/* * seed - produce a pseudo-random seeds * * Copyright (C) 1999 Landon Curt Noll * * Calc is open software; you can redistribute it and/or modify it under * the terms of the version 2.1 of the GNU Lesser General Public License * as published by the Free Software Foundation. * * Calc is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General * Public License for more details. * * A copy of version 2.1 of the GNU Lesser General Public License is * distributed with calc under the filename COPYING-LGPL. You should have * received a copy with calc; if not, write to Free Software Foundation, Inc. * 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. * * @(#) $Revision: 29.1 $ * @(#) $Id: seed.c,v 29.1 1999/12/14 09:16:15 chongo Exp $ * @(#) $Source: /usr/local/src/cmd/calc/RCS/seed.c,v $ * * Under source code control: 1999/10/03 10:06:53 * File existed as early as: 1999 * * chongo /\oo/\ http://reality.sgi.com/chongo/ * Share and enjoy! :-) http://reality.sgi.com/chongo/tech/comp/calc/ */ /* * Generate a quasi-random seed based on system and process information. * * NOTE: This is not a good source of chaotic data. The lavarand * system does a much better job of that. See: * * http://lavarand.sgi.com/index.html */ #include #include #include /* * PORTING NOTE: * These includes are used by pseudo_seed(). If for some * reason some of these include files are missing or damaged * on your system, feel free to remove them (and the related * calls inside pseudo_seed()), add or replace them. The * pseudo_seed() function just needs to gather a bunch of * information about the process and system state so the * loss or inclusion of a few other calls should not hurt * that much. */ #include #include #include #include #include #include #include #include "qmath.h" #include "longbits.h" #include "have_ustat.h" #include "have_getsid.h" #include "have_getpgid.h" #include "have_gettime.h" #include "have_getprid.h" #include "have_urandom.h" #include "have_rusage.h" #if defined(HAVE_USTAT) # include #endif /* HAVE_USTAT */ #if defined(HAVE_URANDOM) # include # define DEV_URANDOM "/dev/urandom" # define DEV_URANDOM_POOL 16 #endif /* HAVE_URANDOM */ /* * 64 bit hash value */ #if defined(HAVE_B64) typedef USB64 hash64; #else struct s_hash64 { USB32 w32[2]; }; typedef struct s_hash64 hash64; #endif /* * FNV-1 initial basis * * We start the hash at a non-zero value at the beginning so that * hashing blocks of data with all 0 bits do not map onto the same * 0 hash value. The virgin value that we use below is the hash value * that we would get from following 32 ASCII characters: * * chongo /\../\ * * Note that the \'s above are not back-slashing escape characters. * They are literal ASCII backslash 0x5c characters. * * The effect of this virgin initial value is the same as starting * with 0 and pre-pending those 32 characters onto the data being * hashed. * * Yes, even with this non-zero virgin value there is a set of data * that will result in a zero hash value. Worse, appending any * about of zero bytes will continue to produce a zero hash value. * But that would happen with any initial value so long as the * hash of the initial was the `inverse' of the virgin prefix string. * * But then again for any hash function, there exists sets of data * which that the hash of every member is the same value. That is * life with many to few mapping functions. All we do here is to * prevent sets whose members consist of 0 or more bytes of 0's from * being such an awkward set. * * And yes, someone can figure out what the magic 'inverse' of the * 32 ASCII character are ... but this hash function is NOT intended * to be a cryptographic hash function, just a fast and reasonably * good hash function. */ #if defined(HAVE_B64) # define FNV1_64_BASIS ((hash64)(0xcbf29ce484222325ULL)) #else # define FNV1_64_BASIS_0 ((USB32)0x2325) # define FNV1_64_BASIS_1 ((USB32)0x8422) # define FNV1_64_BASIS_2 ((USB32)0x9ce4) # define FNV1_64_BASIS_3 ((USB32)0xcbf2) #endif /* * hash_buf - perform a Fowler/Noll/Vo-1 64 bit hash * * input: * buf - start of buffer to hash * len - length of buffer in octets * hval - the hash value to modify * * returns: * 64 bit hash as a static hash64 