mirror of
https://github.com/lcn2/calc.git
synced 2025-08-16 01:03:29 +03:00
Add cal/palindrome.cal resource file
This commit is contained in:
6
CHANGES
6
CHANGES
@@ -248,6 +248,12 @@ The following are the changes from calc version 2.13.0.1 to 2.13.0.1:
|
||||
The help and man builtin commands now return an error when a
|
||||
help file cannot be opened, such as when there is no help file.
|
||||
|
||||
Added palindrome.cal resource file. For example, to find the
|
||||
largest (highly probable) prime palindrome under 280 decimal
|
||||
digits (text tweet limit):
|
||||
|
||||
` prevprimepal(1e280)
|
||||
|
||||
|
||||
The following are the changes from calc version 2.13.0.0 to 2.13.0.0:
|
||||
|
||||
|
22
cal/Makefile
22
cal/Makefile
@@ -275,17 +275,17 @@ CALC_FILES= README alg_config.cal beer.cal bernoulli.cal \
|
||||
constants.cal deg.cal dms.cal dotest.cal ellip.cal factorial.cal \
|
||||
factorial2.cal gvec.cal hello.cal hms.cal infinities.cal intfile.cal \
|
||||
intnum.cal lambertw.cal linear.cal lnseries.cal lucas.cal \
|
||||
lucas_chk.cal mersenne.cal mfactor.cal mod.cal natnumset.cal pell.cal \
|
||||
pi.cal pix.cal pollard.cal poly.cal prompt.cal psqrt.cal qtime.cal \
|
||||
quat.cal randbitrun.cal randmprime.cal randombitrun.cal randomrun.cal \
|
||||
randrun.cal regress.cal repeat.cal screen.cal seedrandom.cal \
|
||||
set8700.cal set8700.line smallfactors.cal solve.cal \
|
||||
specialfunctions.cal statistics.cal strings.cal sumsq.cal sumtimes.cal \
|
||||
surd.cal test1700.cal test2300.cal test2600.cal test2700.cal \
|
||||
test3100.cal test3300.cal test3400.cal test3500.cal test4000.cal \
|
||||
test4100.cal test4600.cal test5100.cal test5200.cal test8400.cal \
|
||||
test8500.cal test8600.cal test8900.cal toomcook.cal unitfrac.cal \
|
||||
varargs.cal xx_print.cal zeta2.cal
|
||||
lucas_chk.cal mersenne.cal mfactor.cal mod.cal natnumset.cal \
|
||||
palindrome.cal pell.cal pi.cal pix.cal pollard.cal poly.cal prompt.cal \
|
||||
psqrt.cal qtime.cal quat.cal randbitrun.cal randmprime.cal \
|
||||
randombitrun.cal randomrun.cal randrun.cal regress.cal repeat.cal \
|
||||
screen.cal seedrandom.cal set8700.cal set8700.line smallfactors.cal \
|
||||
solve.cal specialfunctions.cal statistics.cal strings.cal sumsq.cal \
|
||||
sumtimes.cal surd.cal test1700.cal test2300.cal test2600.cal \
|
||||
test2700.cal test3100.cal test3300.cal test3400.cal test3500.cal \
|
||||
test4000.cal test4100.cal test4600.cal test5100.cal test5200.cal \
|
||||
test8400.cal test8500.cal test8600.cal test8900.cal toomcook.cal \
|
||||
unitfrac.cal varargs.cal xx_print.cal zeta2.cal
|
||||
|
||||
# These calc files are now obsolete and are removed by the install rule.
|
||||
#
|
||||
|
32
cal/README
32
cal/README
@@ -879,6 +879,38 @@ natnumset.cal
|
||||
user-specified bound.
|
||||
|
||||
|
||||
palindrome.cal
|
||||
|
||||
digitof(val,place)
|
||||
copalplace(d,place)
|
||||
upperhalf(val)
|
||||
mkpal(val)
|
||||
mkpalmiddigit(val,digit)
|
||||
ispal(val)
|
||||
nextpal(val)
|
||||
prevpal(val)
|
||||
nextprimepal(val)
|
||||
prevprimepal(val)
|
||||
|
||||
Functions to form and manipulate palendromes in base 10.
