mirror of
https://github.com/lcn2/calc.git
synced 2025-08-19 01:13:27 +03:00
Release calc version 2.12.4.9
This commit is contained in:
653
cal/README
653
cal/README
@@ -173,7 +173,8 @@ alg_config.cal
|
||||
|
||||
beer.cal
|
||||
|
||||
Calc's contribution to the 99 Bottles of Beer web page:
|
||||
This calc resource is calc's contribution to the 99 Bottles of Beer
|
||||
web page:
|
||||
|
||||
http://www.ionet.net/~timtroyr/funhouse/beer.html#calc
|
||||
|
||||
@@ -191,6 +192,18 @@ bernoulli.cal
|
||||
the builtin function.
|
||||
|
||||
|
||||
bernpoly.cal
|
||||
|
||||
bernpoly(n,z)
|
||||
|
||||
Computes the nth Bernoulli polynomial at z for arbitrary n,z. See:
|
||||
|
||||
http://en.wikipedia.org/wiki/Bernoulli_polynomials
|
||||
http://mathworld.wolfram.com/BernoulliPolynomial.html
|
||||
|
||||
for further information
|
||||
|
||||
|
||||
bigprime.cal
|
||||
|
||||
bigprime(a, m, p)
|
||||
@@ -198,6 +211,34 @@ bigprime.cal
|
||||
A prime test, base a, on p*2^x+1 for even x>m.
|
||||
|
||||
|
||||
brentsolve.cal
|
||||
|
||||
brentsolve(low, high,eps)
|
||||
|
||||
A root-finder implementwed with the Brent-Dekker trick.
|
||||
|
||||
brentsolve2(low, high,which,eps)
|
||||
|
||||
The second function, brentsolve2(low, high,which,eps) has some lines
|
||||
added to make it easier to hardcode the name of the helper function
|
||||
different from the obligatory "f".
|
||||
|
||||
See:
|
||||
|
||||
http://en.wikipedia.org/wiki/Brent%27s_method
|
||||
http://mathworld.wolfram.com/BrentsMethod.html
|
||||
|
||||
to find out more about the Brent-Dekker method.
|
||||
|
||||
|
||||
constants.cal
|
||||
|
||||
e()
|
||||
G()
|
||||
|
||||
An implementation of different constants to arbitrary precision.
|
||||
|
||||
|
||||
chi.cal
|
||||
|
||||
Z(x[, eps])
|
||||
@@ -226,14 +267,37 @@ chrem.cal
|
||||
|
||||
deg.cal
|
||||
|
||||
deg(deg, min, sec)
|
||||
deg_add(a, b)
|
||||
deg_neg(a)
|
||||
deg_sub(a, b)
|
||||
deg_mul(a, b)
|
||||
deg_print(a)
|
||||
|
||||
Calculate in degrees, minutes, and seconds. For a more functional
|
||||
version see dms.cal.
|
||||
|
||||
|
||||
dms.cal
|
||||
|
||||
dms(deg, min, sec)
|
||||
dms_add(a, b)
|
||||
dms_neg(a)
|
||||
dms_sub(a, b)
|
||||
dms_mul(a, b)
|
||||
dms_print(a)
|
||||
dms_abs(a)
|
||||
dms_norm(a)
|
||||
dms_test(a)
|
||||
dms_int(a)
|
||||
dms_frac(a)
|
||||
dms_rel(a,b)
|
||||
dms_cmp(a,b)
|
||||
dms_inc(a)
|
||||
dms_dec(a)
|
||||
|
||||
Calculate in degrees, minutes, and seconds.
|
||||
Calculate in degrees, minutes, and seconds. Unlike deg.cal, increments
|
||||
are on the arc second level. See also hms.cal.
|
||||
|
||||
|
||||
dotest.cal
|
||||
@@ -268,6 +332,166 @@ dotest.cal
|
||||
dotest("set8700.line");
|
||||
|
||||
|
||||
factorial.cal
|
||||
|
||||
factorial(n)
|
||||
|
||||
Calculates the product of the positive integers up to and including n.
|
||||
|
||||
See:
|
||||
|
||||
http://en.wikipedia.org/wiki/Factorial
|
||||
|
||||
for information on the factorial. This function depends on the script
|
||||
toomcook.cal.
