mirror of
https://github.com/lcn2/calc.git
synced 2025-08-16 01:03:29 +03:00
Release calc version 2.12.6.4
Fixed a man page warning about ./myfile where the leading dot was mistook for an nroff macro. Thanks goes to David Haller <dnh at opensuse dot org> for providing the patch. Improved gen_v1(h,n) in lucas.cal for cases where h is not a multiple of 3. Optimized the search for v(1) when h is a multiple of 3. Fixed a Makefile problem, reported by Doug Hays <doughays6 at gmail dot com>, where if a macOS user set BINDIR, LIBDIR, CALC_SHAREDIR or INCDIR in the top section, their values will be overwritten by the Darwin specific section.
This commit is contained in:
267
cal/lucas.cal
267
cal/lucas.cal
@@ -28,6 +28,10 @@
|
||||
* For a general tutorial on how to find a new largest known prime, see:
|
||||
*
|
||||
* http://www.isthe.com/chongo/tech/math/prime/prime-tutorial.pdf
|
||||
*
|
||||
* Also see the reference code, available both C and go:
|
||||
*
|
||||
* https://github.com/arcetri/goprime
|
||||
*/
|
||||
|
||||
/*
|
||||
@@ -154,6 +158,12 @@
|
||||
*
|
||||
* Finally, one should eliminate all values of 'h*2^n-1' where
|
||||
* 'h*2^n+1' is divisible by a small primes.
|
||||
*
|
||||
* NOTE: Today, for world record sized h*2^n-1 primes, one might
|
||||
* search for factors < 2^46 or more. By excluding h*2^n-1
|
||||
* with prime factors < 2^46, where h*2^n-1 is a bit larger
|
||||
* than the largest known prime, one may exclude about 96.5%
|
||||
* of candidates that have "small" prime factors.
|
||||
*/
|
||||
|
||||
pprod256 = 0; /* product of "primes up to 256" / "primes up to 46" */
|
||||
@@ -805,84 +815,154 @@ rodseth_xhn(x, h, n)
|
||||
*
|
||||
* The above distribution was found to hold fairly well over many values of
|
||||
* odd h that are also a multiple of 3 and for many values of n where h < 2^n.
|
||||
*
|
||||
* For example for in a sample size of 1000000 numbers of the form h*2^n-1
|
||||
* where h is an odd multiple of 3, 12996351 <= h <= 13002351,
|
||||
* 4331116 <= n <= 4332116, these are the smallest v(1) values that were found:
|
||||
*
|
||||
* smallest percentage
|
||||
* v(1) used
|
||||
* -------------------
|
||||
* 3 40.0000%
|
||||
* 5 25.6833%
|
||||
* 9 11.6924%
|
||||
* 11 10.4528%
|
||||
* 15 4.8048%
|
||||
* 17 2.3458%
|
||||
* 21 1.6568%
|
||||
* 29 1.2814%
|
||||
* 27 0.6906%
|
||||
* 35 0.4529%
|
||||
* 39 0.3140%
|
||||
* 41 0.1737%
|
||||
* 31 0.1413%
|
||||
* 45 0.1173%
|
||||
* 51 0.0526%
|
||||
* 55 0.0350%
|
||||
* 49 0.0332%
|
||||
* 59 0.0218%
|
||||
* 69 0.0099%
|
||||
* 65 0.0085%
|
||||
* 71 0.0073%
|
||||
* 57 0.0062%
|
||||
* 85 0.0048%
|
||||
* 81 0.0044%
|
||||
* 95 0.0028%
|
||||
* 99 0.0017%
|
||||
* 77 0.0009%
|
||||
* 53 0.0008%
|
||||
* 67 0.0004%
|
||||
* 105 0.0004%
|
||||
* 111 0.0004%
|
||||
* 125 0.0004%
|
||||
* 87 0.0003%
|
||||
* 101 0.0002%
|
||||
* 83 0.0001%
|
||||
* 109 0.0001%
|
||||
* 121 0.0001%
|
||||
* 129 0.0001%
|
||||
* smallest percentage
|
||||
* v(1) used
|
||||
* -------- ---------
|
||||
* 3 40.0000 %
|
||||
* 5 25.6833 %
|
||||
* 9 11.6924 %
|
||||
