mirror of
https://github.com/lcn2/calc.git
synced 2025-08-19 01:13:27 +03:00
convert ASCII TABs to ASCII SPACEs
Converted all ASCII tabs to ASCII spaces using a 8 character tab stop, for all files, except for all Makefiles (plus rpm.mk). The `git diff -w` reports no changes.
This commit is contained in:
178
cal/ellip.cal
178
cal/ellip.cal
@@ -9,7 +9,7 @@
|
||||
*
|
||||
* Calc is distributed in the hope that it will be useful, but WITHOUT
|
||||
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||||
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General
|
||||
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General
|
||||
* Public License for more details.
|
||||
*
|
||||
* A copy of version 2.1 of the GNU Lesser General Public License is
|
||||
@@ -17,16 +17,16 @@
|
||||
* received a copy with calc; if not, write to Free Software Foundation, Inc.
|
||||
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
*
|
||||
* Under source code control: 1990/02/15 01:50:33
|
||||
* File existed as early as: before 1990
|
||||
* Under source code control: 1990/02/15 01:50:33
|
||||
* File existed as early as: before 1990
|
||||
*
|
||||
* Share and enjoy! :-) http://www.isthe.com/chongo/tech/comp/calc/
|
||||
* Share and enjoy! :-) http://www.isthe.com/chongo/tech/comp/calc/
|
||||
*/
|
||||
|
||||
/*
|
||||
* Attempt to factor numbers using elliptic functions:
|
||||
*
|
||||
* y^2 = x^3 + a*x + b (mod ellip_N).
|
||||
* y^2 = x^3 + a*x + b (mod ellip_N).
|
||||
*
|
||||
* Many points (x,y) (mod ellip_N) are found that solve the above equation,
|
||||
* starting from a trivial solution and 'multiplying' that point together
|
||||
@@ -47,13 +47,13 @@
|
||||
* Theory and Cryptography" by Neal Koblitz for a good explanation.
|
||||
*
|
||||
* efactor(iN, ia, B, force)
|
||||
* iN is the number to be factored.
|
||||
* ia is the initial value of a in the equation, and each successive
|
||||
* value of a is an independent attempt at factoring (default 1).
|
||||
* B is the limit of the primes that make up the high power that the
|
||||
* point is raised to for each factoring attempt (default 100).
|
||||
* force is a flag to attempt to factor numbers even if they are
|
||||
* thought to already be prime (default false).
|
||||
* iN is the number to be factored.
|
||||
* ia is the initial value of a in the equation, and each successive
|
||||
* value of a is an independent attempt at factoring (default 1).
|
||||
* B is the limit of the primes that make up the high power that the
|
||||
* point is raised to for each factoring attempt (default 100).
|
||||
* force is a flag to attempt to factor numbers even if they are
|
||||
* thought to already be prime (default false).
|
||||
*
|
||||
* Making B larger makes the power the point being raised to contain more
|
||||
* prime factors, thus increasing the chance that the order of the point
|
||||
@@ -77,114 +77,114 @@
|
||||
* of the powers so far.
|
||||
*
|
||||
* If a factor is found, it is returned and is also saved in the global
|
||||
* variable f. The number being factored is also saved in the global
|
||||
* variable f. The number being factored is also saved in the global
|
||||
* variable ellip_N.
|
||||
*/
|
||||
|
||||
|
||||
obj point {x, y};
|
||||
global ellip_N; /* number to factor */
|
||||
global ellip_a; /* first coefficient */
|
||||
global ellip_b; /* second coefficient */
|
||||
global ellip_f; /* found factor */
|
||||
global ellip_N; /* number to factor */
|
||||
global ellip_a; /* first coefficient */
|
||||
global ellip_b; /* second coefficient */
|
||||
global ellip_f; /* found factor */
|
||||
|
||||
|
||||
define efactor(iN, ia, B, force)
|
||||
{
|
||||
local C, x, p;
|
||||
local C, x, p;
|
||||
|
||||
if (!force && ptest(iN, 50))
|
||||
return 1;
|
||||
if (isnull(B))
|
||||
B = 100;
|
||||
if (isnull(ia))
|
||||
ia = 1;