|
||||
|
||||
|
||||
primorial(a,b)
|
||||
|
||||
Calculates the product of the primes between a and b. If a is not prime
|
||||
the next higher prime is taken as the starting point. If b is not prime
|
||||
the next lower prime is taking as the end point b. The end point b must
|
||||
not exceed 4294967291. See:
|
||||
|
||||
http://en.wikipedia.org/wiki/Primorial
|
||||
|
||||
for information on the primorial.
|
||||
|
||||
|
||||
factorial2.cal
|
||||
|
||||
This file contents a small variety of integer functions that can, with
|
||||
more or less pressure, be related to the factorial.
|
||||
|
||||
doublefactorial(n)
|
||||
|
||||
Calculates the double factorial n!! with different algorithms for
|
||||
- n odd
|
||||
- n even and positive
|
||||
- n (real|complex) sans the negative half integers
|
||||
|
||||
See:
|
||||
|
||||
http://en.wikipedia.org/wiki/Double_factorial
|
||||
http://mathworld.wolfram.com/DoubleFactorial.html
|
||||
|
||||
for information on the double factorial. This function depends on
|
||||
the script toomcook.cal, factorial.cal and specialfunctions.cal.
|
||||
|
||||
|
||||
binomial(n,k)
|
||||
|
||||
Calculates the binomial coefficients for n large and k = k \pm
|
||||
n/2. Defaults to the built-in function for smaller and/or different
|
||||
values. Meant as a complete replacement for comb(n,k) with only a
|
||||
very small overhead. See:
|
||||
|
||||
http://en.wikipedia.org/wiki/Binomial_coefficient
|
||||
|
||||
for information on the binomial. This function depends on the script
|
||||
toomcook.cal factorial.cal and specialfunctions.cal.
|
||||
|
||||
|
||||
bigcatalan(n)
|
||||
|
||||
Calculates the n-th Catalan number for n large. It is usefull
|
||||
above n~50,000 but defaults to the builtin function for smaller
|
||||
values.Meant as a complete replacement for catalan(n) with only a
|
||||
very small overhead. See:
|
||||
|
||||
http://en.wikipedia.org/wiki/Catalan_number
|
||||
http://mathworld.wolfram.com/CatalanNumber.html
|
||||
|
||||
for information on Catalan numbers. This function depends on the scripts
|
||||
toomcook.cal, factorial.cal and specialfunctions.cal.
|
||||
|
||||
|
||||
stirling1(n,m)
|
||||
|
||||
Calculates the Stirling number of the first kind. It does so with
|
||||
building a list of all of the smaller results. It might be a good
|
||||
idea, though, to run it once for the highest n,m first if many
|
||||
Stirling numbers are needed at once, for example in a series. See:
|
||||
|
||||
http://en.wikipedia.org/wiki/Stirling_numbers_of_the_first_kind
|
||||
http://mathworld.wolfram.com/StirlingNumberoftheFirstKind.html
|
||||
Algorithm 3.17, Donald Kreher and Douglas Simpson, "Combinatorial
|
||||
Algorithms", CRC Press, 1998, page 89.
|
||||
|
||||
for information on Stirling numbers of the first kind.
|
||||
|
||||
|
||||
stirling2(n,m)
|
||||
stirling2caching(n,m)
|
||||
|
||||
Calculate the Stirling number of the second kind.
|
||||
The first function stirling2(n,m) does it with the sum
|
||||
m
|
||||
====
|
||||
1 \ n m - k
|
||||
-- > k (- 1) binomial(m, k)
|
||||
m! /
|
||||
====
|
||||
k = 0
|
||||
|
||||
The other function stirling2caching(n,m) does it by way of the
|
||||
reccurence relation and keeps all earlier results. This function
|
||||
is much slower for computing a single value than stirling2(n,m) but
|
||||
is very usefull if many Stirling numbers are needed, for example in
|
||||
a series. See:
|
||||
|
||||
http://en.wikipedia.org/wiki/Stirling_numbers_of_the_second_kind
|
||||
http://mathworld.wolfram.com/StirlingNumberoftheSecondKind.html
|
||||
|
||||
Algorithm 3.17, Donald Kreher and Douglas Simpson, "Combinatorial
|
||||
Algorithms", CRC Press, 1998, page 89.
