mirror of
https://github.com/lcn2/calc.git
synced 2025-08-19 01:13:27 +03:00
convert ASCII TABs to ASCII SPACEs
Converted all ASCII tabs to ASCII spaces using a 8 character tab stop, for all files, except for all Makefiles (plus rpm.mk). The `git diff -w` reports no changes.
This commit is contained in:
@@ -9,7 +9,7 @@
|
||||
*
|
||||
* Calc is distributed in the hope that it will be useful, but WITHOUT
|
||||
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||||
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General
|
||||
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General
|
||||
* Public License for more details.
|
||||
*
|
||||
* A copy of version 2.1 of the GNU Lesser General Public License is
|
||||
@@ -17,10 +17,10 @@
|
||||
* received a copy with calc; if not, write to Free Software Foundation, Inc.
|
||||
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
*
|
||||
* Under source code control: 2021/11/06 14:35:37
|
||||
* File existed as early as: 2021
|
||||
* Under source code control: 2021/11/06 14:35:37
|
||||
* File existed as early as: 2021
|
||||
*
|
||||
* Share and enjoy! :-) http://www.isthe.com/chongo/tech/comp/calc/
|
||||
* Share and enjoy! :-) http://www.isthe.com/chongo/tech/comp/calc/
|
||||
*/
|
||||
|
||||
|
||||
@@ -30,23 +30,23 @@
|
||||
* NOTE: We assume base 10 digits and place 1 is the units digit.
|
||||
*
|
||||
* given:
|
||||
* val value to find a digit of
|
||||
* place digit place
|
||||
* val value to find a digit of
|
||||
* place digit place
|
||||
*
|
||||
* returns:
|
||||
* value (>= 0 and < 10) that is the place-th digit of val
|
||||
* or 0 if place is not a digit of val
|
||||
* value (>= 0 and < 10) that is the place-th digit of val
|
||||
* or 0 if place is not a digit of val
|
||||
*/
|
||||
define digitof(val, place)
|
||||
{
|
||||
local d; /* length of val in digits */
|
||||
local d; /* length of val in digits */
|
||||
|
||||
/* determine length */
|
||||
d = digits(val);
|
||||
|
||||
/* firewall - return 0 if digit place doesn't exist */
|
||||
if (place < 1 || place > d) {
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* return the place-th digit of val as a single digit */
|
||||
@@ -60,18 +60,18 @@ define digitof(val, place)
|
||||
* NOTE: We assume base 10 digits and place 1 is the units digit.
|
||||
*
|
||||
* given:
|
||||
* d digits of a value
|
||||
* place digit place
|
||||
* d digits of a value
|
||||
* place digit place
|
||||
*
|
||||
* returns:
|
||||
* given palindrome val, the other digit paired with place
|
||||
* or 0 if place is not a digit of val
|
||||
* given palindrome val, the other digit paired with place
|
||||
* or 0 if place is not a digit of val
|
||||
*/
|
||||
define copalplace(d, place)
|
||||
{
|
||||
/* firewall - return 0 if digit place doesn't exist */
|
||||
if (d < 1 || place < 1 || place > d) {
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* return digit coplace */
|
||||
@@ -85,18 +85,18 @@ define copalplace(d, place)
|
||||
* NOTE: We assume base 10 digits and place 1 is the units digit.
|
||||
*
|
||||
* NOTE: When the value has an odd number of digits, the upper half
|
||||
* includes the middle digit.
|
||||
* includes the middle digit.
|
||||
*
|
||||
* given:
|
||||
* val a value
|
||||
* val a value
|
||||
*
|
||||
* returns:
|
||||
* the upper half digits of a value
|
||||
* the upper half digits of a value
|
||||
*/
|
||||
define upperhalf(val)
|
||||
{
|
||||
local d; /* length of val in digits */
|
||||
local halfd; /* length of upper hand of val */
|
||||
local d; /* length of val in digits */
|
||||
local halfd; /* length of upper hand of val */
|
||||
|
||||
/* determine length */
|
||||
d = digits(val);
|
||||
@@ -113,16 +113,16 @@ define upperhalf(val)
|
||||
* NOTE: We assume base 10 digits and place 1 is the units digit.
