.v_num = itoq(count); return result; } static long zsize(ZVALUE z) { return (long)sizeof(ZVALUE) + (long)z.len * (long)sizeof(HALF); } static long qsize(NUMBER *q) { return (long)sizeof(NUMBER) + (long)zsize(q->num) + (long)zsize(q->den); } static long lsizeof(VALUE *vp) { long s; long i, j; VALUE *p; LISTELEM *ep; OBJECTACTIONS *oap; ASSOCELEM *aep; ASSOCELEM **ept; i = j = 0; s = (long) sizeof(VALUE); if (vp->v_type > 0) { switch(vp->v_type) { case V_INT: case V_ADDR: break; case V_NUM: s += qsize(vp->v_num); break; case V_COM: s += sizeof(COMPLEX) + qsize(vp->v_com->real) + qsize(vp->v_com->imag); break; case V_STR: s += (long)strlen(vp->v_str) + 1; break; case V_MAT: s += sizeof(MATRIX); i = vp->v_mat->m_size; p = vp->v_mat->m_table; while (i-- > 0) s += lsizeof(p++); break; case V_LIST: s += sizeof(LIST); for (ep = vp->v_list->l_first;ep;ep=ep->e_next) s += sizeof(LISTELEM) - sizeof(VALUE) + lsizeof(&ep->e_value); break; case V_OBJ: s += sizeof(OBJECT); oap = vp->v_obj->o_actions; s += (long)strlen(oap->name) + 1; i = oap->count; s += (i + 2) * sizeof(int); p = vp->v_obj->o_table; while (i-- > 0) s += lsizeof(p++); break; case V_FILE: s += sizeof(vp->v_file); break; case V_RAND: s += sizeof(RAND); break; case V_RANDOM: s += sizeof(RANDOM); break; case V_ASSOC: s += sizeof(ASSOC); i = vp->v_assoc->a_size; ept = vp->v_assoc->a_table; while (i-- > 0) { s += sizeof(ASSOCELEM *); for (aep = *ept++;aep;aep=aep->e_next){ s += sizeof(ASSOCELEM) - sizeof(VALUE); s += lsizeof(&aep->e_value); j = aep->e_dim; p = aep->e_indices; while (j-- > 0) s += lsizeof(p++); } } break; default: math_error("sizeof not defined for value type"); /*NOTREACHED*/ } } return s; } static VALUE f_sizeof(VALUE *vp) { VALUE result; result.v_type = V_NUM; result.v_num = itoq(lsizeof(vp)); return result; } static VALUE f_search(int count, VALUE **vals) { VALUE *v1, *v2; NUMBER *q; long start; long index = -1; VALUE result; v1 = *vals++; v2 = *vals++; start = 0; if (count == 3) { if ((*vals)->v_type != V_NUM) return error_value(E_SEARCH3); q = (*vals)->v_num; if (qisfrac(q) || qisneg(q)) return error_value(E_SEARCH3); start = qtoi(q); } switch (v1->v_type) { case V_MAT: index = matsearch(v1->v_mat, v2, start); break; case V_LIST: index = listsearch(v1->v_list, v2, start); break; case V_ASSOC: index = assocsearch(v1->v_assoc, v2, start); break; case V_FILE: if (v2->v_type != V_STR) return error_value(E_SEARCH2); if (count == 2) start = -1; index = fsearch(v1->v_file, v2->v_str, start); break; default: return error_value(E_SEARCH1); } result.v_type = V_NULL; if (index >= 0) { result.v_type = V_NUM; result.v_num = itoq(index); } return result; } static VALUE f_rsearch(int count, VALUE **vals) { VALUE *v1, *v2; NUMBER *q; long start; long index = -1; VALUE result; v1 = *vals++; v2 = *vals++; start = MAXLONG; if (count == 3) { if ((*vals)->v_type != V_NUM) return error_value(E_RSEARCH3); q = (*vals)->v_num; if (qisfrac(q) || qisneg(q)) return error_value(E_RSEARCH3); start = qtoi(q); } switch (v1->v_type) { case V_MAT: index = matrsearch(v1->v_mat, v2, start); break; case V_LIST: index = listrsearch(v1->v_list, v2, start); break; case V_ASSOC: index = assocrsearch(v1->v_assoc, v2, start); break; case V_FILE: if (v2->v_type != V_STR) return error_value(E_RSEARCH2); if (count == 2) start = -1; index = frsearch(v1->v_file, v2->v_str, start); break; default: return error_value(E_RSEARCH1); } result.v_type = V_NULL; if (index >= 0) { result.v_type = V_NUM; result.v_num = itoq(index); } return result; } static VALUE f_list(int count, VALUE **vals) { VALUE result; result.v_type = V_LIST; result.v_list = listalloc(); while (count-- > 0) insertlistlast(result.v_list, *vals++); return result; } /*ARGSUSED*/ static VALUE f_assoc(int count, VALUE **vals) { VALUE result; result.v_type = V_ASSOC; result.v_assoc = assocalloc(0L); return result; } static VALUE f_listinsert(int count, VALUE **vals) { VALUE *v1, *v2, *v3; VALUE result; long pos; v1 = *vals++; if ((v1->v_type != V_ADDR) || (v1->v_addr->v_type != V_LIST)) return error_value(E_INSERT1); v2 = *vals++; if (v2->v_type == V_ADDR) v2 = v2->v_addr; if ((v2->v_type != V_NUM) || qisfrac(v2->v_num)) return error_value(E_INSERT2); pos = qtoi(v2->v_num); count--; while (--count > 0) { v3 = *vals++; if (v3->v_type == V_ADDR) v3 = v3->v_addr; insertlistmiddle(v1->v_addr->v_list, pos++, v3); } result.v_type = V_NULL; return result; } static VALUE f_listpush(int count, VALUE **vals) { VALUE result; VALUE *v1, *v2; v1 = *vals++; if ((v1->v_type != V_ADDR) || (v1->v_addr->v_type != V_LIST)) return error_value(E_PUSH); while (--count > 0) { v2 = *vals++; if (v2->v_type == V_ADDR) v2 = v2->v_addr; insertlistfirst(v1->v_addr->v_list, v2); } result.v_type = V_NULL; return result; } static VALUE f_listappend(int count, VALUE **vals) { VALUE *v1, *v2; VALUE result; v1 = *vals++; if ((v1->v_type != V_ADDR) || (v1->v_addr->v_type != V_LIST)) return error_value(E_APPEND); while (--count > 0) { v2 = *vals++; if (v2->v_type == V_ADDR) v2 = v2->v_addr; insertlistlast(v1->v_addr->v_list, v2); } result.v_type = V_NULL; return result; } static VALUE f_listdelete(VALUE *v1, VALUE *v2) { VALUE result; if ((v1->v_type != V_ADDR) || (v1->v_addr->v_type != V_LIST)) return error_value(E_DELETE1); if (v2->v_type == V_ADDR) v2 = v2->v_addr; if ((v2->v_type != V_NUM) || qisfrac(v2->v_num)) return error_value(E_DELETE2); removelistmiddle(v1->v_addr->v_list, qtoi(v2->v_num), &result); return result; } static VALUE f_listpop(VALUE *vp) { VALUE result; if ((vp->v_type != V_ADDR) || (vp->v_addr->v_type != V_LIST)) return error_value(E_POP); removelistfirst(vp->v_addr->v_list, &result); return result; } static VALUE f_listremove(VALUE *vp) { VALUE result; if ((vp->v_type != V_ADDR) || (vp->v_addr->v_type != V_LIST)) return error_value(E_REMOVE); removelistlast(vp->v_addr->v_list, &result); return result; } /* * Return the current runtime of calc in seconds. * This is the user mode time only. */ static NUMBER * f_runtime(void) { struct tms buf; times(&buf); return iitoq((long) buf.tms_utime, (long) CLK_TCK); } /* * return the number of second since the Epoch (00:00:00 1 Jan 1970 UTC). */ static NUMBER * f_time(void) { return itoq((long) time(0)); } /* * time in asctime()/ctime() format */ static VALUE f_ctime(void) { time_t systime; char *str; VALUE res; str = (char *) malloc(26); if (str == NULL) { math_error("No memory for ctime()"); /*NOTREACHED*/ } systime = time(NULL); strcpy(str, ctime(&systime)); str[24] = '\0'; res.v_str = str; res.v_type = V_STR; res.v_subtype = V_STRALLOC; return res; } static VALUE f_fopen(VALUE *v1, VALUE *v2) { VALUE result; FILEID id; char *mode; if (v1->v_type != V_STR || v2->v_type != V_STR) return error_value(E_FOPEN1); mode = v2->v_str; if ((*mode != 'r') && (*mode != 'w') && (*mode != 'a')) return error_value(E_FOPEN2); if (mode[1] != '\0') { if (mode[1] != '+') return error_value(E_FOPEN2); if (mode[2] != '\0') return error_value(E_FOPEN2); } errno = 0; id = openid(v1->v_str, v2->v_str); if (id == FILEID_NONE) return error_value(errno); if (id < 0) return error_value(E_FOPEN3); result.v_type = V_FILE; result.v_file = id; return result; } static VALUE f_freopen(int count, VALUE **vals) { VALUE result; FILEID id; char *mode; if (vals[0]->v_type != V_FILE) return error_value(E_FREOPEN1); if (vals[1]->v_type != V_STR) return error_value(E_FREOPEN2); mode = vals[1]->v_str; if ((*mode != 'r') && (*mode != 'w') && (*mode != 'a')) return error_value(E_FREOPEN2); if (mode[1] != '\0') { if (mode[1] != '+') return error_value(E_FREOPEN2); if (mode[2] != '\0') return error_value(E_FREOPEN2); } errno = 0; if (count == 2) id = reopenid(vals[0]->v_file, mode, NULL); else { if (vals[2]->v_type != V_STR) return error_value(E_FREOPEN3); id = reopenid(vals[0]->v_file, mode, vals[2]->v_str); } if (id == FILEID_NONE) return error_value(errno); result.v_type = V_NULL; return result; } static VALUE f_errno(VALUE *v1) { long error; /* error number to look up */ VALUE result; /* arg must be an integer */ if (v1->v_type != V_NUM || qisfrac(v1->v_num)) { math_error("errno argument must be an integer"); /*NOTREACHED*/ } /* return the error string */ result.v_type = V_STR; result.v_subtype = V_STRLITERAL; error = z1tol(v1->v_num->num); if (qisneg(v1->v_num) || zge16b(v1->v_num->num) || error < 0 || error >= sys_nerr) { result.v_str = "Unknown error number"; } else { result.v_str = (char *)sys_errlist[error]; } return result; } static VALUE f_fclose(int count, VALUE **vals) { VALUE result; VALUE *vp; int n, i=0; errno = 0; if (count == 0) { i = closeall(); } else { for (n = 0; n < count; n++) { vp = vals[n]; if (vp->v_type != V_FILE) return error_value(E_FCLOSE1); } for (n = 0; n < count; n++) { vp = vals[n]; i = closeid(vp->v_file); if (i < 0) return error_value(E_REWIND2); } } if (i < 0) return error_value(errno); result.v_type = V_NULL; return result; } static VALUE f_rm(VALUE *v1) { VALUE result; int i; /* * firewall */ if (!allow_write) return error_value(E_WRPERM); /* * check on each arg * * For now we will do just one arg ... worry about * rm flags such as -r or -f maybe someday later ... */ if (v1->v_type != V_STR) return error_value(E_RM1); if (v1->v_str[0] == '\0') return error_value(E_RM1); /* * unlink file(s) */ i = unlink(v1->v_str); if (i < 0) return error_value(E_RM2); result.v_type = V_NULL; return result; } static VALUE f_newerror(int count, VALUE **vals) { VALUE result; char *str; str = NULL; if (count > 0 && vals[0]->v_type == V_STR) { str = vals[0]->v_str; if (*str == '\0') str = NULL; } if (nexterrnum == E_USERDEF) initstr(&newerrorstr); if (str) addstr(&newerrorstr, str); else addstr(&newerrorstr, "???"); result.v_type = - nexterrnum++; return result; } static VALUE f_strerror(VALUE *vp) { VALUE result; long i; /* firewall */ if (vp->v_type < 0) i = (long) -vp->v_type; else { if (vp->v_type != V_NUM || qisfrac(vp->v_num) || qisneg(vp->v_num)) { return error_value(E_STRERROR1); } i = qtoi(vp->v_num); } /* process system error messages */ if (i < E__BASE) { if (i >= sys_nerr) { return error_value(E_STRERROR2); } result.v_str = (char *) sys_errlist[i]; result.v_type = V_STR; result.v_subtype = V_STRLITERAL; return result; } /* more filewall */ if (i <= 0 || i >= nexterrnum || (i > E__HIGHEST && i < E_USERDEF)) { return error_value(E_STRERROR2); } /* convert user or calc error */ result.v_type = V_STR; result.v_subtype = V_STRLITERAL; if (i >= E_USERDEF) result.v_str = namestr(&newerrorstr, i - E_USERDEF); else result.v_str = (char *)error_table[i - E__BASE]; return result; } static VALUE f_ferror(VALUE *vp) { VALUE result; int i; if (vp->v_type != V_FILE) return error_value(E_FERROR1); i = errorid(vp->v_file); if (i < 0) return error_value(E_FERROR2); result.v_type = V_NUM; result.v_num = itoq((long) i); return result; } static VALUE f_feof(VALUE *vp) { VALUE result; int i; if (vp->v_type != V_FILE) return error_value(E_FEOF1); i = eofid(vp->v_file); if (i < 0) return error_value(E_FEOF2); result.v_type = V_NUM; result.v_num = itoq((long) i); return result; } static VALUE f_fflush(int count, VALUE **vals) { VALUE result; int i, n; i = 0; errno = 0; if (count == 0) i = flushall(); else { for (n = 0; n < count; n++) { if (vals[n]->v_type != V_FILE) return error_value(E_FFLUSH); } for (n = 0; n < count; n++) { i |= flushid(vals[n]->v_file); } } if (i == EOF) return error_value(errno); result.v_type = V_NULL; return result; } static VALUE f_error(VALUE *vp) { VALUE res; long r; if (vp->v_type != V_NUM || qisfrac(vp->v_num) || qisneg(vp->v_num)) return error_value(E_ERROR1); r = qtoi(vp->v_num); if (r < 0 || r >= 32768) return error_value(E_ERROR2); res.v_type = (short) -r; return res; } static VALUE f_iserror(VALUE *vp) { VALUE res; res.v_type = V_NUM; res.v_num = itoq((long)((vp->v_type < 0) ? - vp->v_type : 0)); return res; } static VALUE f_fsize(VALUE *vp) { VALUE result; long i; if (vp->v_type != V_FILE) return error_value(E_FSIZE1); i = filesize(vp->v_file); if (i < 0) return error_value(E_FSIZE2); result.v_type = V_NUM; result.v_num = itoq(i); return result; } static VALUE f_fseek(int count, VALUE **vals) { VALUE result; int whence; long offset; int i; /* firewalls */ errno = 0; if (vals[0]->v_type != V_FILE) return error_value(E_FSEEK1); if (vals[1]->v_type != V_NUM || qisfrac(vals[1]->v_num)) return error_value(E_FSEEK2); if (count == 2) whence = 0; else { if (vals[2]->v_type != V_NUM || qisfrac(vals[2]->v_num) || qisneg(vals[2]->v_num)) return error_value(E_FSEEK2); if (vals[2]->v_num->num.len > 1) return error_value (E_FSEEK2); whence = (int)(unsigned int)(vals[2]->v_num->num.v[0]); if (whence > 2) return error_value (E_FSEEK2); } offset = ztoi(vals[1]->v_num->num); i = fseekid(vals[0]->v_file, offset, whence); result.v_type = V_NULL; if (i == EOF) return error_value(errno); if (i < 0) return error_value(E_FSEEK3); return result; } static VALUE f_ftell(VALUE *vp) { VALUE result; long i; errno = 0; if (vp->v_type != V_FILE) return error_value(E_FTELL1); i = ftellid(vp->v_file); if (i == EOF) return error_value(errno); if (i < 0) return error_value(E_FTELL2); result.v_type = V_NUM; result.v_num = itoq(i); return result; } static VALUE f_rewind(int count, VALUE **vals) { VALUE result; int n; if (count == 0) rewindall(); else { for (n = 0; n < count; n++) { if (vals[n]->v_type != V_FILE) return error_value(E_REWIND1); } for (n = 0; n < count; n++) { if (rewindid(vals[n]->v_file) != 0) { return error_value(E_REWIND2); } } } result.v_type = V_NULL; return result; } static VALUE f_fprintf(int count, VALUE **vals) { VALUE result; int i; if (vals[0]->v_type != V_FILE) return error_value(E_FPRINTF1); if (vals[1]->v_type != V_STR) return error_value(E_FPRINTF2); i = idprintf(vals[0]->v_file, vals[1]->v_str, count - 2, vals + 2); if (i > 0) return error_value(E_FPRINTF3); result.v_type = V_NULL; return result; } static int strscan(char *s, int count, VALUE **vals) { char ch, chtmp; char *s0; int n = 0; VALUE val, result; VALUE *var; val.v_type = V_STR; while (*s != '\0') { s--; while ((ch = *++s)) { if (!isspace(ch)) break; } if (ch == '\0' || count-- == 0) return n; s0 = s; while ((ch = *++s)) { if (isspace(ch)) break; } chtmp = ch; *s = '\0'; n++; val.v_str = s0; result = f_eval(&val); var = *vals++; if (var->v_type == V_ADDR) { var = var->v_addr; freevalue(var); *var = result; } *s = chtmp; } return n; } static int filescan(FILEID id, int count, VALUE **vals) { char *str; int i; int n = 0; VALUE val; VALUE result; VALUE *var; val.v_type = V_STR; while (count-- > 0) { i = readid(id, 6, &str); if (i == EOF) break; if (i > 0) return EOF; n++; val.v_str = str; result = f_eval(&val); var = *vals++; if (var->v_type == V_ADDR) { var = var->v_addr; freevalue(var); *var = result; } } return n; } static VALUE f_scan(int count, VALUE **vals) { char *cp; VALUE result; int i; cp = nextline(); if (cp == NULL) { result.v_type = V_NULL; return result; } i = strscan(cp, count, vals); result.v_type = V_NUM; result.v_num = itoq((long) i); return result; } static VALUE f_strscan(int count, VALUE **vals) { VALUE *vp; VALUE result; int i; vp = *vals; if (vp->v_type == V_ADDR) vp = vp->v_addr; if (vp->v_type != V_STR) return error_value(E_STRSCAN); i = strscan(vp->v_str, count - 1, vals + 1); result.v_type = V_NUM; result.v_num = itoq((long) i); return result; } static VALUE f_fscan(int count, VALUE **vals) { VALUE *vp; VALUE result; int i; errno = 0; vp = *vals; if (vp->v_type == V_ADDR) vp = vp->v_addr; if (vp->v_type != V_FILE) return error_value(E_FSCAN1); i = filescan(vp->v_file, count - 1, vals + 1); if (i == EOF) return error_value(errno); if (i < 0) return error_value(E_FSCAN2); result.v_type = V_NUM; result.v_num = itoq((long) i); return result; } static VALUE f_scanf(int count, VALUE **vals) { VALUE *vp; VALUE result; int i; vp = *vals; if (vp->v_type == V_ADDR) vp = vp->v_addr; if (vp->v_type != V_STR) return error_value(E_SCANF1); for (i = 1; i < count; i++) { if (vals[i]->v_type != V_ADDR) return error_value(E_SCANF2); } i = fscanfid(FILEID_STDIN, vp->v_str, count - 1, vals + 1); if (i < 0) return error_value(E_SCANF3); result.v_type = V_NUM; result.v_num = itoq((long) i); return result; } static VALUE f_strscanf(int count, VALUE **vals) { VALUE *vp, *vq; VALUE result; int i; errno = 0; vp = vals[0]; if (vp->v_type == V_ADDR) vp = vp->v_addr; if (vp->v_type != V_STR) return error_value(E_STRSCANF1); vq = vals[1]; if (vq->v_type == V_ADDR) vq = vq->v_addr; if (vq->v_type != V_STR) return error_value(E_STRSCANF2); for (i = 2; i < count; i++) { if (vals[i]->v_type != V_ADDR) return error_value(E_STRSCANF3); } i = scanfstr(vp->v_str, vq->v_str, count - 2, vals + 2); if (i == EOF) return error_value(errno); if (i < 0) return error_value(E_STRSCANF4); result.v_type = V_NUM; result.v_num = itoq((long) i); return result; } static VALUE f_fscanf(int count, VALUE **vals) { VALUE *vp, *sp; VALUE result; int i; vp = *vals++; if (vp->v_type == V_ADDR) vp = vp->v_addr; if (vp->v_type != V_FILE) return error_value(E_FSCANF1); sp = *vals++; if (sp->v_type == V_ADDR) sp = sp->v_addr; if (sp->v_type != V_STR) return error_value(E_FSCANF2); for (i = 0; i < count - 2; i++) { if (vals[i]->v_type != V_ADDR) return error_value(E_FSCANF3); } i = fscanfid(vp->v_file, sp->v_str, count - 2, vals); if (i == EOF) { result.v_type = V_NULL; return result; } if (i < 0) return error_value(E_FSCANF4); result.v_type = V_NUM; result.v_num = itoq((long) i); return result; } static VALUE f_fputc(VALUE *v1, VALUE *v2) { VALUE result; NUMBER *q; int ch; int i; if (v1->v_type != V_FILE) return error_value(E_FPUTC1); switch (v2->v_type) { case V_STR: ch = v2->v_str[0]; break; case V_NUM: q = v2->v_num; if (!qisint(q)) return error_value(E_FPUTC2); ch = qisneg(q) ? (int)(-q->num.v[0] & 0xff) : (int)(q->num.v[0] & 0xff); break; case V_NULL: ch = 0; break; default: return error_value(E_FPUTC2); } i = idfputc(v1->v_file, ch); if (i > 0) return error_value(E_FPUTC3); result.v_type = V_NULL; return result; } static VALUE f_fputs(int count, VALUE **vals) { VALUE result; int i, err; if (vals[0]->v_type != V_FILE) return error_value(E_FPUTS1); for (i = 1; i < count; i++) { if (vals[i]->v_type != V_STR) return error_value(E_FPUTS2); } for (i = 1; i < count; i++) { err = idfputs(vals[0]->v_file, vals[i]->v_str); if (err > 0) return error_value(E_FPUTS3); } result.v_type = V_NULL; return result; } static VALUE f_fputstr(int count, VALUE **vals) { VALUE result; int i, err; if (vals[0]->v_type != V_FILE) return error_value(E_FPUTSTR1); for (i = 1; i < count; i++) { if (vals[i]->v_type != V_STR) return error_value(E_FPUTSTR2); } for (i = 1; i < count; i++) { err = idfputstr(vals[0]->v_file, vals[i]->v_str); if (err > 0) return error_value(E_FPUTSTR3); } result.v_type = V_NULL; return result; } static VALUE f_printf(int count, VALUE **vals) { VALUE result; int i; if (vals[0]->v_type != V_STR) return error_value(E_PRINTF1); i = idprintf(FILEID_STDOUT, vals[0]->v_str, count - 1, vals + 1); if (i) return error_value(E_PRINTF2); result.v_type = V_NULL; return result; } static VALUE f_strprintf(int count, VALUE **vals) { VALUE result; int i; if (vals[0]->v_type != V_STR) return error_value(E_STRPRINTF1); math_divertio(); i = idprintf(FILEID_STDOUT, vals[0]->v_str, count - 1, vals + 1); if (i) return error_value(E_STRPRINTF2); result.v_str = math_getdivertedio(); result.v_type = V_STR; result.v_subtype = V_STRALLOC; return result; } static VALUE f_fgetc(VALUE *vp) { VALUE result; int ch; if (vp->v_type != V_FILE) return error_value(E_FGETC1); ch = getcharid(vp->v_file); if (ch == -2) return error_value(E_FGETC2); result.v_type = V_NULL; if (ch != EOF) { result.v_type = V_STR; result.v_subtype = V_STRLITERAL; result.v_str = charstr(ch); } return result; } static VALUE f_ungetc(VALUE *v1, VALUE *v2) { VALUE result; NUMBER *q; int ch; int i; errno = 0; if (v1->v_type != V_FILE) return error_value(E_UNGETC1); switch (v2->v_type) { case V_STR: ch = v2->v_str[0]; break; case V_NUM: q = v2->v_num; if (!qisint(q)) return error_value(E_UNGETC2); ch = qisneg(q) ? (int)(-q->num.v[0] & 0xff) : (int)(q->num.v[0] & 0xff); break; default: return error_value(E_UNGETC2); } i = idungetc(v1->v_file, ch); if (i == EOF) return error_value(errno); if (i == -2) return error_value(E_UNGETC3); result.v_type = V_NULL; return result; } static VALUE f_fgetline(VALUE *vp) { VALUE result; char *str; int i; if (vp->v_type != V_FILE) return error_value(E_FGETLINE1); i = readid(vp->v_file, 9, &str); if (i > 0) return error_value(E_FGETLINE2); result.v_type = V_NULL; if (i == 0) { result.v_type = V_STR; result.v_subtype = V_STRALLOC; result.v_str = str; } return result; } static VALUE f_fgets(VALUE *vp) { VALUE result; char *str; int i; if (vp->v_type != V_FILE) return error_value(E_FGETS1); i = readid(vp->v_file, 1, &str); if (i > 0) return error_value(E_FGETS2); result.v_type = V_NULL; if (i == 0) { result.v_type = V_STR; result.v_subtype = V_STRALLOC; result.v_str = str; } return result; } static VALUE f_fgetstr(VALUE *vp) { VALUE result; char *str; int i; if (vp->v_type != V_FILE) return error_value(E_FGETSTR1); i = readid(vp->v_file, 10, &str); if (i > 0) return error_value(E_FGETSTR2); result.v_type = V_NULL; if (i == 0) { result.v_type = V_STR; result.v_subtype = V_STRALLOC; result.v_str = str; } return result; } static VALUE f_fgetfield(VALUE *vp) { VALUE result; char *str; int i; if (vp->v_type != V_FILE) return error_value(E_FGETWORD1); i = readid(vp->v_file, 14, &str); if (i > 0) return error_value(E_FGETWORD2); result.v_type = V_NULL; if (i == 0) { result.v_type = V_STR; result.v_subtype = V_STRALLOC; result.v_str = str; } return result; } static VALUE f_files(int count, VALUE **vals) { VALUE result; if (count == 0) { result.v_type = V_NUM; result.v_num = itoq((long) MAXFILES); return result; } if ((vals[0]->v_type != V_NUM) || qisfrac(vals[0]->v_num)) return error_value(E_FILES); result.v_type = V_NULL; result.v_file = indexid(qtoi(vals[0]->v_num)); if (result.v_file != FILEID_NONE) result.v_type = V_FILE; return result; } static VALUE f_reverse(VALUE *val) { VALUE res; res.v_type = val->v_type; switch(val->v_type) { case V_MAT: res.v_mat = matcopy(val->v_mat); matreverse(res.v_mat); break; case V_LIST: res.v_list = listcopy(val->v_list); listreverse(res.v_list); break; default: math_error("Bad argument type for reverse"); /*NOTREACHED*/ } return res; } static VALUE f_sort(VALUE *val) { VALUE res; res.v_type = val->v_type; switch (val->v_type) { case V_MAT: res.v_mat = matcopy(val->v_mat); matsort(res.v_mat); break; case V_LIST: res.v_list = listcopy(val->v_list); listsort(res.v_list); break; default: math_error("Bad argument type for sort"); /*NOTREACHED*/ } return res; } static VALUE f_join(int count, VALUE **vals) { LIST *lp; LISTELEM *ep; VALUE res; lp = listalloc(); while (count-- > 0) { if (vals[0]->v_type != V_LIST) { listfree(lp); printf("Non-list argument for join\n"); res.v_type = V_NULL; return res; } for (ep = vals[0]->v_list->l_first; ep; ep = ep->e_next) insertlistlast(lp, &ep->e_value); vals++; } res.v_type = V_LIST; res.v_list = lp; return res; } static VALUE f_head(VALUE *v1, VALUE *v2) { LIST *lp; LISTELEM *ep; long n; VALUE res; if (v1->v_type != V_LIST) { math_error("Non-list first argument for head"); /*NOTREACHED*/ } if (v2->v_type != V_NUM || qisfrac(v2->v_num)) { math_error("Non-integer second argument for head"); /*NOTREACHED*/ } n = qtoi(v2->v_num); if (n < 0) n += v1->v_list->l_count; lp = listalloc(); for (ep = v1->v_list->l_first; n-- > 0 && ep; ep = ep->e_next) insertlistlast(lp, &ep->e_value); res.v_type = V_LIST; res.v_list = lp; return res; } static VALUE f_tail(VALUE *v1, VALUE *v2) { LIST *lp; LISTELEM *ep; long n; VALUE res; if (v1->v_type != V_LIST) { math_error("Non-list first argument for tail"); /*NOTREACHED*/ } if (v2->v_type != V_NUM || qisfrac(v2->v_num)) { math_error("Non-integer second argument for tail"); /*NOTREACHED*/ } n = qtoi(v2->v_num); if (n < 0) n += v1->v_list->l_count; lp = listalloc(); for (ep = v1->v_list->l_last; n-- > 0 && ep; ep = ep->e_prev) insertlistfirst(lp, &ep->e_value); res.v_type = V_LIST; res.v_list = lp; return res; } static VALUE f_segment(VALUE *v1, VALUE *v2, VALUE *v3) { LIST *lp; LISTELEM *ep; long n1, n2, i; VALUE res; if (v1->v_type != V_LIST) { math_error("Non-list first argument for segment"); /*NOTREACHED*/ } if (v2->v_type != V_NUM || qisfrac(v2->v_num)) { math_error("Non-integer second argument for segment"); /*NOTREACHED*/ } if (v3->v_type != V_NUM || qisfrac(v3->v_num)) { math_error("Non-integer third argument for segment"); /*NOTREACHED*/ } n1 = qtoi(v2->v_num); n2 = qtoi(v3->v_num); if (n1 < 0 || n1 >= v1->v_list->l_count) { math_error("Second argument out of range for segment"); /*NOTREACHED*/ } if (n2 < 0 || n2 >= v1->v_list->l_count) { math_error("Third argument out of range for segment"); /*NOTREACHED*/ } lp = listalloc(); ep = v1->v_list->l_first; if (n1 <= n2) { i = n2 - n1 + 1; while(n1-- > 0 && ep) ep = ep->e_next; while(i-- > 0 && ep) { insertlistlast(lp, &ep->e_value); ep = ep->e_next; } } else { i = n1 - n2 + 1; while(n2-- > 0 && ep) ep = ep->e_next; while(i-- > 0 && ep) { insertlistfirst(lp, &ep->e_value); ep = ep->e_next; } } res.v_type = V_LIST; res.v_list = lp; return res; } static VALUE f_modify(VALUE *v1, VALUE *v2) { FUNC *fp; LISTELEM *ep; long s; VALUE res; VALUE *vp; if (v1->v_type != V_ADDR) { math_error("Non-variable first argument for modify"); /*NOTREACHED*/ } v1 = v1->v_addr; if (v2->v_type == V_ADDR) v2 = v2->v_addr; if (v2->v_type != V_STR) { math_error("Non-string second argument for modify"); /*NOTREACHED*/ } fp = findfunc(adduserfunc(v2->v_str)); if (!fp) { math_error("Undefined function for modify"); /*NOTREACHED*/ } switch (v1->v_type) { case V_LIST: for (ep = v1->v_list->l_first; ep; ep = ep->e_next) { *++stack = ep->e_value; calculate(fp, 1); ep->e_value = *stack--; } break; case V_MAT: vp = v1->v_mat->m_table; s = v1->v_mat->m_size; while (s-- > 0) { *++stack = *vp; calculate(fp, 1); *vp++ = *stack--; } break; default: math_error("Non list or matrix first argument for modify"); /*NOTREACHED*/ } res.v_type = V_NULL; return res; } static VALUE f_forall(VALUE *v1, VALUE *v2) { FUNC *fp; LISTELEM *ep; long s; VALUE res; VALUE *vp; if (v2->v_type != V_STR) { math_error("Non-string second argument for forall"); /*NOTREACHED*/ } fp = findfunc(adduserfunc(v2->v_str)); if (!fp) { math_error("Undefined function for forall"); /*NOTREACHED*/ } switch (v1->v_type) { case V_LIST: for (ep = v1->v_list->l_first; ep; ep = ep->e_next) { copyvalue(&ep->e_value, ++stack); calculate(fp, 1); stack--; } break; case V_MAT: vp = v1->v_mat->m_table; s = v1->v_mat->m_size; while (s-- > 0) { copyvalue(vp++, ++stack); calculate(fp, 1); stack--; } break; default: math_error("Non list or matrix first argument for forall"); /*NOTREACHED*/ } res.v_type = V_NULL; return res; } static VALUE f_select(VALUE *v1, VALUE *v2) { LIST *lp; LISTELEM *ep; FUNC *fp; VALUE res; if (v1->v_type != V_LIST) { math_error("Non-list first argument for select"); /*NOTREACHED*/ } if (v2->v_type != V_STR) { math_error("Non-string second argument for select"); /*NOTREACHED*/ } fp = findfunc(adduserfunc(v2->v_str)); if (!fp) { math_error("Undefined function for select"); /*NOTREACHED*/ } lp = listalloc(); for (ep = v1->v_list->l_first; ep; ep = ep->e_next) { copyvalue(&ep->e_value, ++stack); calculate(fp, 1); if (testvalue(stack)) insertlistlast(lp, &ep->e_value); freevalue(stack--); } res.v_type = V_LIST; res.v_list = lp; return res; } static VALUE f_count(VALUE *v1, VALUE *v2) { LISTELEM *ep; FUNC *fp; long s; long n = 0; VALUE res; VALUE *vp; if (v2->v_type != V_STR) { math_error("Non-string second argument for select"); /*NOTREACHED*/ } fp = findfunc(adduserfunc(v2->v_str)); if (!fp) { math_error("Undefined function for select"); /*NOTREACHED*/ } switch (v1->v_type) { case V_LIST: for (ep = v1->v_list->l_first; ep; ep = ep->e_next) { copyvalue(&ep->e_value, ++stack); calculate(fp, 1); if (testvalue(stack)) n++; freevalue(stack--); } break; case V_MAT: s = v1->v_mat->m_size; vp = v1->v_mat->m_table; while (s-- > 0) { copyvalue(vp++, ++stack); calculate(fp, 1); if (testvalue(stack)) n++; freevalue(stack--); } break; default: math_error("Bad argument type for count"); /*NOTREACHED*/ } res.v_type = V_NUM; res.v_num = itoq(n); return res; } static VALUE f_makelist(VALUE *v1) { LIST *lp; VALUE res; long n; if (v1->v_type != V_NUM || qisfrac(v1->v_num) || qisneg(v1->v_num)) { math_error("Bad argument for makelist"); /*NOTREACHED*/ } if (zge31b(v1->v_num->num)) { math_error("makelist count >= 2^31"); /*NOTREACHED*/ } n = qtoi(v1->v_num); lp = listalloc(); res.v_type = V_NULL; while (n-- > 0) insertlistlast(lp, &res); res.v_type = V_LIST; res.v_list = lp; return res; } static VALUE f_randperm(VALUE *val) { VALUE res; res.v_type = val->v_type; switch (val->v_type) { case V_MAT: res.v_mat = matcopy(val->v_mat); matrandperm(res.v_mat); break; case V_LIST: res.v_list = listcopy(val->v_list); listrandperm(res.v_list); break; default: math_error("Bad argument type for randperm"); /*NOTREACHED*/ } return res; } static VALUE f_cmdbuf(void) { VALUE result; char *newcp; newcp = (char *)malloc(strlen(cmdbuf) + 1); strcpy(newcp, cmdbuf); result.v_type = V_STR; result.v_subtype = V_STRALLOC; result.v_str = newcp; return result; } static VALUE f_getenv(VALUE *v1) { VALUE result; if (v1->v_type != V_STR) { math_error("Non-string argument for getenv"); /*NOTREACHED*/ } result.v_type = V_STR; result.v_subtype = V_STRLITERAL; result.v_str = getenv(v1->v_str); if(result.v_str == NULL) { result.v_type = V_NULL; } return result; } static VALUE f_isatty(VALUE *vp) { VALUE result; int i; if (vp->v_type != V_FILE) return error_value(E_ISATTY1); i = isattyid(vp->v_file); if (i == -2) return error_value(E_ISATTY2); result.v_type = V_NUM; result.v_num = i ? qlink(&_qone_) : qlink(&_qzero_); return result; } static VALUE f_access(int count, VALUE **vals) { NUMBER *q; int m; char *s, *fname; VALUE result; long i; errno = 0; if (vals[0]->v_type != V_STR) return error_value(E_ACCESS1); fname = vals[0]->v_str; m = 0; if (count == 2) { switch (vals[1]->v_type) { case V_NUM: q = vals[1]->v_num; if (qisfrac(q) || qisneg(q)) return error_value(E_ACCESS2); m = (int)(q->num.v[0] & 7); break; case V_STR: s = vals[1]->v_str; i = (long)strlen(s); while (i-- > 0) { switch (*s++) { case 'r': m |= 4; break; case 'w': m |= 2; break; case 'x': m |= 1; break; default: return error_value(E_ACCESS2); } } break; case V_NULL: break; default: return error_value(E_ACCESS2); } } i = access(fname, m); if (i) return error_value(errno); result.v_type = V_NULL; return result; } static VALUE f_putenv(int count, VALUE **vals) { VALUE result; char *putenv_str; /* * parse args */ if (count == 2) { /* firewall */ if (vals[0]->v_type != V_STR || vals[1]->v_type != V_STR) { math_error("Non-string argument for putenv"); /*NOTREACHED*/ } /* convert putenv("foo","bar") into putenv("foo=bar") */ putenv_str = (char *)malloc(strlen(vals[0]->v_str) + 1 + strlen(vals[1]->v_str) + 1); if (putenv_str == NULL) { math_error("Cannot allocate string in putenv"); /*NOTREACHED*/ } sprintf(putenv_str, "%s=%s", vals[0]->v_str, vals[1]->v_str); } else { /* firewall */ if (vals[0]->v_type != V_STR) { math_error("Non-string argument for putenv"); /*NOTREACHED*/ } /* putenv(arg) must be of the form "foo=bar" */ if ((char *)strchr(vals[0]->v_str, '=') == NULL) { math_error("putenv single arg string missing ="); /*NOTREACHED*/ } /* * make a copy of the arg because subsequent changes * would change the environment. */ putenv_str = (char *)malloc(strlen(vals[0]->v_str) + 1); if (putenv_str == NULL) { math_error("Cannot allocate string in putenv"); /*NOTREACHED*/ } strcpy(putenv_str, vals[0]->v_str); } /* return putenv result */ result.v_type = V_NUM; result.v_num = itoq((long) putenv(putenv_str)); return result; } static VALUE f_strpos(VALUE *haystack, VALUE *needle) { VALUE result; char *cpointer; int cindex; if (haystack->v_type != V_STR || needle->v_type != V_STR) { math_error("Non-string argument for index"); /*NOTREACHED*/ } result.v_type = V_NUM; cpointer = strstr(haystack->v_str,needle->v_str); if(cpointer == NULL) cindex=0; else cindex=cpointer - haystack->v_str + 1; result.v_num = itoq((long) cindex); return result; } static VALUE f_system(VALUE *vp) { VALUE result; if (vp->v_type != V_STR) { math_error("Non-string argument for system"); /*NOTREACHED*/ } if (!allow_exec) { math_error("execution disallowed by -m"); /*NOTREACHED*/ } result.v_type = V_NUM; result.v_num = itoq((long) system(vp->v_str)); return result; } /* * set the default output base/mode */ static NUMBER * f_base(int count, NUMBER **vals) { long base; /* output base/mode */ long oldbase=0; /* output base/mode */ /* deal with just a query */ if (count != 1) { return base_value(conf->outmode); } /* deal with the specal modes first */ if (qisfrac(vals[0])) { return base_value(math_setmode(MODE_FRAC)); } if (vals[0]->num.len > 64/BASEB) { return base_value(math_setmode(MODE_EXP)); } /* set the base, if possible */ base = qtoi(vals[0]); switch (base) { case -10: oldbase = math_setmode(MODE_INT); break; case 2: oldbase = math_setmode(MODE_BINARY); break; case 8: oldbase = math_setmode(MODE_OCTAL); break; case 10: oldbase = math_setmode(MODE_REAL); break; case 16: oldbase = math_setmode(MODE_HEX); break; default: math_error("Unsupported base"); /*NOTREACHED*/ break; } /* return the old base */ return base_value(oldbase); } /* * return a numerical 'value' of the mode/base */ static NUMBER * base_value(long mode) { NUMBER *result; /* return the old base */ switch (mode) { case MODE_DEFAULT: switch (conf->outmode) { case MODE_DEFAULT: result = itoq(10); break; case MODE_FRAC: result = qalloc(); itoz(3, &result->den); break; case MODE_INT: result = itoq(-10); break; case MODE_REAL: result = itoq(10); break; case MODE_EXP: result = qalloc(); ztenpow(20, &result->num); break; case MODE_HEX: result = itoq(16); break; case MODE_OCTAL: result = itoq(8); break; case MODE_BINARY: result = itoq(2); break; default: result = itoq(0); break; } break; case MODE_FRAC: result = qalloc(); itoz(3, &result->den); break; case MODE_INT: result = itoq(-10); break; case MODE_REAL: result = itoq(10); break; case MODE_EXP: result = qalloc(); ztenpow(20, &result->num); break; case MODE_HEX: result = itoq(16); break; case MODE_OCTAL: result = itoq(8); break; case MODE_BINARY: result = itoq(2); break; default: result = itoq(0); break; } return result; } #endif /* !FUNCLIST */ /* * builtins - List of primitive built-in functions * * NOTE: This table is also used by the help/Makefile builtin rule to * form the builtin help file. This rule will cause a sed script * to strip this table down into a just the information needed * to print builtin function list: b_name, b_minargs, b_maxargs * and b_desc. All other struct elements will be converted to 0. * The sed script expects to find entries of the form: * * {"...", number, number, stuff, stuff, stuff, stuff, * "...."}, * * please keep this table in that form. * * For nice output, when the description of function (b_desc) * gets too long (extends into col 79) you should chop the * line and add "\n\t\t ", thats newline, 2 tabs a 4 spaces. * For example the description: * * ... very long description that goes beyond col 79 * * should be written as: * * "... very long description that\n\t\t goes beyond col 79"}, * * fields: * b_name name of built-in function * b_minargs minimum number of arguments * b_maxargs maximum number of arguments * b_flags special handling flags * b_opcode opcode which makes the call quick * b_numfunc routine to calculate numeric function * b_valfunc routine to calculate general values * b_desc description of function */ static CONST struct builtin builtins[] = { {"abs", 1, 2, 0, OP_ABS, 0, 0, "absolute value within accuracy b"}, {"access", 1, 2, 0, OP_NOP, 0, f_access, "determine accessibility of file a for mode b"}, {"acos", 1, 2, FE, OP_NOP, qacos, 0, "arccosine of a within accuracy b"}, {"acosh", 1, 2, FE, OP_NOP, qacosh, 0, "inverse hyperbolic cosine of a within accuracy b"}, {"acot", 1, 2, FE, OP_NOP, qacot, 0, "arccotangent of a within accuracy b"}, {"acoth", 1, 2, FE, OP_NOP, qacoth, 0, "inverse hyperbolic cotangent of a within accuracy b"}, {"acsc", 1, 2, FE, OP_NOP, qacsc, 0, "arccosecant of a within accuracy b"}, {"acsch", 1, 2, FE, OP_NOP, qacsch, 0, "inverse csch of a within accuracy b"}, {"append", 1, IN, FA, OP_NOP, 0, f_listappend, "append values to end of list"}, {"appr", 1, 3, 0, OP_NOP, 0, f_appr, "approximate a by multiple of b using rounding c"}, {"arg", 1, 2, 0, OP_NOP, 0, f_arg, "argument (the angle) of complex number"}, {"asec", 1, 2, FE, OP_NOP, qasec, 0, "arcsecant of a within accuracy b"}, {"asech", 1, 2, FE, OP_NOP, qasech, 0, "inverse hyperbolic secant of a within accuracy b"}, {"asin", 1, 2, FE, OP_NOP, qasin, 0, "arcsine of a within accuracy b"}, {"asinh", 