|
||||
|
||||
Important functions are:
|
||||
|
||||
Find the next / previous palindrome:
|
||||
|
||||
nextpal(val)
|
||||
prevpal(val)
|
||||
|
||||
Test if a value is a palindrome:
|
||||
|
||||
ispal(val)
|
||||
|
||||
Find the next / previous palindrome that is a (highly probable) prime:
|
||||
|
||||
nextprimepal(val)
|
||||
prevprimepal(val)
|
||||
|
||||
|
||||
pell.cal
|
||||
|
||||
pellx(D)
|
||||
|
555
cal/palindrome.cal
Normal file
555
cal/palindrome.cal
Normal file
@@ -0,0 +1,555 @@
|
||||
/*
|
||||
* palindrome - palindrome utilities
|
||||
*
|
||||
* Copyright (C) 2021 Landon Curt Noll
|
||||
*
|
||||
* Calc is open software; you can redistribute it and/or modify it under
|
||||
* the terms of the version 2.1 of the GNU Lesser General Public License
|
||||
* as published by the Free Software Foundation.
|
||||
*
|
||||
* Calc is distributed in the hope that it will be useful, but WITHOUT
|
||||
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||||
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General
|
||||
* Public License for more details.
|
||||
*
|
||||
* A copy of version 2.1 of the GNU Lesser General Public License is
|
||||
* distributed with calc under the filename COPYING-LGPL. You should have
|
||||
* received a copy with calc; if not, write to Free Software Foundation, Inc.
|
||||
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
*
|
||||
* Under source code control: 2021/11/06 14:35:37
|
||||
* File existed as early as: before 2021
|
||||
*
|
||||
* Share and enjoy! :-) http://www.isthe.com/chongo/tech/comp/calc/
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
* digitof - return the a digit of a value
|
||||
*
|
||||
* NOTE: We assume base 10 digits and place 1 is the units digit.
|
||||
*
|
||||
* given:
|
||||
* val value to find a digit of
|
||||
* place digit place
|
||||
*
|
||||
* returns:
|
||||
* value (>= 0 and < 10) that is the place-th digit of val
|
||||
* or 0 if place is not a digit of val
|
||||
*/
|
||||
define digitof(val, place)
|
||||
{
|
||||
local d; /* length of val in digits */
|
||||
|
||||
/* determine length */
|
||||
d = digits(val);
|
||||
|
||||
/* firewall - return 0 if digit place doesn't exist */
|
||||
if (place < 1 || place > d) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* return the place-th digit of val as a single digit */
|
||||
return (val // (10^(place-1))) % 10;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* copalplace - determine the other place in a palindrome
|
||||
*
|
||||
* NOTE: We assume base 10 digits and place 1 is the units digit.
|
||||
*
|
||||
* given:
|
||||
* d digits of a value
|
||||
* place digit place
|
||||
*
|
||||
* returns:
|
||||
* given palindrome val, the other digit paired with place
|
||||
* or 0 if place is not a digit of val
|
||||
*/
|
||||
define copalplace(d, place)
|
||||
{
|
||||
/* firewall - return 0 if digit place doesn't exist */
|
||||
if (d < 1 || place < 1 || place > d) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* return digit coplace */
|
||||
return d+1 - place;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* upperhalf - return the upper half of a palindrome
|
||||
*
|
||||
* NOTE: We assume base 10 digits and place 1 is the units digit.
|
||||
*
|
||||
* NOTE: When the value has an odd number of digits, the upper half
|
||||
* includes the middle digit.
|
||||
*
|
||||
* given:
|
||||
* val a value
|
||||
*
|
||||
* returns:
|
||||
* the upper half digits of a value
|
||||
*/
|
||||
define upperhalf(val)
|
||||
{
|
||||
local d; /* length of val in digits */
|
||||
local halfd; /* length of upper hand of val */
|
||||
|
||||
/* determine length */
|
||||
d = digits(val);
|
||||
halfd = d // 2;
|
||||
|
||||
/* return upper half */
|
||||
return (val // 10^halfd);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* mkpal - make a value into a palindrome
|
||||
*
|
||||
* NOTE: We assume base 10 digits and place 1 is the units digit.
|
||||
*
|
||||
* given:
|
||||
* val a value
|
||||
*
|
||||
* returns:
|
||||
* val as a palindrome with lower half being reverse digits of val
|
||||
*/
|
||||
define mkpal(val)
|
||||
{
|
||||
local d; /* length of val in digits */
|
||||
local i; /* counter */
|
||||
local ret; /* palindrome being formed */
|
||||
|
||||
/* determine length */
|
||||
d = digits(val);
|
||||
|
||||
/* insert digits in reverse order at the bottom */
|
||||
ret = val;
|
||||
for (i=0; i < d; ++i) {
|
||||
ret = ret*10 + digit(val, i);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* mkpalmiddigit - make a value into a palindrome with a middle digit
|
||||
*
|
||||
* NOTE: We assume base 10 digits and place 1 is the units digit.