|
||||
|
||||
for information on Stirling numbers of the second kind.
|
||||
|
||||
|
||||
bell(n)
|
||||
|
||||
Calculate the n-th Bell number. This may take some time for large n.
|
||||
See:
|
||||
|
||||
http://oeis.org/A000110
|
||||
http://en.wikipedia.org/wiki/Bell_number
|
||||
http://mathworld.wolfram.com/BellNumber.html
|
||||
|
||||
for information on Bell numbers.
|
||||
|
||||
|
||||
subfactorial(n)
|
||||
|
||||
Calculate the n-th subfactorial or derangement. This may take some
|
||||
time for large n. See:
|
||||
|
||||
http://mathworld.wolfram.com/Derangement.html
|
||||
http://en.wikipedia.org/wiki/Derangement
|
||||
|
||||
for information on subfactorials.
|
||||
|
||||
|
||||
risingfactorial(x,n)
|
||||
|
||||
Calculates the rising factorial or Pochammer symbol of almost arbitrary
|
||||
x,n. See:
|
||||
|
||||
http://en.wikipedia.org/wiki/Pochhammer_symbol
|
||||
http://mathworld.wolfram.com/PochhammerSymbol.html
|
||||
|
||||
for information on rising factorials.
|
||||
|
||||
fallingfactorial(x,n)
|
||||
|
||||
Calculates the rising factorial of almost arbitrary x,n. See:
|
||||
|
||||
http://en.wikipedia.org/wiki/Pochhammer_symbol
|
||||
http://mathworld.wolfram.com/PochhammerSymbol.html
|
||||
|
||||
for information on falling factorials.
|
||||
|
||||
|
||||
ellip.cal
|
||||
|
||||
efactor(iN, ia, B, force)
|
||||
@@ -275,6 +499,13 @@ ellip.cal
|
||||
Attempt to factor using the elliptic functions: y^2 = x^3 + a*x + b.
|
||||
|
||||
|
||||
gvec.cal
|
||||
|
||||
gvec(function, vector)
|
||||
|
||||
Vectorize any single-input function or trailing operator.
|
||||
|
||||
|
||||
hello.cal
|
||||
|
||||
Calc's contribution to the Hello World! page:
|
||||
@@ -285,6 +516,27 @@ hello.cal
|
||||
NOTE: This resource produces a lot of output. :-)
|
||||
|
||||
|
||||
hms.cal
|
||||
|
||||
hms(hour, min, sec)
|
||||
hms_add(a, b)
|
||||
hms_neg(a)
|
||||
hms_sub(a, b)
|
||||
hms_mul(a, b)
|
||||
hms_print(a)
|
||||
hms_abs(a)
|
||||
hms_norm(a)
|
||||
hms_test(a)
|
||||
hms_int(a)
|
||||
hms_frac(a)
|
||||
hms_rel(a,b)
|
||||
hms_cmp(a,b)
|
||||
hms_inc(a)
|
||||
hms_dec(a)
|
||||
|
||||
Calculate in hours, minutes, and seconds. See also dmscal.
|
||||
|
||||
|
||||
intfile.cal
|
||||
|
||||
file2be(filename)
|
||||
@@ -312,6 +564,37 @@ intfile.cal
|
||||
of the integer become the last octets of the file.
|
||||
|
||||
|
||||
lambertw.cal
|
||||
|
||||
lambertw(z,branch)
|
||||
|
||||
Computes Lambert's W-function at "z" at branch "branch". See
|
||||
|
||||
http://en.wikipedia.org/wiki/Lambert_W_function
|
||||
http://mathworld.wolfram.com/LambertW-Function.html
|
||||
https://cs.uwaterloo.ca/research/tr/1993/03/W.pdf
|
||||
http://arxiv.org/abs/1003.1628
|
||||
|
||||
to get more information.
|
||||
|
||||
This file includes also an implementation for the series described in
|
||||
Corless et al. (1996) eq. 4.22 (W-pdf) and Verebic (2010) (arxive link)
|
||||
eqs.35-37.