|
||||
*
|
||||
* given:
|
||||
* val a value
|
||||
* val a value
|
||||
*
|
||||
* returns:
|
||||
* val as a palindrome with lower half being reverse digits of val
|
||||
* val as a palindrome with lower half being reverse digits of val
|
||||
*/
|
||||
define mkpal(val)
|
||||
{
|
||||
local d; /* length of val in digits */
|
||||
local i; /* counter */
|
||||
local ret; /* palindrome being formed */
|
||||
local d; /* length of val in digits */
|
||||
local i; /* counter */
|
||||
local ret; /* palindrome being formed */
|
||||
|
||||
/* determine length */
|
||||
d = digits(val);
|
||||
@@ -130,7 +130,7 @@ define mkpal(val)
|
||||
/* insert digits in reverse order at the bottom */
|
||||
ret = val;
|
||||
for (i=0; i < d; ++i) {
|
||||
ret = ret*10 + digit(val, i);
|
||||
ret = ret*10 + digit(val, i);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
@@ -142,18 +142,18 @@ define mkpal(val)
|
||||
* NOTE: We assume base 10 digits and place 1 is the units digit.
|
||||
*
|
||||
* given:
|
||||
* val a value
|
||||
* digit the digit to put into the middle of the palindrome
|
||||
* val a value
|
||||
* digit the digit to put into the middle of the palindrome
|
||||
*
|
||||
* returns:
|
||||
* val as a palindrome with lower half being reverse digits of val
|
||||
* and digit as a middle digit
|
||||
* val as a palindrome with lower half being reverse digits of val
|
||||
* and digit as a middle digit
|
||||
*/
|
||||
define mkpalmiddigit(val, digit)
|
||||
{
|
||||
local d; /* length of val in digits */
|
||||
local i; /* counter */
|
||||
local ret; /* palindrome being formed */
|
||||
local d; /* length of val in digits */
|
||||
local i; /* counter */
|
||||
local ret; /* palindrome being formed */
|
||||
|
||||
/* determine length */
|
||||
d = digits(val);
|
||||
@@ -161,7 +161,7 @@ define mkpalmiddigit(val, digit)
|
||||
/* insert digits in reverse order at the bottom */
|
||||
ret = val*10 + digit;
|
||||
for (i=0; i < d; ++i) {
|
||||
ret = ret*10 + digit(val, i);
|
||||
ret = ret*10 + digit(val, i);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
@@ -173,31 +173,31 @@ define mkpalmiddigit(val, digit)
|
||||
* NOTE: We assume base 10 digits and place 1 is the units digit.
|
||||
*
|
||||
* given:
|
||||
* val a value
|
||||
* val a value
|
||||
*
|
||||
* returns:
|
||||
* 1 ==> val is a palindrome
|
||||
* 0 ==> val is NOT a palindrome
|
||||
* 1 ==> val is a palindrome
|
||||
* 0 ==> val is NOT a palindrome
|
||||
*/
|
||||
define ispal(val)
|
||||
{
|
||||
local half; /* upper half of digits of val */
|
||||
local digit; /* middle digit */
|
||||
local half; /* upper half of digits of val */
|
||||
local digit; /* middle digit */
|
||||
|
||||
/* case: val has an even number of digits */
|
||||
if (iseven(digits(val))) {
|
||||
|
||||
/* test palindrome-ness */
|
||||
return (val == mkpal(upperhalf(val)));
|
||||
/* test palindrome-ness */
|
||||
return (val == mkpal(upperhalf(val)));
|
||||
|
||||
/* case: val can an odd number of digits */
|
||||
} else {
|
||||
|
||||
/* test palindrome-ness */
|
||||
half = upperhalf(val);
|
||||
digit = half % 10;
|
||||
half //= 10;
|
||||
return (val == mkpalmiddigit(half, digit));
|
||||
/* test palindrome-ness */
|
||||
half = upperhalf(val);
|
||||
digit = half % 10;
|
||||
half //= 10;
|
||||
return (val == mkpalmiddigit(half, digit));
|
||||
}
|
||||
}
|
||||
|
||||
@@ -208,21 +208,21 @@ define ispal(val)
|
||||
* NOTE: We assume base 10 digits and place 1 is the units digit.