|
||||
*
|
||||
* given:
|
||||
* val a value
|
||||
* digit the digit to put into the middle of the palindrome
|
||||
*
|
||||
* returns:
|
||||
* val as a palindrome with lower half being reverse digits of val
|
||||
* and digit as a middle digit
|
||||
*/
|
||||
define mkpalmiddigit(val, digit)
|
||||
{
|
||||
local d; /* length of val in digits */
|
||||
local i; /* counter */
|
||||
local ret; /* palindrome being formed */
|
||||
|
||||
/* determine length */
|
||||
d = digits(val);
|
||||
|
||||
/* insert digits in reverse order at the bottom */
|
||||
ret = val*10 + digit;
|
||||
for (i=0; i < d; ++i) {
|
||||
ret = ret*10 + digit(val, i);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* ispal - determine if a value is a palindrome
|
||||
*
|
||||
* NOTE: We assume base 10 digits and place 1 is the units digit.
|
||||
*
|
||||
* given:
|
||||
* val a value
|
||||
*
|
||||
* returns:
|
||||
* 1 ==> val is a palindrome
|
||||
* 0 ==> val is NOT a palindrome
|
||||
*/
|
||||
define ispal(val)
|
||||
{
|
||||
local half; /* upper half of digits of val */
|
||||
local digit; /* middle digit */
|
||||
|
||||
/* case: val has an even number of digits */
|
||||
if (iseven(digits(val))) {
|
||||
|
||||
/* test palindrome-ness */
|
||||
return (val == mkpal(upperhalf(val)));
|
||||
|
||||
/* case: val can an odd number of digits */
|
||||
} else {
|
||||
|
||||
/* test palindrome-ness */
|
||||
half = upperhalf(val);
|
||||
digit = half % 10;
|
||||
half //= 10;
|
||||
return (val == mkpalmiddigit(half, digit));
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* nextpal - return next palindrome from a value
|
||||
*
|
||||
* NOTE: We assume base 10 digits and place 1 is the units digit.
|
||||
*
|
||||
* given:
|
||||
* val a value
|
||||
*
|
||||
* returns:
|
||||
* next palindrome > val
|
||||
*/
|
||||
define nextpal(val)
|
||||
{
|
||||
local newval; /* val+1 */
|
||||
local newvaldigits; /* digits in newval */
|
||||
local half; /* upper half of newval */
|
||||
local newhalf; /* half+1 */
|
||||
local pal; /* palindrome test value */
|
||||
|
||||
/* case: negative value */
|
||||
if (val < 0) {
|
||||
return -(prevpal(-val));
|
||||
}
|
||||
|
||||
/*
|
||||
* start looking from a larger value
|
||||
*/
|
||||
newval = val+1;
|
||||
newvaldigits = digits(newval);
|
||||
if (config("user_debug")) { print "DEBUG: val:", val; }
|
||||
if (config("user_debug")) { print "DEBUG: newval:", newval; }
|
||||
if (config("user_debug")) { print "DEBUG: newvaldigits:", newvaldigits; }
|
||||
|
||||
/* case: single digit palindrome */
|
||||
if (newvaldigits < 2) {
|
||||
return newval;
|
||||
}
|
||||
|
||||
/*
|
||||
* start with next upper half
|
||||
*/
|
||||
half = upperhalf(newval);
|
||||
if (config("user_debug")) { print "DEBUG: half:", half; }
|
||||
|
||||
/*
|
||||
* form palindrome from upper half
|
||||
*
|
||||
* We need to deal with even vs. odd digit counts
|
||||
* when forming a palindrome from a half as the
|
||||
* half may not or may include the middle digit.
|
||||
*/
|
||||
if (iseven(newvaldigits)) {
|
||||
pal = mkpal(half);
|
||||
} else {
|
||||
pal = mkpalmiddigit(half // 10, half % 10);
|
||||
}
|
||||
|
||||
/*
|
||||
* case: we found a larger palindrome, we are done
|
||||
*/
|
||||
if (pal > val) {
|
||||
return pal;
|
||||
}
|
||||
|
||||
/*
|
||||
* the lower half of val is larger than upper half,
|
||||
* so we need to find an even larger palindrome
|
||||
*/
|
||||
newhalf = half+1;
|
||||
if (config("user_debug")) { print "DEBUG: newhalf:", newhalf; }
|
||||
|
||||
/*
|
||||
* form palindrome from new upper half
|
||||
*
|
||||
* We need to watch for the corner case where changing the
|
||||
* half changes the number of digits as this will impact
|
||||
* or even/odd number of digits processing.