|
||||
|
||||
The series has been implemented to get a different algorithm
|
||||
for checking the results. This was necessary because the results
|
||||
of the implementation in Maxima, the only program with a general
|
||||
lambert-w implementation at hand at that time, differed slightly. The
|
||||
Maxima versions tested were: Maxima 5.21.1 and 5.29.1. The current
|
||||
version of this code concurs with the results of Mathematica`s(tm)
|
||||
ProductLog[branch,z] with the tested values.
|
||||
|
||||
The series is only valid for the branches 0,-1, real z, converges
|
||||
for values of z _very_ near the branchpoint -exp(-1) only, and must
|
||||
be given the branches explicitly. See the code in lambertw.cal
|
||||
for further information.
|
||||
|
||||
|
||||
linear.cal
|
||||
|
||||
linear(x0, y0, x1, y1, x)
|
||||
@@ -320,6 +603,24 @@ linear.cal
|
||||
Requires x0 != y0.
|
||||
|
||||
|
||||
lnseries.cal
|
||||
|
||||
lnseries(limit)
|
||||
lnfromseries(n)
|
||||
deletelnseries()
|
||||
|
||||
Calculates a series of n natural logarithms at 1,2,3,4...n. It
|
||||
does so by computing the prime factorization of all of the number
|
||||
sequence 1,2,3...n, calculates the natural logarithms of the primes
|
||||
in 1,2,3...n and uses the above factorization to build the natural
|
||||
logarithms of the rest of the sequence by sadding the logarithms of
|
||||
the primes in the factorization. This is faster for high precision
|
||||
of the logarithms and/or long sequences.
|
||||
|
||||
The sequence need to be initiated by running either lnseries(n) or
|
||||
lnfromseries(n) once with n the upper limit of the sequence.
|
||||
|
||||
|
||||
lucas.cal
|
||||
|
||||
lucas(h, n)
|
||||
@@ -365,6 +666,7 @@ mfactor.cal
|
||||
fastest even thought the initial startup overhead is larger than
|
||||
for p_elim == 13.
|
||||
|
||||
|
||||
mod.cal
|
||||
|
||||
lmod(a)
|
||||
@@ -454,6 +756,7 @@ pi.cal
|
||||
Lambert Meertens. See also the ABC Programmer's Handbook, by Geurts,
|
||||
Meertens & Pemberton, published by Prentice-Hall (UK) Ltd., 1990.
|
||||
|
||||
|
||||
pix.cal
|
||||
|
||||
pi_of_x(x)
|
||||
@@ -536,10 +839,10 @@ randmprime.cal
|
||||
|
||||
randmprime(bits, seed [,dbg])
|
||||
|
||||
Find a prime of the form h*2^n-1 >= 2^bits for some given x. The initial
|
||||
search points for 'h' and 'n' are selected by a cryptographic pseudo-random
|
||||
number generator. The optional argument, dbg, if set to 1, 2 or 3
|
||||
turn on various debugging print statements.
|
||||
Find a prime of the form h*2^n-1 >= 2^bits for some given x. The
|
||||
initial search points for 'h' and 'n' are selected by a cryptographic
|
||||
pseudo-random number generator. The optional argument, dbg, if set
|
||||
to 1, 2 or 3 turn on various debugging print statements.
|
||||
|
||||
|
||||
randombitrun.cal
|
||||
@@ -591,8 +894,8 @@ repeat.cal
|
||||
|
||||
regress.cal
|
||||
|
||||
Test the correct execution of the calculator by reading this resource file.
|
||||
Errors are reported with '****' messages, or worse. :-)
|
||||
Test the correct execution of the calculator by reading this resource
|
||||
file. Errors are reported with '****' messages, or worse. :-)
|
||||
|
||||
|
||||
screen.cal
|
||||
@@ -638,15 +941,17 @@ screen.cal
|
||||
Cyan
|
||||
White
|
||||
|
||||
Define ANSI control sequences providing (i.e., cursor movement, changing
|
||||
foreground or background color, etc.) for VT100 terminals and terminal
|
||||
window emulators (i.e., xterm, Apple OS/X Terminal, etc.) that support them.
|
||||
Define ANSI control sequences providing (i.e., cursor movement,
|
||||
changing foreground or background color, etc.) for VT100 terminals
|
||||
and terminal window emulators (i.e., xterm, Apple OS/X Terminal,
|
||||
etc.) that support them.
