mirror of
https://github.com/lcn2/calc.git
synced 2025-08-19 01:13:27 +03:00
Update v(1) stats with full 1000000 test sample
This commit is contained in:
@@ -805,62 +805,64 @@ rodseth_xhn(x, h, n)
|
||||
*
|
||||
* The above distribution was found to hold fairly well over many values of
|
||||
* odd h that are also a multiple of 3 and for many values of n where h < 2^n.
|
||||
* For example for in a sample size of 835823 numbers of the form h*2^n-1
|
||||
* where odd h >= 12996351 is a multiple of 3, n >= 12996351, these are the
|
||||
* smallest v(1) values that were found:
|
||||
* For example for in a sample size of 1000000 numbers of the form h*2^n-1
|
||||
* where h is an odd multiple of 3, 13002351 >= h >= 12996351,
|
||||
* 4332116 >= n >= 12996351, these are the smallest v(1) values that were found:
|
||||
*
|
||||
* smallest percentage
|
||||
* v(1) used
|
||||
* -------------------
|
||||
* 3 40.000%
|
||||
* 5 25.683%
|
||||
* 9 11.693%
|
||||
* 11 10.452%
|
||||
* 15 4.806%
|
||||
* 17 2.348%
|
||||
* 21 1.656%
|
||||
* 29 1.281%
|
||||
* 27 0.6881%
|
||||
* 35 0.4536%
|
||||
* 39 0.3121%
|
||||
* 41 0.1760%
|
||||
* 31 0.1414%
|
||||
* 3 40.0000%
|
||||
* 5 25.6833%
|
||||
* 9 11.6924%
|
||||
* 11 10.4528%
|
||||
* 15 4.8048%
|
||||
* 17 2.3458%
|
||||
* 21 1.6568%
|
||||
* 29 1.2814%
|
||||
* 27 0.6906%
|
||||
* 35 0.4529%
|
||||
* 39 0.3140%
|
||||
* 41 0.1737%
|
||||
* 31 0.1413%
|
||||
* 45 0.1173%
|
||||
* 51 0.05576%
|
||||
* 55 0.03300%
|
||||
* 49 0.03185%
|
||||
* 59 0.02090%
|
||||
* 69 0.00980%
|
||||
* 65 0.009367%
|
||||
* 71 0.007205%
|
||||
* 57 0.006341%
|
||||
* 85 0.004611%
|
||||
* 81 0.004179%
|
||||
* 95 0.002882%
|
||||
* 99 0.001873%
|
||||
* 77 0.001153%
|
||||
* 53 0.0007205%
|
||||
* 67 0.0005764%
|
||||
* 125 0.0005764%
|
||||
* 105 0.0005764%
|
||||
* 87 0.0004323%
|
||||
* 111 0.0004323%
|
||||
* 101 0.0002882%
|
||||
* 83 0.0001441%
|
||||
* 129 0.0001196%
|
||||
* 51 0.0526%
|
||||
* 55 0.0350%
|
||||
* 49 0.0332%
|
||||
* 59 0.0218%
|
||||
* 69 0.0099%
|
||||
* 65 0.0085%
|
||||
* 71 0.0073%
|
||||
* 57 0.0062%
|
||||
* 85 0.0048%
|
||||
* 81 0.0044%
|
||||
* 95 0.0028%
|
||||
* 99 0.0017%
|
||||
* 77 0.0009%
|
||||
* 53 0.0008%
|
||||
* 67 0.0004%
|
||||
* 105 0.0004%
|
||||
* 111 0.0004%
|
||||
* 125 0.0004%
|
||||
* 87 0.0003%
|
||||
* 101 0.0002%
|
||||
* 83 0.0001%
|
||||
* 109 0.0001%
|
||||
* 121 0.0001%
|
||||
* 129 0.0001%
|
||||
*
|
||||
* When h * 2^n-1 is prime and h is an odd multiple of 3, a smallest v(1) that
|
||||
* is even is extremely rate. Of the list of 127287 known primes of the form
|
||||
* h*2^n-1 when h was a multiple of 3, none has an smallest v(1) that was even.
|
||||
*
|
||||
* About 1 out of 835000 cases when h is a multiple of 3 use v(1) > 127 as the
|
||||
* About 1 out of 1000000 cases when h is a multiple of 3 use v(1) > 127 as the
|
||||
* smallest value of v(1).
|
||||
*
|
||||
* Given this information, when odd h is a multiple of 3 we try, in order,
|
||||
* these sorted values of X:
|
||||
*
|
||||
* 3, 5, 9, 11, 15, 17, 21, 27, 29, 31, 35, 39, 41, 45, 49, 51, 53, 55,
|
||||
* 57, 59, 65, 67, 69, 71, 77, 81, 83, 85, 87, 95, 99, 101, 105, 111, 125
|
||||
* 3, 5, 9, 11, 15, 17, 21, 27, 29, 31, 35, 39, 41, 45, 49, 51, 53, 55, 57, 59,
|
||||
* 65, 67, 69, 71, 77, 81, 83, 85, 87, 95, 99, 101, 105, 109, 111, 121, 125
|
||||
*
|
||||
* And stop on the first value of X where:
|
||||
*
|
||||
@@ -874,11 +876,11 @@ rodseth_xhn(x, h, n)
|
||||
* If all x_tbl_len fail to satisfy Ref4 condition 1, then we begin a
|
||||
* linear search at next_x until we find a proper X value.
|
||||
*/
|
||||
x_tbl_len = 35;
|
||||
x_tbl_len = 38;
|
||||
mat x_tbl[x_tbl_len];
|
||||
x_tbl = {
|
||||
3, 5, 9, 11, 15, 17, 21, 27, 29, 31, 35, 39, 41, 45, 49, 51, 53, 55,
|
||||
57, 59, 65, 67, 69, 71, 77, 81, 83, 85, 87, 95, 99, 101, 105, 111, 125
|
||||
3, 5, 9, 11, 15, 17, 21, 27, 29, 31, 35, 39, 41, 45, 49, 51, 53, 55, 57, 59,
|
||||
65, 67, 69, 71, 77, 81, 83, 85, 87, 95, 99, 101, 105, 109, 111, 121, 125
|
||||
};
|
||||
next_x = 129;
|
||||
|
||||
|
Reference in New Issue
Block a user