|
||||
*
|
||||
* given:
|
||||
* pal a palindrome
|
||||
* pal a palindrome
|
||||
*
|
||||
* returns:
|
||||
* next palindrome > pal
|
||||
* next palindrome > pal
|
||||
*/
|
||||
define palnextpal(pal)
|
||||
{
|
||||
local paldigits; /* digits in pal */
|
||||
local half; /* upper half of newval */
|
||||
local newhalf; /* half+1 */
|
||||
local newpal; /* new palindrome */
|
||||
local paldigits; /* digits in pal */
|
||||
local half; /* upper half of newval */
|
||||
local newhalf; /* half+1 */
|
||||
local newpal; /* new palindrome */
|
||||
|
||||
/* case: negative palindrome */
|
||||
if (pal < 0) {
|
||||
return -(palprevpal(-pal));
|
||||
return -(palprevpal(-pal));
|
||||
}
|
||||
|
||||
/*
|
||||
@@ -244,19 +244,19 @@ define palnextpal(pal)
|
||||
*/
|
||||
paldigits = digits(pal);
|
||||
if (digits(newhalf) == digits(half)) {
|
||||
/* no change in half digits: process as normal */
|
||||
if (iseven(paldigits)) {
|
||||
newpal = mkpal(newhalf);
|
||||
} else {
|
||||
newpal = mkpalmiddigit(newhalf // 10, newhalf % 10);
|
||||
}
|
||||
/* no change in half digits: process as normal */
|
||||
if (iseven(paldigits)) {
|
||||
newpal = mkpal(newhalf);
|
||||
} else {
|
||||
newpal = mkpalmiddigit(newhalf // 10, newhalf % 10);
|
||||
}
|
||||
} else {
|
||||
/* change in half digits: process as opposite */
|
||||
if (iseven(paldigits)) {
|
||||
newpal = mkpalmiddigit(newhalf // 10, newhalf % 10);
|
||||
} else {
|
||||
newpal = mkpal(newhalf);
|
||||
}
|
||||
/* change in half digits: process as opposite */
|
||||
if (iseven(paldigits)) {
|
||||
newpal = mkpalmiddigit(newhalf // 10, newhalf % 10);
|
||||
} else {
|
||||
newpal = mkpal(newhalf);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
@@ -272,22 +272,22 @@ define palnextpal(pal)
|
||||
* NOTE: We assume base 10 digits and place 1 is the units digit.
|
||||
*
|
||||
* given:
|
||||
* val a value
|
||||
* val a value
|
||||
*
|
||||
* returns:
|
||||
* next palindrome > val
|
||||
* next palindrome > val
|
||||
*/
|
||||
define nextpal(val)
|
||||
{
|
||||
local newval; /* val+1 */
|
||||
local newvaldigits; /* digits in newval */
|
||||
local half; /* upper half of newval */
|
||||
local pal; /* palindrome test value */
|
||||
local newpal; /* new palindrome */
|
||||
local newval; /* val+1 */
|
||||
local newvaldigits; /* digits in newval */
|
||||
local half; /* upper half of newval */
|
||||
local pal; /* palindrome test value */
|
||||
local newpal; /* new palindrome */
|
||||
|
||||
/* case: negative value */
|
||||
if (val < 0) {
|
||||
return -(prevpal(-val));
|
||||
return -(prevpal(-val));
|
||||
}
|
||||
|
||||
/*
|
||||
@@ -298,7 +298,7 @@ define nextpal(val)
|
||||
|
||||
/* case: single digit palindrome */
|
||||
if (newvaldigits < 2) {
|
||||
return newval;
|
||||
return newval;
|
||||
}
|
||||
|
||||
/*
|
||||
@@ -314,16 +314,16 @@ define nextpal(val)
|
||||
* half may not or may include the middle digit.
|
||||
*/
|
||||
if (iseven(newvaldigits)) {
|
||||
pal = mkpal(half);
|
||||
pal = mkpal(half);
|
||||
} else {
|
||||
pal = mkpalmiddigit(half // 10, half % 10);
|
||||
pal = mkpalmiddigit(half // 10, half % 10);
|
||||
}
|
||||
|
||||
/*
|
||||
* case: we found a larger palindrome, we are done
|
||||
*/
|
||||
if (pal > val) {
|
||||
return pal;
|
||||
return pal;
|
||||
}
|
||||
|
||||
/*
|
||||
@@ -344,33 +344,33 @@ define nextpal(val)
|
||||
* NOTE: We assume base 10 digits and place 1 is the units digit.