structure */ static hash64 hash_buf(char *buf, unsigned len) { hash64 hval; /* current hash value */ #if !defined(HAVE_B64) USB32 val[4]; /* hash value in base 2^16 */ USB32 tmp[4]; /* tmp 64 bit value */ #endif /* HAVE_B64 */ char *buf_end = buf+len; /* beyond end of hash area */ /* * FNV-1 - Fowler/Noll/Vo-1 64 bit hash * * The basis of this hash algorithm was taken from an idea sent * as reviewer comments to the IEEE POSIX P1003.2 committee by: * * Phong Vo (http://www.research.att.com/info/kpv/) * Glenn Fowler (http://www.research.att.com/~gsf/) * * In a subsequent ballot round: * * Landon Curt Noll (http://reality.sgi.com/chongo/) * * improved on their algorithm. Some people tried this hash * and found that it worked rather well. In an EMail message * to Landon, they named it ``Fowler/Noll/Vo'' or the FNV hash. * * FNV hashes are architected to be fast while maintaining a low * collision rate. The FNV speed allows one to quickly hash lots * of data while maintaining a reasonable collision rate. See: * * http://reality.sgi.com/chongo/tech/comp/fnv/ * * for more details as well as other forms of the FNV hash. */ #if defined(HAVE_B64) /* hash each octet of the buffer */ for (hval = FNV1_64_BASIS; buf < buf_end; ++buf) { /* multiply by 1099511628211ULL mod 2^64 using 64 bit longs */ hval *= (hash64)1099511628211ULL; /* xor the bottom with the current octet */ hval ^= (hash64)(*buf); } #else /* HAVE_B64 */ /* hash each octet of the buffer */ val[0] = FNV1_64_BASIS_0; val[1] = FNV1_64_BASIS_1; val[2] = FNV1_64_BASIS_2; val[3] = FNV1_64_BASIS_3; for (; buf < buf_end; ++buf) { /* * multiply by 1099511628211 mod 2^64 using 32 bit longs * * Using 1099511628211, we have the following digits base 2^16: * * 0x0 0x100 0x0 0x1b3 */ /* multiply by the lowest order digit base 2^16 */ tmp[0] = val[0] * 0x1b3; tmp[1] = val[1] * 0x1b3; tmp[2] = val[2] * 0x1b3; tmp[3] = val[3] * 0x1b3; /* multiply by the other non-zero digit */ tmp[2] += val[0] << 8; /* tmp[2] += val[0] * 0x100 */ tmp[3] += val[1] << 8; /* tmp[1] += val[1] * 0x100 */ /* proapage carries */ tmp[1] += (tmp[0] >> 16); val[0] = tmp[0] & 0xffff; tmp[2] += (tmp[1] >> 16); val[1] = tmp[1] & 0xffff; val[3] = tmp[3] + (tmp[2] >> 16); val[2] = tmp[2] & 0xffff; /* * Doing a val[3] &= 0xffff; is not really needed since it simply * removes multiples of 2^64. We can discard these excess bits * outside of the loop when we convert to hash64. */ /* xor the bottom with the current octet */ val[0] ^= (USB32)(*buf); } /* convert to hash64 */ /* hval.w32[1] = 0xffff&(val[3]<<16)+val[2]; */ hval.w32[1] = (val[3]<<16) + val[2]; hval.w32[0] = (val[1]<<16) + val[0]; #endif /* HAVE_B64 */ /* return our hash value */ return hval; } /* * pseudo_seed - seed the generator with a quasi-random seed * * Generate a quasi-random seed based on system and process information. * * NOTE: This is not a good source of chaotic data. The lavarand * system does a much better job of that. See: * * http://lavarand.sgi.com/index.html * * PORTING NOTE: * If when porting this code to your system and something * won't compile, just remove that line or replace it with * some other system call. We don't have to have every call * operating below. We only want to hash the resulting data. * * returns: * a pseudo-seed as a NUMBER over the range [0, 2^64) */ NUMBER * pseudo_seed(void) { struct { /* data used for quasi-random seed */ #if defined(HAVE_GETTIME) # if defined(CLOCK_SGI_CYCLE) struct timespec sgi_cycle; /* SGI hardware clock */ # endif /* CLOCK_SGI_CYCLE */ # if defined(CLOCK_REALTIME) struct timespec realtime; /* POSIX realtime clock */ # endif /* CLOCK_REALTIME */ #endif /* HAVE_GETTIME */ #if defined(HAVE_GETPRID) prid_t getprid; /* project ID */ #endif /* HAVE_GETPRID */ #if defined(HAVE_URANDOM) int urandom_fd; /* open descriptor for /dev/urandom */ int urandom_ret; /* read() of /dev/random */ char urandom_pool[DEV_URANDOM_POOL]; /* /dev/urandom data pool */ #endif /* HAVE_URANDOM */ struct timeval tp; /* time of day */ pid_t getpid; /* process ID */ pid_t getppid; /* parent process ID */ uid_t getuid; /* real user ID */ uid_t geteuid; /* effective user ID */ gid_t getgid; /* real group ID */ gid_t getegid; /* effective