1, 2, FE, OP_NOP, qasinh, 0, "inverse hyperbolic sine of a within accuracy b"}, {"assoc", 0, 0, 0, OP_NOP, 0, f_assoc, "create new association array"}, {"atan", 1, 2, FE, OP_NOP, qatan, 0, "arctangent of a within accuracy b"}, {"atan2", 2, 3, FE, OP_NOP, qatan2, 0, "angle to point (b,a) within accuracy c"}, {"atanh", 1, 2, FE, OP_NOP, qatanh, 0, "inverse hyperbolic tangent of a within accuracy b"}, {"avg", 0, IN, 0, OP_NOP, 0, f_avg, "arithmetic mean of values"}, {"base", 0, 1, 0, OP_NOP, f_base, 0, "set default output base"}, {"bround", 1, 3, 0, OP_NOP, 0, f_bround, "round value a to b number of binary places"}, {"btrunc", 1, 2, 0, OP_NOP, f_btrunc, 0, "truncate a to b number of binary places"}, {"ceil", 1, 1, 0, OP_NOP, 0, f_ceil, "smallest integer greater than or equal to number"}, {"cfappr", 1, 3, 0, OP_NOP, f_cfappr, 0, "approximate a within accuracy b using\n\t\t continued fractions"}, {"cfsim", 1, 2, 0, OP_NOP, f_cfsim, 0, "simplify number using continued fractions"}, {"char", 1, 1, 0, OP_NOP, 0, f_char, "character corresponding to integer value"}, {"cmdbuf", 0, 0, 0, OP_NOP, 0, f_cmdbuf, "command buffer"}, {"cmp", 2, 2, 0, OP_CMP, 0, 0, "compare values returning -1, 0, or 1"}, {"comb", 2, 2, 0, OP_NOP, qcomb, 0, "combinatorial number a!/b!(a-b)!"}, {"config", 1, 2, 0, OP_SETCONFIG, 0, 0, "set or read configuration value"}, {"conj", 1, 1, 0, OP_CONJUGATE, 0, 0, "complex conjugate of value"}, {"cos", 1, 2, 0, OP_NOP, 0, f_cos, "cosine of value a within accuracy b"}, {"cosh", 1, 2, FE, OP_NOP, qcosh, 0, "hyperbolic cosine of a within accuracy b"}, {"cot", 1, 2, FE, OP_NOP, qcot, 0, "cotangent of a within accuracy b"}, {"coth", 1, 2, FE, OP_NOP, qcoth, 0, "hyperbolic cotangent of a within accuracy b"}, {"count", 2, 2, 0, OP_NOP, 0, f_count, "count listr/matrix elements satisfying some condition"}, {"cp", 2, 2, 0, OP_NOP, 0, f_cp, "cross product of two vectors"}, {"csc", 1, 2, FE, OP_NOP, qcsc, 0, "cosecant of a within accuracy b"}, {"csch", 1, 2, FE, OP_NOP, qcsch, 0, "hyperbolic cosecant of a within accuracy b"}, {"ctime", 0, 0, 0, OP_NOP, 0, f_ctime, "date and time as string"}, {"delete", 2, 2, FA, OP_NOP, 0, f_listdelete, "delete element from list a at position b"}, {"den", 1, 1, 0, OP_DENOMINATOR, qden, 0, "denominator of fraction"}, {"det", 1, 1, 0, OP_NOP, 0, f_det, "determinant of matrix"}, {"digit", 2, 2, 0, OP_NOP, f_digit, 0, "digit at specified decimal place of number"}, {"digits", 1, 1, 0, OP_NOP, f_digits, 0, "number of digits in number"}, {"dp", 2, 2, 0, OP_NOP, 0, f_dp, "dot product of two vectors"}, {"epsilon", 0, 1, 0, OP_SETEPSILON, 0, 0, "set or read allowed error for real calculations"}, {"errno", 1, 1, 0, OP_NOP, 0, f_errno, "system error message"}, {"error", 1, 1, 0, OP_NOP, 0, f_error, "generate error value"}, {"eval", 1, 1, 0, OP_NOP, 0, f_eval, "evaluate expression from string to value"}, {"exp", 1, 2, 0, OP_NOP, 0, f_exp, "exponential of value a within accuracy b"}, {"factor", 1, 3, 0, OP_NOP, f_factor, 0, "lowest prime factor < b of a, return c if error"}, {"fcnt", 2, 2, 0, OP_NOP, f_faccnt, 0, "count of times one number divides another"}, {"fib", 1, 1, 0, OP_NOP, qfib, 0, "Fibonacci number F(n)"}, {"forall", 2, 2, 0, OP_NOP, 0, f_forall, "do function for all elements of list or matrix"}, {"frem", 2, 2, 0, OP_NOP, qfacrem, 0, "number with all occurrences of factor removed"}, {"fact", 1, 1, 0, OP_NOP, qfact, 0, "factorial"}, {"fclose", 0, IN, 0, OP_NOP, 0, f_fclose, "close file"}, {"feof", 1, 1, 0, OP_NOP, 0, f_feof, "whether EOF reached for file"}, {"ferror", 1, 1, 0, OP_NOP, 0, f_ferror, "whether error occurred for file"}, {"fflush", 0, IN, 0, OP_NOP, 0, f_fflush, "flush output to file(s)"}, {"fgetc", 1, 1, 0, OP_NOP, 0, f_fgetc, "read next char from file"}, {"fgetfield", 1, 1, 0, OP_NOP, 0, f_fgetfield, "read next white-space delimited field from file"}, {"fgetline", 1, 1, 0, OP_NOP, 0, f_fgetline, "read next line from file, newline removed"}, {"fgets", 1, 1, 0, OP_NOP, 0, f_fgets, "read next line from file, newline is kept"}, {"fgetstr", 1, 1, 0, OP_NOP, 0, f_fgetstr, "read next null-terminated string from file, null character is kept"}, {"files", 0, 1, 0, OP_NOP, 0, f_files, "return opened file or max number of opened files"}, {"floor", 1, 1, 0, OP_NOP, 0, f_floor, "greatest integer less than or equal to number"}, {"fopen", 2, 2, 0, OP_NOP, 0, f_fopen, "open file name a in mode b"}, {"fprintf", 2, IN, 0, OP_NOP, 0, f_fprintf, "print formatted output to opened file"}, {"fputc", 2, 2, 0, OP_NOP, 0, f_fputc, "write a character to a file"}, {"fputs", 2, IN, 0, OP_NOP, 0, f_fputs, "write one or more strings to a file"}, {"fputstr", 2, IN, 0, OP_NOP, 0, f_fputstr, "write one or more null-terminated strings to a file"}, {"freopen", 2, 3, 0, OP_NOP, 0, f_freopen, "reopen a file stream to a named file"}, {"fscan", 2, IN, FA, OP_NOP, 0, f_fscan, "scan a file for assignments to one or more variables"}, {"fscanf", 2, IN, FA, OP_NOP, 0, f_fscanf, "formatted scan of a file for assignment to one or more variables"}, {"fseek", 2, 3, 0, OP_NOP, 0, f_fseek, "seek to position b (offset from c) in file a"}, {"fsize", 1, 1, 0, OP_NOP, 0, f_fsize, "return the size of the file"}, {"ftell", 1, 1, 0, OP_NOP, 0, f_ftell, "return the file position"}, {"frac", 1, 1, 0, OP_FRAC, qfrac, 0, "fractional part of value"}, {"gcd", 1, IN, 0, OP_NOP, f_gcd, 0, "greatest common divisor"}, {"gcdrem", 2, 2, 0, OP_NOP, qgcdrem, 0, "a divided repeatedly by gcd with b"}, {"getenv", 1, 1, 0, OP_NOP, 0, f_getenv, "value of environment variable (or NULL)"}, {"hash", 1, IN, 0, OP_NOP, 0, f_hash, "return non-negative hash value for one or\n\t\t more values"}, {"head", 2, 2, 0, OP_NOP, 0, f_head, "return list of specified number at head of a list"}, {"highbit", 1, 1, 0, OP_NOP, f_highbit, 0, "high bit number in base 2 representation"}, {"hmean", 0, IN, 0, OP_NOP, 0, f_hmean, "harmonic mean of values"}, {"hypot", 2, 3, FE, OP_NOP, qhypot, 0, "hypotenuse of right triangle within accuracy c"}, {"ilog", 2, 2, 0, OP_NOP, f_ilog, 0, "integral log of one number with another"}, {"ilog10", 1, 1, 0, OP_NOP, f_ilog10, 0, "integral log of a number base 10"}, {"ilog2", 1, 1, 0, OP_NOP, f_ilog2, 0, "integral log of a number base 2"}, {"im", 1, 1, 0, OP_IM, 0, 0, "imaginary part of complex number"}, {"insert", 2, IN, FA, OP_NOP, 0, f_listinsert, "insert values c ... into list a at position b"}, {"int", 1, 1, 0, OP_INT, qint, 0, "integer part of value"}, {"inverse", 1, 1, 0, OP_INVERT, 0, 0, "multiplicative inverse of value"}, {"iroot", 2, 2, 0, OP_NOP, qiroot, 0, "integer b'th root of a"}, {"isassoc", 1, 1, 0, OP_ISASSOC, 0, 0, "whether a value is an association"}, {"isatty", 1, 1, 0, OP_NOP, 0, f_isatty, "whether a file is a tty"}, {"isconfig", 1, 1, 0, OP_ISCONFIG, 0, 0, "whether a value is a config state"}, {"iserror", 1, 1, 0, OP_NOP, 0, f_iserror, "where a value is an error"}, {"iseven", 1, 1, 0, OP_ISEVEN, 0, 0, "whether a value is an even integer"}, {"isfile", 1, 1, 0, OP_ISFILE, 0, 0, "whether a value is a file"}, {"ishash", 1, 1, 0, OP_ISHASH, 0, 0, "whether a value is a hash state"}, {"isident", 1, 1, 0, OP_NOP, 0, f_isident, "returns 1 if identity matrix"}, {"isint", 1, 1, 0, OP_ISINT, 0, 0, "whether a value is an integer"}, {"islist", 1, 1, 0, OP_ISLIST, 0, 0, "whether a value is a list"}, {"ismat", 1, 1, 0, OP_ISMAT, 0, 0, "whether a value is a matrix"}, {"ismult", 