* 11 10.4528 %
|
||||
* 15 4.8048 %
|
||||
* 17 2.3458 %
|
||||
* 21 1.3734 %
|
||||
* 29 1.0527 %
|
||||
* 20 0.8595 %
|
||||
* 27 0.5758 %
|
||||
* 35 0.4420 %
|
||||
* 36 0.2433 %
|
||||
* 39 0.1779 %
|
||||
* 41 0.0885 %
|
||||
* 45 0.0571 %
|
||||
* 32 0.0337 %
|
||||
* 51 0.0289 %
|
||||
* 44 0.0205 %
|
||||
* 49 0.0176 %
|
||||
* 56 0.0137 %
|
||||
* 59 0.0108 %
|
||||
* 57 0.0053 %
|
||||
* 65 0.0047 %
|
||||
* 55 0.0045 %
|
||||
* 69 0.0031 %
|
||||
* 71 0.0024 %
|
||||
* 66 0.0011 %
|
||||
* 95 0.0008 %
|
||||
* 81 0.0008 %
|
||||
* 77 0.0006 %
|
||||
* 72 0.0005 %
|
||||
* 99 0.0004 %
|
||||
* 80 0.0003 %
|
||||
* 74 0.0003 %
|
||||
* 84 0.0002 %
|
||||
* 67 0.0002 %
|
||||
* 87 0.0001 %
|
||||
* 104 0.0001 %
|
||||
* 129 0.0001 %
|
||||
*
|
||||
* However, a case can be made for considering only odd values for v(1) candidates.
|
||||
* When h * 2^n-1 is prime and h is an odd multiple of 3, a smallest v(1) that
|
||||
* is even is extremely rate. Of the list of 127287 known primes of the form
|
||||
* h*2^n-1 when h was a multiple of 3, none has an smallest v(1) that was even.
|
||||
* is even is extremely rate. Of the list of 146553 known primes of the form
|
||||
* h*2^n-1 when h is an odd a multiple of 3, none has an smallest v(1) that was even.
|
||||
*
|
||||
* About 1 out of 1000000 cases when h is a multiple of 3 use v(1) > 127 as the
|
||||
* smallest value of v(1).
|
||||
* See:
|
||||
*
|
||||
* https://github.com/arcetri/verified-prime
|
||||
*
|
||||
* for that list of 146553 known primes of the form h*2^n-1.
|
||||
*
|
||||
* That same example for in a sample size of 1000000 numbers of the form h*2^n-1
|
||||
* where h is an odd multiple of 3, 12996351 <= h <= 13002351,
|
||||
* 4331116 <= n <= 4332116, these are the smallest odd v(1) values that were found:
|
||||
*
|
||||
* smallest percentage
|
||||
* odd v(1) used
|
||||
* -------- ---------
|
||||
* 3 40.0000 %
|
||||
* 5 25.6833 %
|
||||
* 9 11.6924 %
|
||||
* 11 10.4528 %
|
||||
* 15 4.8048 %
|
||||
* 17 2.3458 %
|
||||
* 21 1.6568 %
|
||||
* 29 1.6174 %
|
||||
* 35 0.4529 %
|
||||
* 27 0.3546 %
|
||||
* 39 0.3470 %
|
||||
* 41 0.2159 %
|
||||
* 45 0.1173 %
|
||||
* 31 0.0661 %
|
||||
* 51 0.0619 %
|
||||
* 55 0.0419 %
|
||||
* 59 0.0250 %
|
||||
* 49 0.0170 %
|
||||
* 69 0.0110 %
|
||||
* 65 0.0098 %
|
||||
* 71 0.0078 %
|
||||
* 85 0.0048 %
|
||||
* 81 0.0044 %
|
||||
* 95 0.0038 %
|
||||
* 99 0.0021 %
|
||||
* 125 0.0009 %
|
||||
* 57 0.0007 %
|
||||
* 111 0.0005 %
|
||||
* 77 0.0003 %
|
||||
* 165 0.0003 %
|
||||
* 155 0.0002 %
|
||||
* 129 0.0002 %
|
||||
* 101 0.0002 %
|
||||
* 53 0.0001 %
|
||||
*
|
||||
* Moreover when evaluating odd candidates for v(1), one may cache Jacobi symbol
|
||||
* evaluations to reduce the number of Jacobi symbol evaluations to a minimum.
|
||||
* For example, if one tests 5 and finds that the 2nd case fails:
|
||||
*
|
||||
* jacobi(5+2, h*2^n-1) != -1
|
||||
*
|
||||
* Then if one is later testing 9, the Jacobi symbol value for the first 1st case:
|
||||
*
|
||||
* jacobi(7-2, h*2^n-1)
|
||||
*
|
||||
* is already known.