group ID */ struct stat stat_dot; /* stat of "." */ struct stat stat_dotdot; /* stat of ".." */ struct stat stat_tmp; /* stat of "/tmp" */ struct stat stat_root; /* stat of "/" */ struct stat fstat_stdin; /* stat of stdin */ struct stat fstat_stdout; /* stat of stdout */ struct stat fstat_stderr; /* stat of stderr */ #if defined(HAVE_USTAT) struct ustat ustat_dot; /* usage stat of "." */ struct ustat ustat_dotdot; /* usage stat of ".." */ struct ustat ustat_tmp; /* usage stat of "/tmp" */ struct ustat ustat_root; /* usage stat of "/" */ struct ustat ustat_stdin; /* usage stat of stdin */ struct ustat ustat_stdout; /* usage stat of stdout */ struct ustat ustat_stderr; /* usage stat of stderr */ #endif /* HAVE_USTAT */ #if defined(HAVE_GETSID) pid_t getsid; /* session ID */ #endif /* HAVE_GETSID */ #if defined(HAVE_GETPGID) pid_t getpgid; /* process group ID */ #endif /* HAVE_GETPGID */ #if defined(HAVE_GETRUSAGE) struct rusage rusage; /* resource utilization */ struct rusage rusage_chld; /* resource utilization of children */ #endif /* HAVE_GETRUSAGE */ struct timeval tp2; /* time of day again */ struct tms times; /* process times */ time_t time; /* local time */ size_t size; /* size of this data structure */ jmp_buf env; /* setjmp() context */ char *sdata_p; /* address of this structure */ } sdata; hash64 hash_val; /* fnv64 hash of sdata */ ZVALUE hash; /* hash_val as a ZVALUE */ NUMBER *ret; /* return seed as a NUMBER */ /* * pick up process/system information * * NOTE: * We do care (that much) if these calls fail. We do not * need to process any data in the 'sdata' structure. */ #if defined(HAVE_GETTIME) # if defined(CLOCK_SGI_CYCLE) (void) clock_gettime(CLOCK_SGI_CYCLE, &sdata.sgi_cycle); # endif /* CLOCK_SGI_CYCLE */ # if defined(CLOCK_REALTIME) (void) clock_gettime(CLOCK_REALTIME, &sdata.realtime); # endif /* CLOCK_REALTIME */ #endif /* HAVE_GETTIME */ #if defined(HAVE_GETPRID) sdata.getprid = getprid(); #endif /* HAVE_GETPRID */ #if defined(HAVE_URANDOM) sdata.urandom_fd = open(DEV_URANDOM, O_NONBLOCK|O_RDONLY); if (sdata.urandom_fd >= 0) { sdata.urandom_ret = read(sdata.urandom_fd, &sdata.urandom_pool, DEV_URANDOM_POOL); close(sdata.urandom_fd); } else { memset(&sdata.urandom_pool, EOF, DEV_URANDOM_POOL); sdata.urandom_ret = EOF; } #endif /* HAVE_URANDOM */ (void) gettimeofday(&sdata.tp, NULL); sdata.getpid = getpid(); sdata.getppid = getppid(); sdata.getuid = getuid(); sdata.geteuid = geteuid(); sdata.getgid = getgid(); sdata.getegid = getegid(); (void) stat(".", &sdata.stat_dot); (void) stat("..", &sdata.stat_dotdot); (void) stat("/tmp", &sdata.stat_tmp); (void) stat("/", &sdata.stat_root); (void) fstat(0, &sdata.fstat_stdin); (void) fstat(1, &sdata.fstat_stdout); (void) fstat(2, &sdata.fstat_stderr); #if defined(HAVE_USTAT) (void) ustat(sdata.stat_dotdot.st_dev, &sdata.ustat_dotdot); (void) ustat(sdata.stat_dot.st_dev, &sdata.ustat_dot); (void) ustat(sdata.stat_tmp.st_dev, &sdata.ustat_tmp); (void) ustat(sdata.stat_root.st_dev, &sdata.ustat_root); (void) ustat(sdata.fstat_stdin.st_dev, &sdata.ustat_stdin); (void) ustat(sdata.fstat_stdout.st_dev, &sdata.ustat_stdout); (void) ustat(sdata.fstat_stderr.st_dev, &sdata.ustat_stderr); #endif /* HAVE_USTAT */ #if defined(HAVE_GETSID) sdata.getsid = getsid((pid_t)0); #endif /* HAVE_GETSID */ #if defined(HAVE_GETPGID) sdata.getpgid = getpgid((pid_t)0); #endif /* HAVE_GETPGID */ #if defined(HAVE_GETRUSAGE) (void) getrusage(RUSAGE_SELF, &sdata.rusage); (void) getrusage(RUSAGE_CHILDREN, &sdata.rusage_chld); #endif /* HAVE_GETRUSAGE */ (void) gettimeofday(&sdata.tp2, NULL); (void) times(&sdata.times); sdata.time = time(NULL); sdata.size = sizeof(sdata); (void) setjmp(sdata.env); sdata.sdata_p = (char *)&sdata; /* * seed the generator with the above data */ hash_val = hash_buf((char *)&sdata, sizeof(sdata)); /* * load the hash data into the ZVALUE * * We do not care about byte-order or endian issues, we just * want to load in data. */ hash.len = sizeof(hash_val) / sizeof(HALF); hash.v = alloc(hash.len); hash.sign = 0; memcpy((void *)hash.v, (void *)&hash_val, hash.len*sizeof(HALF)); ztrim(&hash); /* * return a number */ ret = qalloc(); ret->num = hash; return ret; }