Release calc version 2.11.0t10

This commit is contained in:
Landon Curt Noll
1999-11-11 05:15:39 -08:00
parent 86c8e6dcf1
commit 96c34adee3
283 changed files with 2380 additions and 3032 deletions

View File

@@ -4,25 +4,25 @@
to be set or read. If only one argument is given, then the current
value of the named parameter is returned. If two arguments are given,
then the named parameter is set to the value of the second argument,
and the old value of the parameter is returned. Therefore you can
and the old value of the parameter is returned. Therefore you can
change a parameter and restore its old value later. The possible
parameters are explained in the next section.
The scale function multiplies or divides a number by a power of 2.
This is used for fractional calculations, unlike the << and >>
operators, which are only defined for integers. For example,
operators, which are only defined for integers. For example,
scale(6, -3) is 3/4.
The quomod function is used to obtain both the quotient and remainder
of a division in one operation. The first two arguments a and b are
of a division in one operation. The first two arguments a and b are
the numbers to be divided. The last two arguments c and d are two
variables which will be assigned the quotient and remainder. For
nonnegative arguments, the results are equivalent to computing a//b
and a%b. If a is negative and the remainder is nonzero, then the
quotient will be one less than a//b. This makes the following three
properties always hold: The quotient c is always an integer. The
properties always hold: The quotient c is always an integer. The
remainder d is always 0 <= d < b. The equation a = b * c + d always
holds. This function returns 0 if there is no remainder, and 1 if
holds. This function returns 0 if there is no remainder, and 1 if
there is a remainder. For examples, quomod(10, 3, x, y) sets x to 3,
y to 1, and returns the value 1, and quomod(-4, 3.14159, x, y) sets x
to -2, y to 2.28318, and returns the value 1.
@@ -37,8 +37,8 @@
The digit and bit functions return individual digits of a number,
either in base 10 or in base 2, where the lowest digit of a number
is at digit position 0. For example, digit(5678, 3) is 5, and
bit(0b1000100, 2) is 1. Negative digit positions indicate places
is at digit position 0. For example, digit(5678, 3) is 5, and
bit(0b1000100, 2) is 1. Negative digit positions indicate places
to the right of the decimal or binary point, so that for example,
digit(3.456, -1) is 4.
@@ -139,11 +139,11 @@
The functions rcin, rcmul, rcout, rcpow, and rcsq are used to
perform modular arithmetic calculations for large odd numbers
faster than the usual methods. To do this, you first use the
faster than the usual methods. To do this, you first use the
rcin function to convert all input values into numbers which are
in a format called REDC format. Then you use rcmul, rcsq, and
in a format called REDC format. Then you use rcmul, rcsq, and
rcpow to multiply such numbers together to produce results also
in REDC format. Finally, you use rcout to convert a number in
in REDC format. Finally, you use rcout to convert a number in
REDC format back to a normal number. The addition, subtraction,
negation, and equality comparison between REDC numbers are done
using the normal modular methods. For example, to calculate the
@@ -185,8 +185,8 @@
The following convention is used to declare modes:
base config
value string
base config
value string
2 "binary" binary fractions
8 "octal" octal fractions