|
||||
*
|
||||
* The hit rate in the cache improves (thus fewer Jacobi symbols need evaluating)
|
||||
* if we sort the above "smallest odd v(1) values" in numerical order.
|
||||
* Without Jacobi symbol value caching, it requires on average
|
||||
* 4.851377 Jacobi symbol evaluations. With Jacobi symbol value caching
|
||||
* cacheing, an averare of 4.348820 Jacobi symbol evaluations is needed.
|
||||
*
|
||||
* Given this information, when odd h is a multiple of 3 we try, in order,
|
||||
* these sorted values of X:
|
||||
* these sorted odd values of X:
|
||||
*
|
||||
* 3, 5, 9, 11, 15, 17, 21, 27, 29, 31, 35, 39, 41, 45, 49, 51, 53, 55, 57, 59,
|
||||
* 65, 67, 69, 71, 77, 81, 83, 85, 87, 95, 99, 101, 105, 109, 111, 121, 125
|
||||
* 3, 5, 9, 11, 15, 17, 21, 29, 27, 35, 39, 41, 31, 45, 51, 55, 49, 59,
|
||||
* 69, 65, 71, 57, 85, 81, 95, 99, 77, 53, 67, 125, 111, 105, 87, 129,
|
||||
* 101, 83, 165, 155, 149, 141, 121, 109
|
||||
*
|
||||
* And stop on the first value of X where:
|
||||
*
|
||||
* jacobi(X-2, h*2^n-1) == 1
|
||||
* jacobi(X+2, h*2^n-1) == -1
|
||||
*
|
||||
* If no value in that list works, we start simple search starting with X = 129
|
||||
* Less than 1 case out of 1000000 will not be satisifed by the above sorted list.
|
||||
* If no value in that list works, we start simple search starting with X = 167
|
||||
* and incrementing by 2 until a value of X is found.
|
||||
*
|
||||
* The x_tbl[] matrix contains those common values of X to try in order.
|
||||
* If all x_tbl_len fail to satisfy Ref4 condition 1, then we begin a
|
||||
* linear search at next_x until we find a proper X value.
|
||||
* The x_tbl[] matrix contains those values of X to try in order.
|
||||
* If all x_tbl_len fail to satisfy Ref4 condition 1 (this happens less than
|
||||
* 1 in 1000000 cases), then we begin a linear search of odd values starting at
|
||||
* next_x until we find a proper X value.
|
||||
*/
|
||||
x_tbl_len = 38;
|
||||
x_tbl_len = 42;
|
||||
mat x_tbl[x_tbl_len];
|
||||
x_tbl = {
|
||||
3, 5, 9, 11, 15, 17, 21, 27, 29, 31, 35, 39, 41, 45, 49, 51, 53, 55, 57, 59,
|
||||
65, 67, 69, 71, 77, 81, 83, 85, 87, 95, 99, 101, 105, 109, 111, 121, 125
|
||||
3, 5, 9, 11, 15, 17, 21, 29, 27, 35, 39, 41, 31, 45, 51, 55, 49, 59,
|
||||
69, 65, 71, 57, 85, 81, 95, 99, 77, 53, 67, 125, 111, 105, 87, 129,
|
||||
101, 83, 165, 155, 149, 141, 121, 109
|
||||
};
|
||||
next_x = 129;
|
||||
next_x = 167; /* must be 2 more than the largest value in x_tbl[] */
|
||||
|
||||
/*
|
||||
* gen_v1 - compute the v(1) for a given h*2^n-1 if we can
|
||||
@@ -940,12 +1020,22 @@ next_x = 129;
|
||||
*
|
||||
* u(2) = v(h) (NOTE: some call this u(2))
|
||||
*
|
||||
* so we simply return
|
||||
* so we can always return
|
||||
*
|
||||
* v(1) = alpha^1 + alpha^(-1)
|
||||
* = (2+sqrt(3)) + (2-sqrt(3))
|
||||
* = 4
|
||||
*
|
||||
* In 40% of the cases when h is not a multiple of 3, 3 is a valid value
|
||||
* for v(1). We can test if 3 is a valid value for v(1) in this case:
|
||||
*
|
||||
* if jacobi(1, h*2^n-1) == 1 and jacobi(5, h*2^n-1) == -1, then
|
||||
* v(1) = 3
|
||||
* else
|
||||
* v(1) = 4
|
||||
*
|
||||
* HOTE: The above "if then else" works only of h is not a multiple of 3.