|
||||
*/
|
||||
if (digits(newhalf) == digits(half)) {
|
||||
/* no change in half digits: process as normal */
|
||||
if (iseven(newvaldigits)) {
|
||||
pal = mkpal(newhalf);
|
||||
} else {
|
||||
pal = mkpalmiddigit(newhalf // 10, newhalf % 10);
|
||||
}
|
||||
} else {
|
||||
/* change in half digits: process as opposite */
|
||||
if (iseven(newvaldigits)) {
|
||||
pal = mkpalmiddigit(newhalf // 10, newhalf % 10);
|
||||
} else {
|
||||
pal = mkpal(newhalf);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* return the new palindrome
|
||||
*/
|
||||
return pal;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* prevpal - return previous palindrome from a value
|
||||
*
|
||||
* NOTE: We assume base 10 digits and place 1 is the units digit.
|
||||
*
|
||||
* given:
|
||||
* val a value
|
||||
*
|
||||
* returns:
|
||||
* previous palindrome < val
|
||||
*/
|
||||
define prevpal(val)
|
||||
{
|
||||
local newval; /* val-1 */
|
||||
local newvaldigits; /* digits in newval */
|
||||
local half; /* upper half of newval */
|
||||
local newhalf; /* half-1 */
|
||||
local pal; /* palindrome test value */
|
||||
local middle; /* middle digit of newval */
|
||||
|
||||
/* case: negative value */
|
||||
if (val < 0) {
|
||||
return -(nextpal(-val));
|
||||
}
|
||||
|
||||
/*
|
||||
* start looking from a smaller value
|
||||
*/
|
||||
newval = val-1;
|
||||
newvaldigits = digits(newval);
|
||||
|
||||
/* case: single digit palindrome */
|
||||
if (newvaldigits < 2) {
|
||||
return newval;
|
||||
}
|
||||
|
||||
/*
|
||||
* start with previous upper half
|
||||
*/
|
||||
half = upperhalf(newval);
|
||||
|
||||
/*
|
||||
* form palindrome from upper half
|
||||
*
|
||||
* We need to deal with even vs. odd digit counts
|
||||
* when forming a palindrome from a half as the
|
||||
* half may not or may include the middle digit.
|
||||
*/
|
||||
if (iseven(newvaldigits)) {
|
||||
pal = mkpal(half);
|
||||
} else {
|
||||
pal = mkpalmiddigit(half // 10, half % 10);
|
||||
}
|
||||
|
||||
/*
|
||||
* case: we found a smaller palindrome, we are done
|
||||
*/
|
||||
if (pal < val) {
|
||||
return pal;
|
||||
}
|
||||
|
||||
/*
|
||||
* the lower half of val is smaller than upper half,
|
||||
* so we need to find an even smaller palindrome
|
||||
*/
|
||||
newhalf = half-1;
|
||||
|
||||
/*
|
||||
* form palindrome from new upper half
|
||||
*
|
||||
* We need to watch for the corner case where changing the
|
||||
* half changes the number of digits as this will impact
|
||||
* or even/odd number of digits processing.
|
||||
*/
|
||||
if (digits(newhalf) == digits(half)) {
|
||||
/* no change in half digits: process as normal */
|
||||
if (iseven(newvaldigits)) {
|
||||
pal = mkpal(newhalf);
|
||||
} else {
|
||||
pal = mkpalmiddigit(newhalf // 10, newhalf % 10);
|
||||
}
|
||||
} else {
|
||||
/* change in half digits: process as opposite */
|
||||
if (iseven(newvaldigits)) {
|
||||
pal = mkpalmiddigit(newhalf // 10, newhalf % 10);
|
||||
} else {
|
||||
pal = mkpal(newhalf);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* return the new palindrome
|
||||
*/
|
||||
return pal;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* nextprimepal - return next palindrome that is a (highly probable) prime
|
||||
*
|
||||
* NOTE: We assume base 10 digits and place 1 is the units digit.