|
||||
*
|
||||
* given:
|
||||
* pal a palindrome
|
||||
* pal a palindrome
|
||||
*
|
||||
* returns:
|
||||
* previous palindrome < pal
|
||||
* previous palindrome < pal
|
||||
*/
|
||||
define palprevpal(pal)
|
||||
{
|
||||
local paldigits; /* digits in pal */
|
||||
local half; /* upper half of newval */
|
||||
local newhalf; /* half+1 */
|
||||
local newpal; /* new palindrome */
|
||||
local paldigits; /* digits in pal */
|
||||
local half; /* upper half of newval */
|
||||
local newhalf; /* half+1 */
|
||||
local newpal; /* new palindrome */
|
||||
|
||||
/* case: negative value */
|
||||
if (pal < 0) {
|
||||
return -(palnextpal(-pal));
|
||||
return -(palnextpal(-pal));
|
||||
}
|
||||
|
||||
/* case: single digit palindrome */
|
||||
if (pal < 10) {
|
||||
newpal = pal-1;
|
||||
return newpal;
|
||||
newpal = pal-1;
|
||||
return newpal;
|
||||
}
|
||||
|
||||
/* case: 10 or 11 */
|
||||
if (pal < 12) {
|
||||
newpal = 9;
|
||||
return newpal;
|
||||
newpal = 9;
|
||||
return newpal;
|
||||
}
|
||||
|
||||
/*
|
||||
@@ -392,19 +392,19 @@ define palprevpal(pal)
|
||||
*/
|
||||
paldigits = digits(pal);
|
||||
if (digits(newhalf) == digits(half)) {
|
||||
/* no change in half digits: process as normal */
|
||||
if (iseven(paldigits)) {
|
||||
newpal = mkpal(newhalf);
|
||||
} else {
|
||||
newpal = mkpalmiddigit(newhalf // 10, newhalf % 10);
|
||||
}
|
||||
/* no change in half digits: process as normal */
|
||||
if (iseven(paldigits)) {
|
||||
newpal = mkpal(newhalf);
|
||||
} else {
|
||||
newpal = mkpalmiddigit(newhalf // 10, newhalf % 10);
|
||||
}
|
||||
} else {
|
||||
/* change in half digits: process as opposite */
|
||||
if (iseven(paldigits)) {
|
||||
newpal = mkpalmiddigit(newhalf // 10, newhalf % 10);
|
||||
} else {
|
||||
newpal = mkpal(newhalf);
|
||||
}
|
||||
/* change in half digits: process as opposite */
|
||||
if (iseven(paldigits)) {
|
||||
newpal = mkpalmiddigit(newhalf // 10, newhalf % 10);
|
||||
} else {
|
||||
newpal = mkpal(newhalf);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
@@ -420,22 +420,22 @@ define palprevpal(pal)
|
||||
* NOTE: We assume base 10 digits and place 1 is the units digit.
|
||||
*
|
||||
* given:
|
||||
* val a value
|
||||
* val a value
|
||||
*
|
||||
* returns:
|
||||
* previous palindrome < val
|
||||
* previous palindrome < val
|
||||
*/
|
||||
define prevpal(val)
|
||||
{
|
||||
local newval; /* val-1 */
|
||||
local newvaldigits; /* digits in newval */
|
||||
local half; /* upper half of newval */
|
||||
local pal; /* palindrome test value */
|
||||
local newpal; /* new palindrome */
|
||||
local newval; /* val-1 */
|
||||
local newvaldigits; /* digits in newval */
|
||||
local half; /* upper half of newval */
|
||||
local pal; /* palindrome test value */
|
||||
local newpal; /* new palindrome */
|
||||
|
||||
/* case: negative value */
|
||||
if (val < 0) {
|
||||
return -(nextpal(-val));
|
||||
return -(nextpal(-val));
|
||||
}
|
||||
|
||||
/*
|
||||
@@ -446,7 +446,7 @@ define prevpal(val)
|
||||
|
||||
/* case: single digit palindrome */
|
||||
if (newvaldigits < 2) {
|
||||
return newval;
|
||||
return newval;
|
||||
}
|
||||
|
||||
/*
|
||||
@@ -462,16 +462,16 @@ define prevpal(val)
|
||||
* half may not or may include the middle digit.