|
||||
*
|
||||
***
|
||||
*
|
||||
* Case 2: (h mod 3 == 0)
|
||||
@@ -1049,6 +1139,10 @@ gen_v1(h, n)
|
||||
{
|
||||
local x; /* potential v(1) to test */
|
||||
local i; /* x_tbl index */
|
||||
local v1m2; /* X-2 1st case */
|
||||
local v1p2; /* X+2 2nd case */
|
||||
local testval; /* h*2^n-1 - value we are testing if prime */
|
||||
local mat cached_v1[next_x]; /* cached Jacobi symbol values or 0 */
|
||||
|
||||
/*
|
||||
* check arg types
|
||||
@@ -1081,14 +1175,24 @@ gen_v1(h, n)
|
||||
* check for Case 1: (h mod 3 != 0)
|
||||
*/
|
||||
if (h % 3 != 0) {
|
||||
/* v(1) is easy to compute */
|
||||
return 4;
|
||||
if (rodseth_xhn(3, h, n) == 1) {
|
||||
/* 40% of the time, 3 works when h mod 3 != 0 */
|
||||
return 3;
|
||||
} else {
|
||||
/* otherwise 4 always works when h mod 3 != 0 */
|
||||
return 4;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* What follow is Case 2: (h mod 3 == 0)
|
||||
*/
|
||||
|
||||
/*
|
||||
* clear cache
|
||||
*/
|
||||
matfill(cached_v1, 0);
|
||||
|
||||
/*
|
||||
* We will look for x that satisfies conditions in Ref4, condition 1:
|
||||
*
|
||||
@@ -1100,26 +1204,51 @@ gen_v1(h, n)
|
||||
* to the next odd value, the now jacobi(X-2, h*2^n-1)
|
||||
* does not need to be re-evaluted.
|
||||
*/
|
||||
testval = h*2^n-1;
|
||||
for (i=0; i < x_tbl_len; ++i) {
|
||||
|
||||
/*
|
||||
* test Ref4 condition 1:
|
||||
* obtain the next test candidate
|
||||
*/
|
||||
x = x_tbl[i];
|
||||
if (rodseth_xhn(x, h, n) == 1) {
|
||||
|
||||
/*
|
||||
* found a x that satisfies Ref4 condition 1
|
||||
*/
|
||||
ldebug("gen_v1", "h= " + str(h) + " n= " + str(n) +
|
||||
" v1= " + str(x) + " using tbl[ " +
|
||||
str(i) + " ]");
|
||||
return x;
|
||||
/*
|
||||
* Check x for condition 1 part 1
|
||||
*
|
||||
* jacobi(x-2, h*2^n-1) == 1
|
||||
*/
|
||||
v1m2 = x-2;
|
||||
if (cached_v1[v1m2] == 0) {
|
||||
cached_v1[v1m2] = jacobi(v1m2, testval);
|
||||
}
|
||||
if (cached_v1[v1m2] != 1) {
|
||||
continue;
|
||||
}
|
||||
|
||||
/*
|
||||
* Check x for condition 1 part 2
|
||||
*
|
||||
* jacobi(x+2, h*2^n-1) == -1
|
||||
*/
|
||||
v1p2 = x+2;
|
||||
if (cached_v1[v1p2] == 0) {
|
||||
cached_v1[v1p2] = jacobi(v1p2, testval);
|
||||
}
|
||||
if (cached_v1[v1p2] != -1) {
|
||||
continue;
|
||||
}
|
||||
|
||||
/*
|
||||
* found a x that satisfies Ref4 condition 1
|
||||
*/
|
||||
ldebug("gen_v1", "h= " + str(h) + " n= " + str(n) +
|
||||
" v1= " + str(x) + " using tbl[ " +
|
||||
str(i) + " ]");
|
||||
return x;
|
||||
}
|
||||
|
||||
/*
|
||||
* We are in that rare case (about 1 in 835 000) where none of the
|
||||
* We are in that rare case (less than 1 in 1 000 000) where none of the
|
||||
* common X values satisfy Ref4 condition 1. We start a linear search
|
||||
* of odd vules at next_x from here on.
|
||||
*/
|
||||
|
Reference in New Issue
Block a user