2, 2, 0, OP_NOP, f_ismult, 0, "whether a is a multiple of b"}, {"isnull", 1, 1, 0, OP_ISNULL, 0, 0, "whether a value is the null value"}, {"isnum", 1, 1, 0, OP_ISNUM, 0, 0, "whether a value is a number"}, {"isobj", 1, 1, 0, OP_ISOBJ, 0, 0, "whether a value is an object"}, {"isodd", 1, 1, 0, OP_ISODD, 0, 0, "whether a value is an odd integer"}, {"isprime", 1, 2, 0, OP_NOP, f_isprime, 0, "whether a is a small prime, return b if error"}, {"isqrt", 1, 1, 0, OP_NOP, qisqrt, 0, "integer part of square root"}, {"isrand", 1, 1, 0, OP_ISRAND, 0, 0, "whether a value is a additive 55 state"}, {"israndom", 1, 1, 0, OP_ISRANDOM, 0, 0, "whether a value is a Blum state"}, {"isreal", 1, 1, 0, OP_ISREAL, 0, 0, "whether a value is a real number"}, {"isrel", 2, 2, 0, OP_NOP, f_isrel, 0, "whether two numbers are relatively prime"}, {"isset", 2, 2, 0, OP_NOP, f_isset, 0, "whether bit b of abs(a) (in base 2) is set"}, {"isstr", 1, 1, 0, OP_ISSTR, 0, 0, "whether a value is a string"}, {"issimple", 1, 1, 0, OP_ISSIMPLE, 0, 0, "whether value is a simple type"}, {"issq", 1, 1, 0, OP_NOP, f_issquare, 0, "whether or not number is a square"}, {"istype", 2, 2, 0, OP_ISTYPE, 0, 0, "whether the type of a is same as the type of b"}, {"jacobi", 2, 2, 0, OP_NOP, qjacobi, 0, "-1 => a is not quadratic residue mod b\n\t\t 1 => b is composite, or a is quad residue of b"}, {"join", 1, IN, 0, OP_NOP, 0, f_join, "join one or more lists into one list"}, {"lcm", 1, IN, 0, OP_NOP, f_lcm, 0, "least common multiple"}, {"lcmfact", 1, 1, 0, OP_NOP, qlcmfact, 0, "lcm of all integers up till number"}, {"lfactor", 2, 2, 0, OP_NOP, qlowfactor, 0, "lowest prime factor of a in first b primes"}, {"list", 0, IN, 0, OP_NOP, 0, f_list, "create list of specified values"}, {"ln", 1, 2, 0, OP_NOP, 0, f_ln, "natural logarithm of value a within accuracy b"}, {"lowbit", 1, 1, 0, OP_NOP, f_lowbit, 0, "low bit number in base 2 representation"}, {"ltol", 1, 2, FE, OP_NOP, f_legtoleg, 0, "leg-to-leg of unit right triangle (sqrt(1 - a^2))"}, {"makelist", 1, 1, 0, OP_NOP, 0, f_makelist, "create a list with a null elements"}, {"matdim", 1, 1, 0, OP_NOP, 0, f_matdim, "number of dimensions of matrix"}, {"matfill", 2, 3, FA, OP_NOP, 0, f_matfill, "fill matrix with value b (value c on diagonal)"}, {"matmax", 2, 2, 0, OP_NOP, 0, f_matmax, "maximum index of matrix a dim b"}, {"matmin", 2, 2, 0, OP_NOP, 0, f_matmin, "minimum index of matrix a dim b"}, {"matsum", 1, 1, 0, OP_NOP, 0, f_matsum, "sum the numeric values in a matrix"}, {"mattrans", 1, 1, 0, OP_NOP, 0, f_mattrans, "transpose of matrix"}, {"max", 1, IN, 0, OP_NOP, f_max, 0, "maximum value"}, {"meq", 3, 3, 0, OP_NOP, f_meq, 0, "whether a and b are equal modulo c"}, {"min", 1, IN, 0, OP_NOP, f_min, 0, "minimum value"}, {"minv", 2, 2, 0, OP_NOP, qminv, 0, "inverse of a modulo b"}, {"mmin", 2, 2, 0, OP_NOP, 0, f_mmin, "a mod b value with smallest abs value"}, {"mne", 3, 3, 0, OP_NOP, f_mne, 0, "whether a and b are not equal modulo c"}, {"mod", 2, 3, 0, OP_NOP, 0, f_mod, "residue of a modulo b, rounding type c"}, {"modify", 2, 2, FA, OP_NOP, 0, f_modify, "modify elements of a list or matrix"}, {"near", 2, 3, 0, OP_NOP, f_near, 0, "sign of (abs(a-b) - c)"}, {"newerror", 0, 1, 0, OP_NOP, 0, f_newerror, "create new error type with message a"}, {"nextcand", 1, 5, 0, OP_NOP, f_nextcand, 0, "smallest value == d mod e > a, ptest(a,b,c) true"}, {"nextprime", 1, 2, 0, OP_NOP, f_nprime, 0, "return next small prime, return b if err"}, {"norm", 1, 1, 0, OP_NORM, 0, 0, "norm of a value (square of absolute value)"}, {"null", 0, 0, 0, OP_UNDEF, 0, 0, "null value"}, {"num", 1, 1, 0, OP_NUMERATOR, qnum, 0, "numerator of fraction"}, {"ord", 1, 1, 0, OP_NOP, 0, f_ord, "integer corresponding to character value"}, {"param", 1, 1, 0, OP_ARGVALUE, 0, 0, "value of parameter n (or parameter count if n\n\t\t is zero)"}, {"perm", 2, 2, 0, OP_NOP, qperm, 0, "permutation number a!/(a-b)!"}, {"prevcand", 1, 5, 0, OP_NOP, f_prevcand, 0, "largest value == d mod e < a, ptest(a,b,c) true"}, {"prevprime", 1, 2, 0, OP_NOP, f_pprime, 0, "return previous small prime, return b if err"}, {"pfact", 1, 1, 0, OP_NOP, qpfact, 0, "product of primes up till number"}, {"pi", 0, 1, FE, OP_NOP, qpi, 0, "value of pi accurate to within epsilon"}, {"pix", 1, 2, 0, OP_NOP, f_pix, 0, "number of primes <= a < 2^32, return b if error"}, {"places", 1, 1, 0, OP_NOP, f_places, 0, "places after decimal point (-1 if infinite)"}, {"pmod", 3, 3, 0, OP_NOP, qpowermod,0, "mod of a power (a ^ b (mod c))"}, {"polar", 2, 3, 0, OP_NOP, 0, f_polar, "complex value of polar coordinate (a * exp(b*1i))"}, {"poly", 1, IN, 0, OP_NOP, 0, f_poly, "evaluates a polynomial given its coefficients or coefficient-list"}, {"pop", 1, 1, FA, OP_NOP, 0, f_listpop, "pop value from front of list"}, {"power", 2, 3, 0, OP_NOP, 0, f_power, "value a raised to the power b within accuracy c"}, {"ptest", 1, 3, 0, OP_NOP, f_primetest, 0, "probabilistic primality test"}, {"printf", 1, IN, 0, OP_NOP, 0, f_printf, "print formatted output to stdout"}, {"prompt", 1, 1, 0, OP_NOP, 0, f_prompt, "prompt for input line using value a"}, {"push", 1, IN, FA, OP_NOP, 0, f_listpush, "push values onto front of list"}, {"putenv", 1, 2, 0, OP_NOP, 0, f_putenv, "define an environment variable"}, {"quo", 2, 3, 0, OP_NOP, 0, f_quo, "integer quotient of a by b, rounding type c"}, {"quomod", 4, 4, 0, OP_QUOMOD, 0, 0, "set c and d to quotient and remainder of a\n\t\t divided by b"}, {"rand", 0, 2, 0, OP_NOP, f_rand, 0, "additive 55 random number [0,2^64), [0,a), or [a,b)"}, {"randbit", 0, 1, 0, OP_NOP, f_randbit, 0, "additive 55 random number [0,2^a)"}, {"randperm", 1, 1, 0, OP_NOP, 0, f_randperm, "random permutation of a list or matrix"}, {"rcin", 2, 2, 0, OP_NOP, qredcin, 0, "convert normal number a to REDC number mod b"}, {"rcmul", 3, 3, 0, OP_NOP, qredcmul, 0, "multiply REDC numbers a and b mod c"}, {"rcout", 2, 2, 0, OP_NOP, qredcout, 0, "convert REDC number a mod b to normal number"}, {"rcpow", 3, 3, 0, OP_NOP, qredcpower, 0, "raise REDC number a to power b mod c"}, {"rcsq", 2, 2, 0, OP_NOP, qredcsquare, 0, "square REDC number a mod b"}, {"re", 1, 1, 0, OP_RE, 0, 0, "real part of complex number"}, {"remove", 1, 1, FA, OP_NOP, 0, f_listremove, "remove value from end of list"}, {"reverse", 1, 1, 0, OP_NOP, 0, f_reverse, "reverse a copy of a matrix or list"}, {"rewind", 0, IN, 0, OP_NOP, 0, f_rewind, "rewind file(s)"}, {"rm", 1, 1, 0, OP_NOP, 0, f_rm, "remove a file"}, {"root", 2, 3, 0, OP_NOP, 0, f_root, "value a taken to the b'th root within accuracy c"}, {"round", 1, 3, 0, OP_NOP, 0, f_round, "round value a to b number of decimal places"}, {"rsearch", 2, 3, 0, OP_NOP, 0, f_rsearch, "reverse search matrix or list for value b\n\t\t starting at index c"}, {"runtime", 0, 0, 0, OP_NOP, f_runtime, 0, "user mode cpu time in seconds"}, {"scale", 2, 2, 0, OP_SCALE, 0, 0, "scale value up or down by a power of two"}, {"scan", 1, IN, FA, OP_NOP, 0, f_scan, "scan standard input for assignment to one or more variables"}, {"scanf", 2, IN, FA, OP_NOP, 0, f_scanf, "formatted scan of standard input for assignment to variables"}, {"search", 2, 3, 0, OP_NOP, 0, f_search, "search matrix or list for value b starting\n\t\t at index c"}, {"sec", 1, 2, FE, OP_NOP, qsec, 0, "sec of a within accuracy b"}, {"sech", 1, 2, FE, OP_NOP, qsech, 0, "hyperbolic secant of a within accuracy b"}, {"segment", 3, 3, 0, OP_NOP, 