|
||||
*/
|
||||
if (iseven(newvaldigits)) {
|
||||
pal = mkpal(half);
|
||||
pal = mkpal(half);
|
||||
} else {
|
||||
pal = mkpalmiddigit(half // 10, half % 10);
|
||||
pal = mkpalmiddigit(half // 10, half % 10);
|
||||
}
|
||||
|
||||
/*
|
||||
* case: we found a smaller palindrome, we are done
|
||||
*/
|
||||
if (pal < val) {
|
||||
return pal;
|
||||
return pal;
|
||||
}
|
||||
|
||||
/*
|
||||
@@ -492,15 +492,15 @@ define prevpal(val)
|
||||
* NOTE: We assume base 10 digits and place 1 is the units digit.
|
||||
*
|
||||
* given:
|
||||
* val a value
|
||||
* val a value
|
||||
*
|
||||
* returns:
|
||||
* next palindrome (highly probable) prime > val
|
||||
* next palindrome (highly probable) prime > val
|
||||
*/
|
||||
define nextprimepal(val)
|
||||
{
|
||||
local pal; /* palindrome test value */
|
||||
local dpal; /* digits in pal */
|
||||
local pal; /* palindrome test value */
|
||||
local dpal; /* digits in pal */
|
||||
|
||||
/*
|
||||
* pre-start under the next palindrome
|
||||
@@ -512,45 +512,45 @@ define nextprimepal(val)
|
||||
*/
|
||||
do {
|
||||
|
||||
/* case: negative values and tiny values */
|
||||
if (pal < 2) {
|
||||
return 2;
|
||||
}
|
||||
/* case: negative values and tiny values */
|
||||
if (pal < 2) {
|
||||
return 2;
|
||||
}
|
||||
|
||||
/*
|
||||
* compute the next palindrome
|
||||
*/
|
||||
pal = palnextpal(pal);
|
||||
dpal = digits(pal);
|
||||
/*
|
||||
* compute the next palindrome
|
||||
*/
|
||||
pal = palnextpal(pal);
|
||||
dpal = digits(pal);
|
||||
|
||||
/* case: 11 is the only prime palindrome with even digit count */
|
||||
if (pal == 11) {
|
||||
return 11;
|
||||
}
|
||||
/* case: 11 is the only prime palindrome with even digit count */
|
||||
if (pal == 11) {
|
||||
return 11;
|
||||
}
|
||||
|
||||
/* case: even number of digits and not 11 */
|
||||
if (iseven(dpal)) {
|
||||
/* case: even number of digits and not 11 */
|
||||
if (iseven(dpal)) {
|
||||
|
||||
/*
|
||||
* Except for 11 (which is handled above already), there are
|
||||
* no prime palindrome with even digits. So we need to
|
||||
* increase the digit count and work with that larger palindrome.
|
||||
*/
|
||||
pal = nextpal(10^dpal);
|
||||
}
|
||||
/*
|
||||
* Except for 11 (which is handled above already), there are
|
||||
* no prime palindrome with even digits. So we need to
|
||||
* increase the digit count and work with that larger palindrome.
|
||||
*/
|
||||
pal = nextpal(10^dpal);
|
||||
}
|
||||
|
||||
/* case: palindrome is even or ends in 5 */
|
||||
if (iseven(pal % 10) || (pal%10 == 10/2)) {
|
||||
/* case: palindrome is even or ends in 5 */
|
||||
if (iseven(pal % 10) || (pal%10 == 10/2)) {
|
||||
|
||||
/*
|
||||
* we need to increase the bottom and top digits
|
||||
* so that we have a chance to be prime
|
||||
*/
|
||||
pal += (1 + 10^(dpal-1));
|
||||
}
|
||||
if (config("resource_debug") & 0x8) {
|
||||
print "DEBUG: nextprimepal:", pal;
|
||||
}
|
||||
/*
|
||||
* we need to increase the bottom and top digits
|
||||
* so that we have a chance to be prime
|
||||
*/
|
||||
pal += (1 + 10^(dpal-1));
|
||||
}
|
||||
if (config("resource_debug") & 0x8) {
|
||||
print "DEBUG: nextprimepal:", pal;
|
||||
}
|
||||
} while (ptest(pal) == 0 && pal > 0);
|
||||
|
||||
/* return palindrome that his (highly probable) prime or 0 */
|
||||
@@ -564,15 +564,15 @@ define nextprimepal(val)
|
||||
* NOTE: We assume base 10 digits and place 1 is the units digit.