|
||||
|
||||
For example:
|
||||
|
||||
read screen
|
||||
print green:"This is green. ":red:"This is red.":black
|
||||
|
||||
|
||||
seedrandom.cal
|
||||
|
||||
seedrandom(seed1, seed2, bitsize [,trials])
|
||||
@@ -688,8 +993,247 @@ solve.cal
|
||||
solve(low, high, epsilon)
|
||||
|
||||
Solve the equation f(x) = 0 to within the desired error value for x.
|
||||
The function 'f' must be defined outside of this routine, and the low
|
||||
and high values are guesses which must produce values with opposite signs.
|
||||
The function 'f' must be defined outside of this routine, and the
|
||||
low and high values are guesses which must produce values with
|
||||
opposite signs.
|
||||
|
||||
|
||||
specialfunctions.cal
|
||||
|
||||
beta(a,b)
|
||||
|
||||
Calculates the value of the beta function. See:
|
||||
|
||||
https://en.wikipedia.org/wiki/Beta_function
|
||||
http://mathworld.wolfram.com/BetaFunction.html
|
||||
http://dlmf.nist.gov/5.12
|
||||
|
||||
for information on the beta function.
|
||||
|
||||
|
||||
betainc(a,b,z)
|
||||
|
||||
Calculates the value of the regularized incomplete beta function. See:
|
||||
|
||||
https://en.wikipedia.org/wiki/Beta_function
|
||||
http://mathworld.wolfram.com/RegularizedBetaFunction.html
|
||||
http://dlmf.nist.gov/8.17
|
||||
|
||||
for information on the regularized incomplete beta function.
|
||||
|
||||
|
||||
expoint(z)
|
||||
|
||||
Calculates the value of the exponential integral Ei(z) function at z.
|
||||
See:
|
||||
|
||||
http://en.wikipedia.org/wiki/Exponential_integral
|
||||
http://www.cs.utah.edu/~vpegorar/research/2011_JGT/
|
||||
|
||||
for information on the exponential integral Ei(z) function.
|
||||
|
||||
|
||||
erf(z)
|
||||
|
||||
Calculates the value of the error function at z. See:
|
||||
|
||||
http://en.wikipedia.org/wiki/Error_function
|
||||
|
||||
for information on the error function function.
|
||||
|
||||
|
||||
erfc(z)
|
||||
|
||||
Calculates the value of the complementary error function at z. See:
|
||||
|
||||
http://en.wikipedia.org/wiki/Error_function
|
||||
|
||||
for information on the complementary error function function.
|
||||
|
||||
|
||||
erfi(z)
|
||||
|
||||
Calculates the value of the imaginary error function at z. See:
|
||||
|
||||
http://en.wikipedia.org/wiki/Error_function
|
||||
|
||||
for information on the imaginary error function function.
|
||||
|
||||
|
||||
erfinv(x)
|
||||
|
||||
Calculates the inverse of the error function at x. See:
|
||||
|
||||
http://en.wikipedia.org/wiki/Error_function
|
||||
|
||||
for information on the inverse of the error function function.
|
||||
|
||||
|
||||
faddeeva(z)
|
||||
|
||||
Calculates the value of the complex error function at z. See:
|
||||
|
||||
http://en.wikipedia.org/wiki/Faddeeva_function
|
||||
|
||||
for information on the complex error function function.
|
||||
|
||||
|
||||
gamma(z)
|
||||
|
||||
Calculates the value of the Euler gamma function at z. See:
|
||||
|
||||
http://en.wikipedia.org/wiki/Gamma_function
|
||||
http://dlmf.nist.gov/5
|
||||
|
||||
for information on the Euler gamma function.
|
||||
|
||||
|
||||
gammainc(a,z)
|
||||
|
||||
Calculates the value of the lower incomplete gamma function for
|
||||
arbitrary a, z. See:
|
||||
|
||||
http://en.wikipedia.org/wiki/Incomplete_gamma_function
|
||||
|
||||
for information on the lower incomplete gamma function.
