Release calc version 2.11.0t10

This commit is contained in:
Landon Curt Noll
1999-11-11 05:15:39 -08:00
parent 86c8e6dcf1
commit 96c34adee3
283 changed files with 2380 additions and 3032 deletions

View File

@@ -112,9 +112,9 @@ qsincos(NUMBER *q, long bitnum, NUMBER **vs, NUMBER **vc)
if (m > h) {
zshift(cossum, -h, &qtmp1->num);
zbitvalue(m - h, &qtmp1->den);
}
else
} else {
zshift(cossum, - m, &qtmp1->num);
}
zfree(cossum);
*vc = qtmp1;
h = zlowbit(sinsum);
@@ -122,9 +122,9 @@ qsincos(NUMBER *q, long bitnum, NUMBER **vs, NUMBER **vc)
if (m > h) {
zshift(sinsum, -h, &qtmp2->num);
zbitvalue(m - h, &qtmp2->den);
}
else
} else {
zshift(sinsum, -m, &qtmp2->num);
}
zfree(sinsum);
*vs = qtmp2;
return;
@@ -378,8 +378,7 @@ qasin(NUMBER *q, NUMBER *epsilon)
epsilon1 = qscale(epsilon, 1L);
qtmp2 = qpi(epsilon1);
qtmp1 = qscale(qtmp2, -1L);
}
else {
} else {
epsilon1 = qscale(epsilon, -2L);
qtmp1 = qalloc();
zsquare(q->num, &qtmp1->num);
@@ -444,7 +443,7 @@ qacos(NUMBER *q, NUMBER *epsilon)
/*
* Calculate the arctangent function to the nearest or next to nearest
* multiple of epsilon. Algorithm uses
* multiple of epsilon. Algorithm uses
* atan(x) = 2 * atan(x/(1 + sqrt(1+x^2)))
* to reduce x to a small value and then
* atan(x) = x - x^3/3 + ...
@@ -528,9 +527,9 @@ qatan(NUMBER *q, NUMBER *epsilon)
if (k) {
zshift(sum, -k, &qtmp->num);
zfree(sum);
}
else
} else {
qtmp->num = sum;
}
zbitvalue(m - 4 - k, &qtmp->den);
res = qmappr(qtmp, epsilon, 24L);
qfree(qtmp);
@@ -842,9 +841,9 @@ qexprel(NUMBER *q, long bitnum)
if (zrel(ztmp1, B) >= 0) {
zshift(ztmp1, -m - 1, &sum);
k++;
}
else
} else {
zshift(ztmp1, -m, &sum);
}
zfree(ztmp1);
}
zfree(B);
@@ -929,7 +928,7 @@ qln(NUMBER *q, NUMBER *epsilon)
zcopy(pow, &sum); /* pow is first term of sum */
zsquare(pow, &ztmp);
zshift(ztmp, -m, &mul); /* mul is now multiplier for powers */
zshift(ztmp, -m, &mul); /* mul is now multiplier for powers */
zfree(ztmp);
d = 1;
@@ -957,8 +956,7 @@ qln(NUMBER *q, NUMBER *epsilon)
if (k) {
zshift(sum, -k, &qtmp->num);
zfree(sum);
}
else {
} else {
qtmp->num = sum;
}
zbitvalue(m - k - n, &qtmp->den);
@@ -1003,8 +1001,7 @@ qpower(NUMBER *q1, NUMBER *q2, NUMBER *epsilon)
if (zrel(q1->num, q1->den) < 0) {
q1tmp = qinv(q1);
q2tmp = qneg(q2);
}
else {
} else {
q1tmp = qlink(q1);
q2tmp = qlink(q2);
}
@@ -1031,8 +1028,7 @@ qpower(NUMBER *q1, NUMBER *q2, NUMBER *epsilon)
tmp2 = qmul(tmp1, &_qlge_);
m = qtoi(tmp2);
}
}
else {
} else {
if (m > 0) {
tmp1 = itoq(m + 1);
tmp2 = qmul(tmp1, q2tmp);
@@ -1070,9 +1066,9 @@ qpower(NUMBER *q1, NUMBER *q2, NUMBER *epsilon)
tmp2 = qexprel(tmp1, m - n + 3);
qfree(tmp1);
tmp1 = qinv(tmp2);
}
else
} else {
tmp1 = qexprel(tmp2, m - n + 3) ;
}
qfree(tmp2);
tmp2 = qmappr(tmp1, epsilon, 24L);
qfree(tmp1);
@@ -1240,9 +1236,9 @@ qcoth(NUMBER *q, NUMBER *epsilon)
tmp1 = qmul(&_qlge_, tmp2);
k = qtoi(tmp1);
qfree(tmp1);
}
else
} else {
k = 2 * k;
}
k = 4 - k - n;
if (k < 4)
k = 4;
@@ -1333,9 +1329,9 @@ qcsch(NUMBER *q, NUMBER *epsilon)
tmp2 = qmul(&_qlge_, tmp1);
k = qtoi(tmp2);
qfree(tmp2);
}
else
} else {
k = 2 * qilog2(tmp1);
}
if (k + n >= 1) {
qfree(tmp1);
return qlink(&_qzero_);
@@ -1518,6 +1514,3 @@ qacoth(NUMBER *q, NUMBER *epsilon)
qfree(tmp);
return res;
}
/* END CODE */