|
||||
*
|
||||
* given:
|
||||
* val a value
|
||||
* val a value
|
||||
*
|
||||
* returns:
|
||||
* prev palindrome (highly probable) prime < val or 0
|
||||
* prev palindrome (highly probable) prime < val or 0
|
||||
*/
|
||||
define prevprimepal(val)
|
||||
{
|
||||
local pal; /* palindrome test value */
|
||||
local dpal; /* digits in pal */
|
||||
local pal; /* palindrome test value */
|
||||
local dpal; /* digits in pal */
|
||||
|
||||
/*
|
||||
* pre-start over the previous palindrome
|
||||
@@ -584,56 +584,56 @@ define prevprimepal(val)
|
||||
*/
|
||||
do {
|
||||
|
||||
/*
|
||||
* case: single digit values are always palindromes
|
||||
*/
|
||||
if (val < 10) {
|
||||
/*
|
||||
* The prevcand() call will return 0 if there is no previous prime
|
||||
* such as the case when val < 2.
|
||||
*/
|
||||
return prevcand(pal);
|
||||
}
|
||||
/*
|
||||
* case: single digit values are always palindromes
|
||||
*/
|
||||
if (val < 10) {
|
||||
/*
|
||||
* The prevcand() call will return 0 if there is no previous prime
|
||||
* such as the case when val < 2.
|
||||
*/
|
||||
return prevcand(pal);
|
||||
}
|
||||
|
||||
/*
|
||||
* compute the previous palindrome
|
||||
*/
|
||||
pal = palprevpal(pal);
|
||||
dpal = digits(pal);
|
||||
/*
|
||||
* compute the previous palindrome
|
||||
*/
|
||||
pal = palprevpal(pal);
|
||||
dpal = digits(pal);
|
||||
|
||||
/* case: 11 is the only prime palindrome with even digit count */
|
||||
if (pal == 11) {
|
||||
return 11;
|
||||
}
|
||||
/* case: 11 is the only prime palindrome with even digit count */
|
||||
if (pal == 11) {
|
||||
return 11;
|
||||
}
|
||||
|
||||
/* case: 2 digit palindrome and not 11 */
|
||||
if (dpal == 2) {
|
||||
return 7;
|
||||
}
|
||||
/* case: 2 digit palindrome and not 11 */
|
||||
if (dpal == 2) {
|
||||
return 7;
|
||||
}
|
||||
|
||||
/* case: even number of digits */
|
||||
if (iseven(dpal)) {
|
||||
/* case: even number of digits */
|
||||
if (iseven(dpal)) {
|
||||
|
||||
/*
|
||||
* Except for 11 (which is handled above already), there are
|
||||
* no prime palindrome with even digits. So we need to
|
||||
* decrease the digit count and work with that smaller palindrome.
|
||||
*/
|
||||
pal = prevpal(10^(dpal-1));
|
||||
}
|
||||
/*
|
||||
* Except for 11 (which is handled above already), there are
|
||||
* no prime palindrome with even digits. So we need to
|
||||
* decrease the digit count and work with that smaller palindrome.
|
||||
*/
|
||||
pal = prevpal(10^(dpal-1));
|
||||
}
|
||||
|
||||
/* case: palindrome is even or ends in 5 */
|
||||
if (iseven(pal % 10) || (pal%10 == 10/2)) {
|
||||
/* case: palindrome is even or ends in 5 */
|
||||
if (iseven(pal % 10) || (pal%10 == 10/2)) {
|
||||
|
||||
/*
|
||||
* we need to decrease the bottom and top digits
|
||||
* so that we have a chance to be prime
|
||||
*/
|
||||
pal -= (1 + 10^(dpal-1));
|
||||
}
|
||||
if (config("resource_debug") & 0x8) {
|
||||
print "DEBUG: prevprimepal:", pal;
|
||||
}
|
||||
/*
|
||||
* we need to decrease the bottom and top digits
|
||||
* so that we have a chance to be prime
|
||||
*/
|
||||
pal -= (1 + 10^(dpal-1));
|
||||
}
|
||||
if (config("resource_debug") & 0x8) {
|
||||
print "DEBUG: prevprimepal:", pal;
|
||||
}
|
||||
} while (ptest(pal) == 0 && pal > 0);
|
||||
|
||||
/* return palindrome that his (highly probable) prime or 0 */
|
||||
|
Reference in New Issue
Block a user