mirror of
https://github.com/lcn2/calc.git
synced 2025-08-16 01:03:29 +03:00
Release calc version 2.10.3t5.45
This commit is contained in:
57
help/agd
Normal file
57
help/agd
Normal file
@@ -0,0 +1,57 @@
|
||||
NAME
|
||||
agd - inverse gudermannian function
|
||||
|
||||
SYNOPSIS
|
||||
agd(z [,eps])
|
||||
|
||||
TYPES
|
||||
z number (real or complex)
|
||||
eps nonzero real, defaults to epsilon()
|
||||
|
||||
return number or infinite error value
|
||||
|
||||
DESCRIPTION
|
||||
Calculate the inverse gudermannian of z to a nultiple of eps with
|
||||
errors in real and imaginary parts less in absolute value than .75 * eps,
|
||||
or an error value if z is very close to one of the one of the branch
|
||||
points of agd(z)..
|
||||
|
||||
agd(z) is usually defined initially for real z with abs(z) < pi/2 by
|
||||
one of the formulae
|
||||
|
||||
agd(z) = ln(sec(z) + tan(z))
|
||||
|
||||
= 2 * atanh(tan(z/2))
|
||||
|
||||
= asinh(tan(z)),
|
||||
|
||||
or as the integral from 0 to z of (1/cos(t))dt. For complex z, the
|
||||
principal branch, approximated by gd(z, eps), has cuts along the real
|
||||
axis outside -pi/2 < z < pi/2.
|
||||
|
||||
If z = x + i * y and abs(x) < pi/2, agd(z) is given by
|
||||
|
||||
agd(z) = atanh(sin(x)/cosh(y)) + i * atan(sinh(y)/cos(x)>
|
||||
|
||||
|
||||
EXAMPLE
|
||||
> print agd(1, 1e-5), agd(1, 1e-10), agd(1, 1e-15)
|
||||
1.22619 1.2261911709 1.226191170883517
|
||||
|
||||
> print agd(2, 1e-5), agd(2, 1e-10)
|
||||
1.52345-3.14159i 1.5234524436-3.1415926536i
|
||||
|
||||
> print agd(5, 1e-5), agd(5, 1e-10), agd(5, 1e-15)
|
||||
-1.93237 -1.9323667197 -1.932366719745925
|
||||
|
||||
> print agd(1+2i, 1e-5), agd(1+2i, 1e-10)
|
||||
.22751+1.42291i .2275106584+1.4229114625i
|
||||
|
||||
LIMITS
|
||||
none
|
||||
|
||||
LIBRARY
|
||||
COMPLEX *cagd(COMPLEX *x, NUMBER *eps)
|
||||
|
||||
SEE ALSO
|
||||
gd, exp, ln, sin, sinh, etc.
|
Reference in New Issue
Block a user