|
||||
|
||||
gammap(a,z)
|
||||
|
||||
Calculates the value of the regularized lower incomplete gamma
|
||||
function for a, z with a not in -N. See:
|
||||
|
||||
http://en.wikipedia.org/wiki/Incomplete_gamma_function
|
||||
|
||||
for information on the regularized lower incomplete gamma function.
|
||||
|
||||
gammaq(a,z)
|
||||
|
||||
Calculates the value of the regularized upper incomplete gamma
|
||||
function for a, z with a not in -N. See:
|
||||
|
||||
http://en.wikipedia.org/wiki/Incomplete_gamma_function
|
||||
|
||||
for information on the regularized upper incomplete gamma function.
|
||||
|
||||
|
||||
heavisidestep(x)
|
||||
|
||||
Computes the Heaviside stepp function (1+sign(x))/2
|
||||
|
||||
|
||||
harmonic(limit)
|
||||
|
||||
Calculates partial values of the harmonic series up to limit. See:
|
||||
|
||||
http://en.wikipedia.org/wiki/Harmonic_series_(mathematics)
|
||||
http://mathworld.wolfram.com/HarmonicSeries.html
|
||||
|
||||
for information on the harmonic series.
|
||||
|
||||
|
||||
lnbeta(a,b)
|
||||
|
||||
Calculates the natural logarithm of the beta function. See:
|
||||
|
||||
https://en.wikipedia.org/wiki/Beta_function
|
||||
http://mathworld.wolfram.com/BetaFunction.html
|
||||
http://dlmf.nist.gov/5.12
|
||||
|
||||
for information on the beta function.
|
||||
|
||||
lngamma(z)
|
||||
|
||||
Calculates the value of the logarithm of the Euler gamma function
|
||||
at z. See:
|
||||
|
||||
http://en.wikipedia.org/wiki/Gamma_function
|
||||
http://dlmf.nist.gov/5.15
|
||||
|
||||
for information on the derivatives of the the Euler gamma function.
|
||||
|
||||
|
||||
polygamma(m,z)
|
||||
|
||||
Calculates the value of the m-th derivative of the Euler gamma
|
||||
function at z. See:
|
||||
|
||||
http://en.wikipedia.org/wiki/Polygamma
|
||||
http://dlmf.nist.gov/5
|
||||
|
||||
for information on the n-th derivative ofthe Euler gamma function. This
|
||||
function depends on the script zeta2.cal.
|
||||
|
||||
|
||||
psi(z)
|
||||
|
||||
Calculates the value of the first derivative of the Euler gamma
|
||||
function at z. See:
|
||||
|
||||
http://en.wikipedia.org/wiki/Digamma_function
|
||||
http://dlmf.nist.gov/5
|
||||
|
||||
for information on the first derivative of the Euler gamma function.
|
||||
|
||||
|
||||
zeta(s)
|
||||
|
||||
Calculates the value of the Rieman Zeta function at s. See:
|
||||
|
||||
http://en.wikipedia.org/wiki/Riemann_zeta_function
|
||||
http://dlmf.nist.gov/25.2
|
||||
|
||||
for information on the Riemann zeta function. This function depends
|
||||
on the script zeta2.cal.
|
||||
|
||||
|
||||
statistics.cal
|
||||
|
||||
gammaincoctave(z,a)
|
||||
|
||||
Computes the regularized incomplete gamma function in a way to
|
||||
correspond with the function in Octave.
|
||||
|
||||
invbetainc(x,a,b)
|
||||
|
||||
Computes the inverse of the regularized beta function. Does so the
|
||||
brute-force way wich makes it a bit slower.