|
||||
*
|
||||
* given:
|
||||
* val a value
|
||||
*
|
||||
* returns:
|
||||
* next palindrome (highly probable) prime > val
|
||||
*/
|
||||
define nextprimepal(val)
|
||||
{
|
||||
local pal; /* palindrome test value */
|
||||
local dpal; /* digits in pal */
|
||||
|
||||
/*
|
||||
* pre-start under the next palindrome
|
||||
*/
|
||||
pal = nextpal(val-1);
|
||||
|
||||
/*
|
||||
* loop until we find a (highly probable) prime or 0
|
||||
*/
|
||||
do {
|
||||
|
||||
/* case: negative values and tiny values */
|
||||
if (pal < 2) {
|
||||
return 2;
|
||||
}
|
||||
|
||||
/*
|
||||
* compute the next palindrome
|
||||
*/
|
||||
pal = nextpal(pal);
|
||||
dpal = digits(pal);
|
||||
|
||||
/* case: 11 is the only prime palindrome with even digit count */
|
||||
if (pal == 11) {
|
||||
return 11;
|
||||
}
|
||||
|
||||
/* case: even number of digits and not 11 */
|
||||
if (iseven(dpal)) {
|
||||
|
||||
/*
|
||||
* Except for 11 (which is handled above already), there are
|
||||
* no prime palindrome with even digits. So we need to
|
||||
* increase the digit count and work with that larger palindrome.
|
||||
*/
|
||||
pal = nextpal(10^dpal);
|
||||
}
|
||||
|
||||
/* case: palindrome is even or ends in 5 */
|
||||
if (iseven(pal % 10) || (pal%10 == 10/2)) {
|
||||
|
||||
/*
|
||||
* we need to increase the bottom and top digits
|
||||
* so that we have a chance to be prime
|
||||
*/
|
||||
pal += (1 + 10^(dpal-1));
|
||||
}
|
||||
if (config("resource_debug") & 0x8) {
|
||||
print "DEBUG: nextprimepal:", pal;
|
||||
}
|
||||
} while (ptest(pal) == 0 && pal > 0);
|
||||
|
||||
/* return palindrome that his (highly probable) prime or 0 */
|
||||
return pal;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* prevprimepal - return prev palindrome that is a (highly probable) prime
|
||||
*
|
||||
* NOTE: We assume base 10 digits and place 1 is the units digit.
|
||||
*
|
||||
* given:
|
||||
* val a value
|
||||
*
|
||||
* returns:
|
||||
* prev palindrome (highly probable) prime < val or 0
|
||||
*/
|
||||
define prevprimepal(val)
|
||||
{
|
||||
local pal; /* palindrome test value */
|
||||
local dpal; /* digits in pal */
|
||||
|
||||
/*
|
||||
* pre-start over the previous palindrome
|
||||
*/
|
||||
pal = prevpal(val+1);
|
||||
|
||||
/*
|
||||
* loop until we find a (highly probable) prime or 0
|
||||
*/
|
||||
do {
|
||||
|
||||
/*
|
||||
* case: single digit values are always palindromes
|
||||
*/
|
||||
if (val < 10) {
|
||||
/*
|
||||
* Prevcand will return 0 if there is no previous prime
|
||||
* such as the case when val < 2.
|
||||
*/
|
||||
return prevcand(pal);
|
||||
}
|
||||
|
||||
/*
|
||||
* compute the previous palindrome
|
||||
*/
|
||||
pal = prevpal(pal);
|
||||
dpal = digits(pal);
|
||||
|
||||
/* case: 11 is the only prime palindrome with even digit count */
|
||||
if (pal == 11) {
|
||||
return 11;
|
||||
}
|
||||
|
||||
/* case: 2 digit palindrome and not 11 */
|
||||
if (dpal == 2) {
|
||||
return 7;
|
||||
}
|
||||
|
||||
/* case: even number of digits */
|
||||
if (iseven(dpal)) {
|
||||
|
||||
/*
|
||||
* Except for 11 (which is handled above already), there are
|
||||
* no prime palindrome with even digits. So we need to
|
||||
* decrease the digit count and work with that smaller palindrome.
|
||||
*/
|
||||
pal = prevpal(10^(dpal-1));
|
||||
}
|
||||
|
||||
/* case: palindrome is even or ends in 5 */
|
||||
if (iseven(pal % 10) || (pal%10 == 10/2)) {
|
||||
|
||||
/*
|
||||
* we need to decrease the bottom and top digits
|
||||
* so that we have a chance to be prime
|
||||
*/
|
||||
pal -= (1 + 10^(dpal-1));
|
||||
}
|
||||
if (config("resource_debug") & 0x8) {
|
||||
print "DEBUG: prevprimepal:", pal;
|
||||
}
|
||||
} while (ptest(pal) == 0 && pal > 0);
|
||||
|
||||
/* return palindrome that his (highly probable) prime or 0 */
|
||||
return pal;
|
||||
}
|
Reference in New Issue
Block a user