|
||||
obj point x;
|
||||
ellip_a = ia;
|
||||
ellip_b = -ia;
|
||||
ellip_N = iN;
|
||||
C = isqrt(ellip_N);
|
||||
C = 2 * C + 2 * isqrt(C) + 1;
|
||||
ellip_f = 0;
|
||||
while (ellip_f == 0) {
|
||||
print "A =", ellip_a;
|
||||
x.x = 1;
|
||||
x.y = 1;
|
||||
print 2, x;
|
||||
x = x ^ (2 ^ (highbit(C) + 1));
|
||||
for (p = 3; ((p < B) && (ellip_f == 0)); p += 2) {
|
||||
if (!ptest(p, 1))
|
||||
continue;
|
||||
print p, x;
|
||||
x = x ^ (p ^ ((highbit(C) // highbit(p)) + 1));
|
||||
}
|
||||
ellip_a++;
|
||||
ellip_b--;
|
||||
}
|
||||
return ellip_f;
|
||||
if (!force && ptest(iN, 50))
|
||||
return 1;
|
||||
if (isnull(B))
|
||||
B = 100;
|
||||
if (isnull(ia))
|
||||
ia = 1;
|
||||
obj point x;
|
||||
ellip_a = ia;
|
||||
ellip_b = -ia;
|
||||
ellip_N = iN;
|
||||
C = isqrt(ellip_N);
|
||||
C = 2 * C + 2 * isqrt(C) + 1;
|
||||
ellip_f = 0;
|
||||
while (ellip_f == 0) {
|
||||
print "A =", ellip_a;
|
||||
x.x = 1;
|
||||
x.y = 1;
|
||||
print 2, x;
|
||||
x = x ^ (2 ^ (highbit(C) + 1));
|
||||
for (p = 3; ((p < B) && (ellip_f == 0)); p += 2) {
|
||||
if (!ptest(p, 1))
|
||||
continue;
|
||||
print p, x;
|
||||
x = x ^ (p ^ ((highbit(C) // highbit(p)) + 1));
|
||||
}
|
||||
ellip_a++;
|
||||
ellip_b--;
|
||||
}
|
||||
return ellip_f;
|
||||
}
|
||||
|
||||
|
||||
define point_print(p)
|
||||
{
|
||||
print "(" : p.x : "," : p.y : ")" :;
|
||||
print "(" : p.x : "," : p.y : ")" :;
|
||||
}
|
||||
|
||||
|
||||
define point_mul(p1, p2)
|
||||
{
|
||||
local r, m;
|
||||
local r, m;
|
||||
|
||||
if (p2 == 1)
|
||||
return p1;
|
||||
if (p1 == p2)
|
||||
return point_square(`p1);
|
||||
obj point r;
|
||||
m = (minv(p2.x - p1.x, ellip_N) * (p2.y - p1.y)) % ellip_N;
|
||||
if (m == 0) {
|
||||
if (ellip_f == 0)
|
||||
ellip_f = gcd(p2.x - p1.x, ellip_N);
|
||||
r.x = 1;
|
||||
r.y = 1;
|
||||
return r;
|
||||
}
|
||||
r.x = (m^2 - p1.x - p2.x) % ellip_N;
|
||||
r.y = ((m * (p1.x - r.x)) - p1.y) % ellip_N;
|
||||
return r;
|
||||
if (p2 == 1)
|
||||
return p1;
|
||||
if (p1 == p2)
|
||||
return point_square(`p1);
|
||||
obj point r;
|
||||
m = (minv(p2.x - p1.x, ellip_N) * (p2.y - p1.y)) % ellip_N;
|
||||
if (m == 0) {
|
||||
if (ellip_f == 0)
|
||||
ellip_f = gcd(p2.x - p1.x, ellip_N);
|
||||
r.x = 1;
|
||||
r.y = 1;
|
||||
return r;
|
||||
}
|
||||
r.x = (m^2 - p1.x - p2.x) % ellip_N;
|
||||
r.y = ((m * (p1.x - r.x)) - p1.y) % ellip_N;
|
||||
return r;
|
||||
}
|
||||
|
||||
|
||||
define point_square(p)
|
||||
{
|
||||
local r, m;
|
||||
local r, m;
|
||||
|
||||
obj point r;
|
||||
m = ((3 * p.x^2 + ellip_a) * minv(p.y << 1, ellip_N)) % ellip_N;
|
||||
if (m == 0) {
|
||||
if (ellip_f == 0)
|
||||
ellip_f = gcd(p.y << 1, ellip_N);
|
||||
r.x = 1;
|
||||
r.y = 1;
|
||||
return r;
|
||||
}
|
||||
r.x = (m^2 - p.x - p.x) % ellip_N;
|
||||
r.y = ((m * (p.x - r.x)) - p.y) % ellip_N;
|
||||
return r;
|
||||
obj point r;
|
||||
m = ((3 * p.x^2 + ellip_a) * minv(p.y << 1, ellip_N)) % ellip_N;
|
||||
if (m == 0) {
|
||||
if (ellip_f == 0)
|
||||
ellip_f = gcd(p.y << 1, ellip_N);
|
||||
r.x = 1;
|
||||
r.y = 1;
|
||||
return r;
|
||||
}
|
||||
r.x = (m^2 - p.x - p.x) % ellip_N;
|
||||
r.y = ((m * (p.x - r.x)) - p.y) % ellip_N;
|
||||
return r;
|
||||
}
|
||||
|
||||
|
||||
define point_pow(p, pow)
|
||||
{
|
||||
local bit, r, t;
|
||||
local bit, r, t;
|
||||
|
||||
r = 1;
|
||||
if (isodd(pow))
|
||||
r = p;
|
||||
t = p;
|
||||
for (bit = 2; ((bit <= pow) && (ellip_f == 0)); bit <<= 1) {
|
||||
t = point_square(`t);
|
||||
if (bit & pow)
|
||||
r = point_mul(`t, `r);
|
||||
}
|
||||
return r;
|
||||
r = 1;
|
||||
if (isodd(pow))
|
||||
r = p;
|
||||
t = p;
|
||||
for (bit = 2; ((bit <= pow) && (ellip_f == 0)); bit <<= 1) {
|
||||
t = point_square(`t);
|
||||
if (bit & pow)
|
||||
r = point_mul(`t, `r);
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
Reference in New Issue
Block a user