|
||||
|
||||
betapdf(x,a,b)
|
||||
betacdf(x,a,b)
|
||||
betacdfinv(x,a,b)
|
||||
betamedian(a,b)
|
||||
betamode(a,b)
|
||||
betavariance(a,b)
|
||||
betalnvariance(a,b)
|
||||
betaskewness(a,b)
|
||||
betakurtosis(a,b)
|
||||
betaentropy(a,b)
|
||||
normalpdf(x,mu,sigma)
|
||||
normalcdf(x,mu,sigma)
|
||||
probit(p)
|
||||
normalcdfinv(p,mu,sigma)
|
||||
normalmean(mu,sigma)
|
||||
normalmedian(mu,sigma)
|
||||
normalmode(mu,sigma)
|
||||
normalvariance(mu,sigma)
|
||||
normalskewness(mu,sigma)
|
||||
normalkurtosis(mu,sigma)
|
||||
normalentropy(mu,sigma)
|
||||
normalmgf(mu,sigma,t)
|
||||
normalcf(mu,sigma,t)
|
||||
chisquaredpdf(x,k)
|
||||
chisquaredpcdf(x,k)
|
||||
chisquaredmean(x,k)
|
||||
chisquaredmedian(x,k)
|
||||
chisquaredmode(x,k)
|
||||
chisquaredvariance(x,k)
|
||||
chisquaredskewness(x,k)
|
||||
chisquaredkurtosis(x,k)
|
||||
chisquaredentropy(x,k)
|
||||
chisquaredmfg(k,t)
|
||||
chisquaredcf(k,t)
|
||||
|
||||
Calculates a bunch of (hopefully) aptly named statistical functions.
|
||||
|
||||
|
||||
sumsq.cal
|
||||
@@ -751,7 +1295,8 @@ test1700.cal
|
||||
|
||||
value
|
||||
|
||||
This resource files is used by regress.cal to test the read and use keywords.
|
||||
This resource files is used by regress.cal to test the read and
|
||||
use keywords.
|
||||
|
||||
|
||||
test2600.cal
|
||||
@@ -776,8 +1321,8 @@ test2600.cal
|
||||
checkresult(x, y, z, a)
|
||||
test2600(verbose, tnum)
|
||||
|
||||
This resource files is used by regress.cal to test some of builtin functions
|
||||
in terms of accuracy and roundoff.
|
||||
This resource files is used by regress.cal to test some of builtin
|
||||
functions in terms of accuracy and roundoff.
|
||||
|
||||
|
||||
test2700.cal
|
||||
@@ -814,7 +1359,8 @@ test3100.cal
|
||||
res_inv(a)
|
||||
res(x)
|
||||
|
||||
This resource file is used by regress.cal to test determinants of a matrix
|
||||
This resource file is used by regress.cal to test determinants of
|
||||
a matrix.
|
||||
|
||||
|
||||
test3300.cal
|
||||
@@ -825,8 +1371,9 @@ test3300.cal
|
||||
testr(str, n, N, verbose)
|
||||
test3300(verbose, tnum)
|
||||
|
||||
This resource file is used by regress.cal to provide for more determinant
|
||||
tests.
|
||||
This resource file is used by regress.cal to provide for more
|
||||
determinant tests.
|
||||
|
||||
|
||||
test3400.cal
|
||||
|
||||
@@ -857,6 +1404,7 @@ test3500.cal
|
||||
This resource file is used by regress.cal to test the functions frem,
|
||||
fcnt, gcdrem.
|
||||
|
||||
|
||||
test4000.cal
|
||||
|
||||
global defaultverbose
|
||||
@@ -889,6 +1437,7 @@ test4000.cal
|
||||
This resource file is used by regress.cal to test ptest, nextcand and
|
||||
prevcand builtins.
|
||||
|
||||
|
||||
test4100.cal
|
||||
|
||||
global defaultverbose
|
||||
@@ -908,6 +1457,7 @@ test4100.cal
|
||||
|
||||
This resource file is used by regress.cal to test REDC operations.
|
||||
|
||||
|
||||
test4600.cal
|
||||
|
||||
stest(str [, verbose]) defined
|
||||
@@ -919,6 +1469,7 @@ test4600.cal
|
||||
|
||||
This resource file is used by regress.cal to test searching in files.
|
||||
|
||||
|
||||
test5100.cal
|
||||
|
||||
global a5100
|
||||
@@ -928,6 +1479,7 @@ test5100.cal
|
||||
This resource file is used by regress.cal to test the new code generator
|
||||
declaration scope and order.
|
||||
|
||||
|
||||
test5200.cal
|
||||
|
||||
global a5200
|
||||
@@ -939,6 +1491,7 @@ test5200.cal
|
||||
This resource file is used by regress.cal to test the fix of a
|
||||
global/static bug.
|
||||
|
||||
|
||||
test8400.cal
|
||||
|
||||
test8400() defined
|
||||
@@ -946,6 +1499,7 @@ test8400.cal
|
||||
This resource file is used by regress.cal to check for quit-based
|
||||
memory leaks.