0, f_segment, "specified segment of specified list"}, {"select", 2, 2, 0, OP_NOP, 0, f_select, "form sublist of selected elements from list"}, {"sgn", 1, 1, 0, OP_SGN, qsign, 0, "sign of value (-1, 0, 1)"}, {"sin", 1, 2, 0, OP_NOP, 0, f_sin, "sine of value a within accuracy b"}, {"sinh", 1, 2, FE, OP_NOP, qsinh, 0, "hyperbolic sine of a within accuracy b"}, {"size", 1, 1, 0, OP_NOP, 0, f_size, "total number of elements in value"}, {"sizeof", 1, 1, 0, OP_NOP, 0, f_sizeof, "number of bytes in memory storage for value"}, {"sort", 1, 1, 0, OP_NOP, 0, f_sort, "sort a copy of a matrix or list"}, {"sqrt", 1, 3, 0, OP_NOP, 0, f_sqrt, "square root of value a within accuracy b"}, {"srand", 0, 1, 0, OP_NOP, 0, f_srand, "seed the rand() function"}, {"srandom", 0, 1, 0, OP_NOP, 0, f_srandom, "seed the random() function"}, {"ssq", 1, IN, 0, OP_NOP, 0, f_ssq, "sum of squares of values"}, {"str", 1, 1, 0, OP_NOP, 0, f_str, "simple value converted to string"}, {"strcat", 1,IN, 0, OP_NOP, 0, f_strcat, "concatenate strings together"}, {"strerror", 1, 1, 0, OP_NOP, 0, f_strerror, "string describing error type"}, {"strlen", 1, 1, 0, OP_NOP, 0, f_strlen, "length of string"}, {"strpos", 2, 2, 0, OP_NOP, 0, f_strpos, "index of first occurrence of b in a"}, {"strprintf", 1, IN, 0, OP_NOP, 0, f_strprintf, "return formatted output as a string"}, {"strscan", 2, IN, FA, OP_NOP, 0, f_strscan, "scan a string for assignments to one or more variables"}, {"strscanf", 2, IN, FA, OP_NOP, 0, f_strscanf, "formatted scan of string for assignments to variables"}, {"substr", 3, 3, 0, OP_NOP, 0, f_substr, "substring of a from position b for c chars"}, {"swap", 2, 2, 0, OP_SWAP, 0, 0, "swap values of variables a and b (can be dangerous)"}, {"system", 1, 1, 0, OP_NOP, 0, f_system, "call Unix command"}, {"tail", 2, 2, 0, OP_NOP, 0, f_tail, "retain list of specified number at tail of list"}, {"tan", 1, 2, FE, OP_NOP, qtan, 0, "tangent of a within accuracy b"}, {"tanh", 1, 2, FE, OP_NOP, qtanh, 0, "hyperbolic tangent of a within accuracy b"}, {"time", 0, 0, 0, OP_NOP, f_time, 0, "number of seconds since 00:00:00 1 Jan 1970 UTC"}, {"trunc", 1, 2, 0, OP_NOP, f_trunc, 0, "truncate a to b number of decimal places"}, {"ungetc", 2, 2, 0, OP_NOP, 0, f_ungetc, "unget char read from file"}, {"xor", 1, IN, 0, OP_NOP, f_xor, 0, "logical xor"}, /* end of table */ {NULL, 0, 0, 0, 0, 0, 0, NULL} }; /* * Show the list of primitive built-in functions * * When FUNCLIST is defined, we are being compiled by rules from the help * sub-directory to form a program that will produce the main part of the * buiiltin help file. These rules will convert the following function * name into main and remove the 'sed me out' line. * * See the builtin rule in the help/Makefile for details. */ void /* sed me out */ showbuiltins(void) { CONST struct builtin *bp; /* current function */ printf("\nName\tArgs\tDescription\n\n"); for (bp = builtins; bp->b_name; bp++) { printf("%-9s ", bp->b_name); if (bp->b_maxargs == IN) printf("%d+ ", bp->b_minargs); else if (bp->b_minargs == bp->b_maxargs) printf("%-6d", bp->b_minargs); else printf("%d-%-4d", bp->b_minargs, bp->b_maxargs); printf("%s\n", bp->b_desc); } printf("\n"); } #if !defined(FUNCLIST) /* * Call a built-in function. * Arguments to the function are on the stack, but are not removed here. * Functions are either purely numeric, or else can take any value type. * * given: * index index on where to scan in builtin table * argcount number of args * stck arguments on the stack */ VALUE builtinfunc(long index, int argcount, VALUE *stck) { VALUE *sp; /* pointer to stack entries */ VALUE **vpp; /* pointer to current value address */ CONST struct builtin *bp; /* builtin function to be called */ NUMBER *numargs[IN]; /* numeric arguments for function */ VALUE *valargs[IN]; /* addresses of actual arguments */ VALUE result; /* general result of function */ long i; if ((unsigned long)index >= (sizeof(builtins) / sizeof(builtins[0])) - 1) { math_error("Bad built-in function index"); /*NOTREACHED*/ } bp = &builtins[index]; if (argcount < bp->b_minargs) { math_error("Too few arguments for builtin function \"%s\"", bp->b_name); /*NOTREACHED*/ } if ((argcount > bp->b_maxargs) || (argcount > IN)) { math_error("Too many arguments for builtin function \"%s\"", bp->b_name); /*NOTREACHED*/ } /* * If an address was passed, then point at the real variable, * otherwise point at the stack value itself (unless the function * is very special). */ sp = stck - argcount + 1; vpp = valargs; for (i = argcount; i > 0; i--) { if ((sp->v_type != V_ADDR) || (bp->b_flags & FA)) *vpp = sp; else *vpp = sp->v_addr; sp++; vpp++; } /* * Handle general values if the function accepts them. */ if (bp->b_valfunc) { vpp = valargs; if ((bp->b_minargs == 1) && (bp->b_maxargs == 1)) result = (*bp->b_valfunc)(vpp[0]); else if ((bp->b_minargs == 2) && (bp->b_maxargs == 2)) result = (*bp->b_valfunc)(vpp[0], vpp[1]); else if ((bp->b_minargs == 3) && (bp->b_maxargs == 3)) result = (*bp->b_valfunc)(vpp[0], vpp[1], vpp[2]); else result = (*bp->b_valfunc)(argcount, vpp); return result; } /* * Function must be purely numeric, so handle that. */ vpp = valargs; for (i = 0; i < argcount; i++) { if ((*vpp)->v_type != V_NUM) { math_error("Non-real argument for builtin function %s", bp->b_name); /*NOTREACHED*/ } numargs[i] = (*vpp)->v_num; vpp++; } result.v_type = V_NUM; if (!(bp->b_flags & FE) && (bp->b_minargs != bp->b_maxargs)) { result.v_num = (*bp->b_numfunc)(argcount, numargs); return result; } if ((bp->b_flags & FE) && (argcount < bp->b_maxargs)) numargs[argcount++] = conf->epsilon; switch (argcount) { case 0: result.v_num = (*bp->b_numfunc)(); break; case 1: result.v_num = (*bp->b_numfunc)(numargs[0]); break; case 2: result.v_num = (*bp->b_numfunc)(numargs[0], numargs[1]); break; case 3: result.v_num = (*bp->b_numfunc)(numargs[0], numargs[1], numargs[2]); break; default: math_error("Bad builtin function call"); /*NOTREACHED*/ } return result; } /* * Return the index of a built-in function given its name. * Returns minus one if the name is not known. */ int getbuiltinfunc(char *name) { CONST struct builtin *bp; for (bp = builtins; bp->b_name; bp++) { if ((*name == *bp->b_name) && (strcmp(name, bp->b_name) == 0)) return (bp - builtins); } return -1; } /* * Given the index of a built-in function, return its name. */ char * builtinname(long index) { if ((unsigned long)index >= (sizeof(builtins) / sizeof(builtins[0])) - 1) return ""; return builtins[index].b_name; } /* * Given the index of a built-in function, and the number of arguments seen, * determine if the number of arguments are legal. This routine is called * during parsing time. */ void builtincheck(long index, int count) { CONST struct builtin *bp; if ((unsigned long)index >= (sizeof(builtins) / sizeof(builtins[0])) - 1) { math_error("Unknown built in index"); /*NOTREACHED*/ } bp = &builtins[index]; if (count < bp->b_minargs) scanerror(T_NULL, "Too few arguments for builtin function \"%s\"", bp->b_name); if (count > bp->b_maxargs) scanerror(T_NULL, "Too many arguments for builtin function \"%s\"", bp->b_name); } /* * Return the opcode for a built-in function that can be used to avoid * the function call at all. */ int builtinopcode(long index) { if ((unsigned long)index >= (sizeof(builtins) / sizeof(builtins[0])) - 1) return OP_NOP; return builtins[index].b_opcode; } #endif /* FUNCLIST */