|
||||
|
||||
|
||||
test8500.cal
|
||||
|
||||
global err_8500
|
||||
@@ -958,6 +1512,7 @@ test8500.cal
|
||||
|
||||
This resource file is used by regress.cal to the // and % operators.
|
||||
|
||||
|
||||
test8600.cal
|
||||
|
||||
global min_8600
|
||||
@@ -968,6 +1523,25 @@ test8600.cal
|
||||
This resource file is used by regress.cal to test a change of
|
||||
allowing up to 1024 args to be passed to a builtin function.
|
||||
|
||||
|
||||
test8900.cal
|
||||
|
||||
This function tests a number of calc resource functions contributed
|
||||
by Christoph Zurnieden. These include:
|
||||
|
||||
bernpoly.cal
|
||||
brentsolve.cal
|
||||
constants.cal
|
||||
factorial2.cal
|
||||
factorial.cal
|
||||
lambertw.cal
|
||||
lnseries.cal
|
||||
specialfunctions.cal
|
||||
statistics.cal
|
||||
toomcook.cal
|
||||
zeta2.cal
|
||||
|
||||
|
||||
unitfrac.cal
|
||||
|
||||
unitfrac(x)
|
||||
@@ -975,6 +1549,29 @@ unitfrac.cal
|
||||
Represent a fraction as sum of distinct unit fractions.
|
||||
|
||||
|
||||
toomcook.cal
|
||||
|
||||
|
||||
toomcook3(a,b)
|
||||
toomcook4(a,b)
|
||||
|
||||
Toom-Cook multiplication algorithm. Multiply two integers a,b by
|
||||
way of the Toom-Cook algorithm. See:
|
||||
|
||||
http://en.wikipedia.org/wiki/Toom%E2%80%93Cook_multiplication
|
||||
|
||||
toomcook3square(a)
|
||||
toomcook4square(a)
|
||||
|
||||
Square the integer a by way of the Toom-Cook algorithm. See:
|
||||
|
||||
http://en.wikipedia.org/wiki/Toom%E2%80%93Cook_multiplication
|
||||
|
||||
The function toomCook4(a,b) calls the function toomCook3(a,b) which
|
||||
calls built-in multiplication at a specific cut-off point. The
|
||||
squaring functions act in the same way.
|
||||
|
||||
|
||||
varargs.cal
|
||||
|
||||
sc(a, b, ...)
|
||||
@@ -982,6 +1579,7 @@ varargs.cal
|
||||
Example program to use 'varargs'. Program to sum the cubes of all
|
||||
the specified numbers.
|
||||
|
||||
|
||||
xx_print.cal
|
||||
|
||||
is_octet(a) defined
|
||||
@@ -996,6 +1594,19 @@ xx_print.cal
|
||||
|
||||
Demo for the xx_print object routines.
|
||||
|
||||
|
||||
zeta2.cal
|
||||
|
||||
hurwitzzeta(s,a)
|
||||
|
||||
Calculate the value of the Hurwitz Zeta function. See:
|
||||
|
||||
http://en.wikipedia.org/wiki/Hurwitz_zeta_function
|
||||
http://dlmf.nist.gov/25.11
|
||||
|
||||
for information on this special zeta function.
|
||||
|
||||
|
||||
## Copyright (C) 2000 David I. Bell and Landon Curt Noll
|
||||
##
|
||||
## Primary author: Landon Curt Noll
|
||||
@@ -1014,8 +1625,8 @@ xx_print.cal
|
||||
## received a copy with calc; if not, write to Free Software Foundation, Inc.
|
||||
## 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
##
|
||||
## @(#) $Revision: 30.1 $
|
||||
## @(#) $Id: README,v 30.1 2007/03/16 11:09:54 chongo Exp $
|
||||
## @(#) $Revision: 30.5 $
|
||||
## @(#) $Id: README,v 30.5 2013/08/11 03:26:46 chongo Exp $
|
||||
## @(#) $Source: /usr/local/src/cmd/calc/cal/RCS/README,v $
|
||||
##
|
||||
## Under source code control: 1990/02/15 01:50:32
|
||||
|
Reference in New Issue
Block a user